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Visual simultaneous localization and mapping (V-SLAM) plays a crucial role
in the field of robotic systems, especially for interactive and collaborative
mobile robots. The growing reliance on robotics has increased complexity in
task execution in real-world applications. Consequently, several types of V-
SLAM methods have been revealed to facilitate and streamline the functions
of robots. This work aims to showcase the latest V-SLAM methodologies,
offering clear selection criteria for researchers and developers to choose
the right approach for their robotic applications. It chronologically presents
the evolution of SLAM methods, highlighting key principles and providing
comparative analyses between them. The paper focuses on the integration of
the robotic ecosystem with a robot operating system (ROS) as Middleware,
explores essential V-SLAM benchmark datasets, and presents demonstrative
figures for each method’s workflow.
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1 Introduction

Robotics is an interdisciplinary field that involves the creation, design, and operation
of tasks using algorithms and programming (Bongard, 2008; Joo et al., 2020; Awais
and Henrich 2010; Fong et al., 2003). Its impact extends to manufacturing, automation,
optimization, transportation, medical applications, and even NASA’s interplanetary
exploration (Li et al., 2023b; Heyer, 2010; Sheridan, 2016; Mazumdar et al., 2023). Service
robots, which interact with people, are becoming more common and useful in everyday
life (Hempel et al., 2023; Lynch et al., 2023). The imperative of integrating automation with
human cognitive abilities becomes evident in facilitating a successful collaboration between
humans and robots. This helps service robots be more effective in different situations
where they interact with people (Prati et al., 2021; Strazdas et al., 2020; Zheng et al., 2023).
Furthermore, using multiple robots together can help them handle complex tasks better
(Zheng et al., 2022; Li et al., 2023b; Fiedler et al., 2021). To manage and coordinate various
processes, a robot operating system (ROS) plays a significant role (Buyval et al., 2017).
It is an open-source framework that aids roboticists in implementing their research and
projects with minimal complexity. ROS offers a multitude of features, including hardware
integration, control mechanisms, and seamless device implementation into the system, thus
facilitating the development and operation of robotic systems (Altawil and Can 2023).
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FIGURE 1
Article organizational chart.

As shown in Figure 1, the paper is divided into six sections.
Section 1 gives the brief introduction about robotics and SLAM.
Section 2 presents an overview of the V-SLAM paradigm that delves
into its fundamental concepts.

Section 3 presents the state-of-the-art V-SLAM methods,
offering insights into the latest advancements of them. Moving
forward, section 4 explores the evolution of V-SLAM and discusses
the most commonly used datasets. Section 5 focuses on techniques
for evaluating SLAM methods, aiding in the selection of appropriate
methods. Finally, Section 6 provides the conclusion of the article,
summarizing the key points we discovered while working on our
review paper.

Recently, we require robots that can move around and
work well in places they have never been before. In this
regard, simultaneous localization and mapping (SLAM) emerges
as a fundamental approach for these robots. The primary goal
of SLAM is to autonomously explore and navigate unknown
environments by simultaneously creating a map and determining
their own position (Durrant-Whyte, 2012; Mohamed et al., 2008).
Furthermore, it provides real-time capabilities, allowing robots to
make decisions on-the-fly without relying on pre-existing maps. Its
utility extends to the extraction, organization, and comprehension of
information, thereby enhancing the robot’s capacity to interpret and
interact effectively with its environment (Pal et al., 2022; Lee et al.,
2020; Aslan et al., 2021). It is crucial to enable these robots to
autonomously navigate and interact in human environments, thus
reducing human effort and enhancing overall productivity (Arfa,
2022). The construction of maps is based on the utilization of sensor
data, such as visual data, laser scanning data, and data from the
inertial measurement unit (IMU), followed by rapid processing
(Macario Barros et al., 2022).

Historically, prior to the advent of SLAM technology,
localization and mapping were treated as distinct entities.
However, it was seen that there is a strong internal dependency
between mapping and localization. Although accurate localization

depends on the map, mapping depends on localization. Thus, the
question is known as the “Chicken and Egg” question (Taheri
and Xia, 2021). In robotics, there are different tools to help
robots obtain information from surroundings and build their
map. One way is to use sensors such as LiDAR, which uses
light detection and ranging sensors to make a 3D map (Huang,
2021; Van Nam and Gon-Woo, 2021). Another way is to use
cameras, such as monocular and stereo cameras, which are
applied in visual SLAM (V-SLAM). In this method, the robot
uses pictures to figure out where it is and creates the required
map (Davison et al., 2007). Regarding the paper’s intensive details,
we provide Table 1 that summarizes and includes the description
of abbreviations used in the article based on SLAM principles
and fundamentals.

Due to the significance of visual techniques in interactive robotic
applications, our research focuses on V-SLAM methodologies and
their evaluation. V-SLAM can be applied to mobile robotics that
utilizes cameras to create a map of their surroundings and easily
locate themselves within their work space (Li et al., 2020). It uses
techniques such as computer vision to extract and match visual data
for localization andmapping (Zhang et al., 2020; Chung et al., 2023).
It allows robots to map complex environments while performing
tasks such as navigation in dynamic fields (Placed et al., 2023;
Khoyani and Amini 2023). It places a strong emphasis on accurate
tracking of camera poses and estimating past trajectories of the robot
during its work (Nguyen et al., 2022; Awais and Henrich 2010).
Figure 2 provides a basic understanding of V-SLAM. It takes an
image from the environment as an input, processes it, and produces
a map as an output. In V-SLAM, various types of cameras are
used to capture images or videos. A commonly used camera is the
monocular camera, which has a single lens, providing 2D visual
information (Civera et al., 2011). However, due to its limitation of
lacking depth information, researchers often turn to stereo cameras,
which are equipped with two lenses set at a specific distance to
capture images from different perspectives, enabling depth details

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2024.1347985
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al-Tawil et al. 10.3389/frobt.2024.1347985

TABLE 1 List of abbreviations used in this article.

Abbreviation Explanation Abbreviation Explanation

V-SLAM Visual
simultaneous

localization and
mapping

LSD Large-scale
direct

ROS Robot
Operating
System

OKVIS Open
keyframe-based
visual–inertial

Lidar Light detection
and ranging

DVO Dense visual
odometry

BA Bundle
adjustment

RPGO Robust
pose-graph
optimization

BoW Bag of words IMU Inertial
measurement

unit

PTAM Parallel
tracking and
mapping

GPS Global
positioning

system

FAST Features from
accelerated
segment test

MAV Micro air
vehicle

ROVIO Robust
visual–inertial

odometry

AGV Automated-
guided vehicle

HRI Human–robot
interaction

UAV Unmanned
aerial vehicle

DTAM Dense tracking
and mapping

AR Augmented
reality

LCP Loop closure
process

VR Virtual reality

SS Semantic
segmentation

RoLi Range of light
intensity

DSt Dense stereo ILR Illumination
and light
robustness

DSe Dense
semantics

BRIEF Binary Robust
Independent
Elementary
Features

SCE Spatial
coordinate

errors

(Gao et al., 2020; Meng et al., 2018). Another valuable option in
V-SLAM is the use of RGB-D cameras, which are capable of
capturing both color information (RGB) and depth information (D)
(Meng et al., 2018). Although monocular cameras are inexpensive
and lightweight, they may require additional sensors in order to
provide accurate data. In contrast, RGB-D and stereo cameras
provide depth information. This makes RGB-D, such as Microsoft’s

Kinect and stereo cameras, suitable for robust and accurate SLAM
systems (Luo et al., 2021).

Previous research demonstrated the effectiveness of V-SLAM
methods, but they are often explained with very few details and
separate figures (Khoyani andAmini, 2023; Fan et al., 2020),making
it challenging to understand, compare, and make selections among
them. As a result, our study focuses on simplifying the explanation
of V-SLAM methodologies to enable readers to comprehend them
easily. The main contributions of the study can be described as
follows:

• Investigation into V-SLAM techniques to determine the most
appropriate tools for use in robotics.
• Creation of a graphical and illustrative structural workflow for

each method to enhance the comprehension of the operational
processes involved in V-SLAM.
• Presentation of significant factors for the evaluation and

selection criteria among the V-SLAM methods.
• Compilation of a comparative table that lists essential

parameters and features for each V-SLAM method.
• Presentation and discussion of relevant datasets employed

within the domain of robotics applications.

2 Visual SLAM paradigm

As discussed in Introduction, V-SLAM uses sensor data to
provide valuable information to the system (Khoyani and Amini,
2023). Mobile robots and autonomous vehicles require the ability to
understand their environment to complete their tasks and achieve
their goals (Ai et al., 2021). This understanding is essential for them
to be successful in their operations (Bongard, 2008).

The V-SLAM framework is composed of sequential steps
that are organized to create the system and process its data;
see Figure 3, which explains the processes performed within V-
SLAM in parallel with the demonstrated pictures. This includes the
creation of a detailed map, a trajectory estimator, and the precise
positioning and orientation of the cameras attached to that system
(Beghdadi and Mallem, 2022; Kazerouni et al., 2022). Within this
framework, various scenarios can be effectively implemented and
operated, such as pixel-wise motion segmentation (Hempel and
Al-Hamadi, 2020), semantic segmentation (Liu and Miura, 2021),
and filtering techniques (Wang et al., 2023; Grisetti et al., 2007).
These approaches aim to achieve a professional approach for a
visual representation of the processes involved in V-SLAM. The
operational framework has been systematically divided into four
sections, which can be listed and explained herein.

2.1 Data acquisition and system
initialization

In this stage of V-SLAM, we systematically prepare input data
using system hardware, which includes capturing and preparing
images. It involves installing cameras such as RGB-D cameras, depth
cameras, or infrared sensors for collecting data and initializing the
system (Beghdadi and Mallem, 2022).
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FIGURE 2
Schematic representation of a robotic system’s architecture, highlighting the incorporation of SLAM and its location within the system.

The system gathers data, with a particular emphasis on crucial
filtering details aimed at effectively eliminating any noise present in
the input data (Mane et al., 2016; Grisetti et al., 2007). The refined
data are then sent to the next stage for further processing to extract
features from the input information (Ai et al., 2021). As a result,
progress in SLAMmethods has resulted in the creation of numerous
datasets accessible to researchers to evaluate V-SLAM algorithms
(El Bouazzaoui et al., 2021).

2.2 System localization

In the second stage of V-SLAM, the system focuses on finding
its location, which is an important part of the entire process
(Scaradozzi et al., 2018). It involves the execution of various
processes that are crucial for successfully determining where the
robot is. Feature tracking plays a central role during this phase, with
a primary focus on tasks such as feature extraction, matching, re-
localization, and pose estimation (Picard et al., 2023). It aims to align
and identify the frames that guide the estimation and creation of the
initial keyframe for the input data (Ai et al., 2021). A keyframe is a
set of video frames that includes a group of observed feature points
and the camera’s poses. It plays an important role for the tracking
and localization process, helping in eliminating drift errors for
camera poses attached to the robot (Sheng et al., 2019; Hsiao et al.,
2017). Subsequently, this keyframe is sent for further processing in
the next stage, where it will be shaped into a preliminary map, a
crucial part for the third stage of the workflow (Aloui et al., 2022;
Zhang et al., 2020).

2.3 System map formation

The third stage of the V-SLAM workflow focuses on the
crucial task of building the map, an essential element in V-SLAM
processes. Various types of maps can be generated using SLAM,
including topological maps, volumetric (3D) maps, such as point
cloud and occupancy grid maps, and feature-based or landmark
maps. The choice of the map type is based on factors such as
the sensors employed, application requirements, environmental
assumptions, and the type of dataset used in robotic applications
(Taheri and Xia, 2021; Fernández-Moral et al., 2013). In robotics,
a grid map is a representation of a physical environment, with
each cell representing a particular location and storing data

comprising obstacles, topography, and occupancy. It functions as
a fundamental data structure for several robotics navigation and
localization techniques (Grisetti et al., 2007). A feature-based map
is a representation which captures the features of the environment,
such as landmarks or objects, to facilitate localization and navigation
tasks (Li et al., 2022a). A point cloud map is a representation of a
physical space or object made from lots of 3D dots, showing how
things are arranged in a place. It is created using special cameras or
sensors and helps robots and computers understand what is around
them (Chu et al., 2018).

After setting up keyframes during the localization stage, the
workflow progresses to field modeling. Then, key points and feature
lines are identified and detected, which is crucial for generating a
map (Schneider et al., 2018). It is a process that builds and updates
the map of an unknown environment and is used to continuously
track the robot’s location (Chen et al., 2020). It is a two-way process
that works together with the localization process, where they depend
on each other to achieve SLAM processes. It gathers real-time
data about the surroundings, creating both a geometric and a
visual model r13 (accessed on 14 November 2023). In addition, the
process includes the implementation of bundle adjustments (BAs)
to improve the precision of the generated map before it is moved
to the final stage (Acosta-Amaya et al., 2023). BA is a tool that
simultaneously refines the parameters essential for estimating and
reconstructing the location of observed points in available images.
It plays a crucial role in feature-based SLAM (Bustos et al., 2019;
Eudes et al., 2010).

2.4 System loop closure and process
tuning

The final stage in the V-SLAM workflow involves fine-tuning
the process and closing loops, resulting in the optimization of the
final map. In V-SLAM, the loop closure procedure examines and
maintains previously visited places, fixing any errors that might
have occurred during the robot’s exploration within an unknown
environment. These errors typically result from the estimation
processes performed in earlier stages of the SLAM workflow
(Tsintotas et al., 2022; Hess et al., 2016). Loop closure and process
tuning can be done using different techniques, such as the extended
Kalman filter SLAM (EKF-SLAM). EKF-SLAM combines loop
closure and landmark observation data to adjust the map in the
Kalman filter’s state estimate. This tool helps address uncertainties
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FIGURE 3
Visual SLAM architecture: an overview of the four core components necessary for visual SLAM: data acquisition, system localization, system mapping,
and system loop closure, and process tuning, enabling mobile robots to perceive, navigate, and interact with their environment.

in the surrounding world (map) and localize the robot within it
(Song et al., 2021; Ullah et al., 2020).

The bag-of-words (BoW) approach is another technique
used to enable robots to recognize and recall previously visited
locations. This is similar to how humans remember places they
have been to in the past, even after a long time, due to the
activities that took place there. BoW works by taking the visual
features of each image and converting them into a histogram
of visual words. This histogram is then used to create a fixed-
size vector representation of the BoW, which is stored for
use in matching and loop-closing processes (Cui et al., 2022;
Tsintotas et al., 2022).

Finally, graph optimization is used as a correction tool for loop
closure processes. It refines the final map and robot’s trajectory by
optimizing the graph based on landmarks. This technique involves
a graph-based representation of the SLAM issue, where vertices
represent robot poses and map characteristics and edges represent
constraints or measurements between the poses. It is commonly
used as a correction tool in graph-based SLAM types (Zhang et al.,
2017; Chou et al., 2019; Meng et al., 2022).

In conclusion, these comprehensive workflow processes
outlined in Sections 2.1, 2.2, 2.3, and 2.4, respectively, play an
important role in V-SLAM for robotics as they facilitate the
simultaneous creation of maps and real-time location tracking
within the operational environment (Li et al., 2022b).

3 State-of-the-art of visual SLAM
methods

V-SLAM plays a significant role as a transformative topic
within the robotics industry and research (Khoyani and Amini,
2023; Acosta-Amaya et al., 2023). The progress in this field can
be attributed to tools such as machine learning, computer vision,
deep learning, and state-of-the-art sensor technologies, which

have collectively simplified and enhanced its strategy in real-life
applications (Beghdadi and Mallem, 2022; Duan et al., 2019).

The landscape of V-SLAM is composed of a variety of
methodologies, which can be divided into three categories, namely,
only visual SLAM, visual-inertial SLAM, and RGB-D SLAM
(Macario Barros et al., 2022; Theodorou et al., 2022), as shown in
Figure 4. In this section, we provide a brief overview of the current
state-of-the-art V-SLAM algorithms and techniques, including
their methodology, efficiency, time requirements, and processing
capacity, as well as whether they are designed to run on-board or
off-board computer systems (Tourani et al., 2022). Additionally, we
combine various graphical representations to create a single and
comprehensive visual representation of the method workflow, as
shown in Figure 5.

3.1 Only visual SLAM

It is a SLAM system designed to map the environment around
the sensors while simultaneously determining the precise location
and orientation of those sensors within their surroundings. It
relies entirely on visual data for estimating sensor motion and
reconstructing environmental structures (Taketomi et al., 2017).

It uses monocular, RGB-D, and stereo cameras to scan the
environment, helping robots map unfamiliar areas easily. This
approach has attracted attention in the literature because it is
cost-effective, easy to calibrate, and has low power consumption
in monocular cameras while also allowing depth estimation and
high accuracy in RGB-D and stereo cameras (Macario Barros et al.,
2022; Abbad et al., 2023). The methods used in this part can be
listed herein.

3.1.1 PTAM-SLAM
PTAM-SLAM, which stands for parallel tracking and mapping

(PTAM), is a monocular SLAM used for real-time tracking systems.
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FIGURE 4
Illustration of visual SLAM types: only-visual SLAM, visual-inertial
SLAM, and RGB-D SLAM.

It has 6-DoF camera tracking, which can be used in small scenes
(K. and Mu. (2007). This methodology demonstrates remarkable
efficiency in dynamic operational settings, consistently providing
high performance even in conditions of frequent and unstable
lighting variations (Soliman et al., 2023); see Table 2.

The system workflow consists of four sequential stages (Klien
and Murray. 2007; Fernández-Moral et al., 2013). Input preparation
and system initialization involve processes such as monocular
camera translation and rotation to improve image efficiency and
clarity (De Croce et al., 2019). The tracking process is carried out,
where tasks related to image and video processing are performed
to prepare data for subsequent mapping procedures. Following that,
the optimization and mapping processes are carried out to prepare
the map and reveal the outputs, which include the camera pose and
the 3D map used in SLAM operations (Klien and Murray. 2007;
Servières et al., 2021). All processes and steps are simplified and
demonstrated in Figure 5, part 1.

3.1.2 ORB-SLAM
ORB-SLAM stands for oriented FAST (features from accelerated

segment test) and rotated BRIEF (binary robust independent
elementary features) SLAM (Tourani et al., 2022). This feature-
based detector is applicable in both small and large indoor
or outdoor fields (Tourani et al., 2022). Due to its real-time

capabilities and high-quality map reconstruction, it is widely
used in applications such as the human–robot interaction (HRI)
(Mur-Artal et al., 2015), augmented reality, and autonomous
navigation (Zhu et al., 2022; Yang et al., 2022). ORB-SLAM is
designed to handle robust and unstable motion clutter, covering
essential processes such as tracking, mapping, and loop closing
(Campos et al., 2021). Compared to other advanced V-SLAM
methods, ORB-SLAM outperforms by enhancing the dynamic, size,
and traceability of the map. It achieves real-time global localization
from wide baselines, performs camera re-localization from various
viewpoints, and makes better selections for frames and points in the
reconstruction process (Ragot et al., 2019; Mur-A and Tars, 2014);
see Table 2.

ORB-SLAM1 categorized to be only-visual (Mur-Artal et al.,
2015; Mur-A and Tars, 2014), while ORB-SLAM2 expands to both
only-visual and RGB-D SLAM (Ragot et al., 2019; Mur-Artal and
Tardós 2017a). Furthermore, ORB-SLAM3 furthers its classification
to include all three categories: only-visual, visual-inertial, and RGB-
D SLAM.This expansion underscores the adaptability and versatility
of ORB-SLAM in real-life applications (Zang et al., 2023; Ca et al.,
2021; Campos et al., 2021).

The ORB-SLAM methodology process goes through four
sequential phases (Mur-Artal et al., 2015; Mur-Artal and Tardós
2017a; Ca et al., 2021). The initial phase involves the sensor input
and the tracking process (Joo et al., 2020). Across all ORB-SLAM
versions, this phase shares a common approach, focusing on pose
preparation and frame generation to facilitate decision-making
(Sun et al., 2017). However, the difference lies in input usage; for
example, ORB-SLAM1 uses one input, ORB-SLAM2 uses three,
and ORB-SLAM3 uses four (Campos et al., 2021). Therefore, the
quality and efficiency of the next operation depend on the input
in the first stage. In the next phase, local mapping is done by
adding new keyframes and creatingmap points with the localization
process simultaneously (Ca et al., 2021).This part remains consistent
across all versions, but version 3 enhances its functionality by
incorporating additional bundle adjustment for improved feature
detection and matching (Dai et al., 2021). The subsequent phase
involves loop closing, process optimization, and selecting similar
candidate data in all versions. However, versions 2 and 3 include
additional steps such as bundle adjustment welding and map
merging (Mur-Artal and Tardós, 2017a; Zang et al., 2023). The last
stage is preparing the output, focusing on creating the final map
that includes essential information such as graphs, lines, point
mapping, and 2D and 3D maps for use in the SLAM process
(Acosta-Amaya et al., 2023). Figure 5 parts 4, 5, and 6 give a detailed
observation about the methods of ORB-SLAM 1, 2, and 3 versions,
respectively, showcasing their features and functionalities for a
better understanding.

3.1.3 LSD-SLAM
LSD-SLAM, which stands for large-scale direct monocular

SLAM, is an advanced technique made for real-time mapping and
positioning. It can utilize various camera setups. It is designed for
large-scale mapping jobs where it can create a very accurate and
detailed map of the working fields. In addition, it stays accurate
even with a lower image resolution (Engel et al., 2015; Fernández-
Moral et al., 2013). This flexibility makes it a better choice for
operating in complex, wide-ranging and dynamic environments and
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FIGURE 5
Visual SLAM methods, illustrating the state-of-the-art method and workflow for select notable SLAM methods featured in this study, presented in a
simplified view.

is used in various applications such as robotics and self-driving cars
(Mur-Artal et al., 2015; Eng et al., 2014); see Table 2.

LSD-SLAM distinguishes itself from the DTAM-SLAM
approach by focusing on areas with strong intensity changes, leaving
out regions with little or no texture details. This choice comes from
the challenge of figuring out how far things are in areas where there
is not much texture inside images. As a result, LSD-SLAM goes
beyond what DTAM can do by concentrating on places with strong
changes in brightness and ignoring areas with very little texture
(Acosta-Amaya et al., 2023; Khoyani and Amini, 2023).

LSD and DVO-SLAM processes can function similarly, and
their workflow is structured in five stages (Macario Barros et al.,
2022; Luo et al., 2021; Schöps et al., 2014; Engel et al., 2015). The
first stage includes inputting mono- and stereo data and preparing
them for the next processing step. The second stage is designed for
tracking and estimating the initial pose by aligning images from
both mono and stereo cameras. The third stage is dedicated to loop
closure processes, involving keyframe preparation, regularization,
and data updates to prepare frames for subsequent stages.The fourth
stage carries out map optimization, including two critical phases,
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TABLE 2 Comparative scenarios for actively used visual SLAMmethods.

Sensor ILR

SLAM
method

M S I O W-S Output
usage

Application
field

RoLI T2D Hardware
deployment

S.M

PTAM K.
and Mu

✓ × × × M-H Pose-estimation
3D mapping

Robotics, AR, and
VR

+++ ++++ ODROID-XU4,
Intel Quad-Core

GPL (2023)

DTAM Ne.
et al

✓ ✓ × RGBD S-I Textured depth
map

Robotics, AR, VR,
AGV, and
simulators

++ +++ nvidia.gtx.480.gpu,
gpgpu-Processors

Rintar (2023)

RTAB. M
Labbé

✓ ✓ ✓ Lidar L-H 2D and 3D
mapping

Robotics, VR, AR,
and 3D
reconstruction

+++ +++ Jetson Nano, Intel
Core.i5.8th.gen

Introlab (2023)

ORB.S
Mur-A

✓ × × × M-H Tree-spanning and
pose-estimating

Robotics mapping
indoor navigation

++++ +++ Intel
Core.i7.4700MQ

raulmur (2023a)

ORB.S2
Leut et al

✓ ✓ × RGBD M-H Point-mapping
and keyframe
selection

Mobile mapping,
robotics, VR, and
UAVs

++++ ++++ Intel Core-i7.4790
and
RealSense-D435

raulmur (2023b)

ORB.S3 Ca.
et al

✓ ✓ ✓ fish.e L-H 2D and 3D-Map
and tree-spanning

Robotics, security,
and 3D
reconstruction

+++++ +++++ Jetson-tx2, pi.3B +
nvidia.geforce

uz.slaml (2023)

RGBD.S
End et al

× × ✓ RGBD L-H Maps, trajectories
and 3D point
cloud

3D-scanning,
robotics and UAVs

+++ ++++ Intel Core.i9.9900k
and Quad
Core.cpu.8.GB

felix. (2023)

SCE.S Son
et al

× ✓ × RGBD M-I Camera pose and
Semantic Map

Robotics, AR, and
AGV

++++ +++ nvidia.Jetson.AGX,
512.core.Volta.GPU

None

OKVIS
Leut et al

✓ ✓ ✓ × M-H Graph estimation
and feature
tracking

Robotics, UAVs,
and VR

++++ ++++ Up-Board,
ODROID.xu4, and
Intel®CoreTM.i7

eth.a (2023a)

ROVIO
Blo. et al

✓ ✓ ✓ fish.e L-H Position and
orientation depth
map

Robotics, AR, and
self-driving. cars

+++ +++ ODROID-xu4 and
Intel i7-2760QM

eth.a (2023b)

VINS.M
Qin et al

✓ × ✓ × L-H Keyframe database
pose estimation

Robotics, AR, and
VR

+++ +++ Intel Pentium, Intel
Core i7-4790 CPU

hkust.a (2023)

LSD.S Eng
et al

✓ ✓ × RGBD L-H Keyframe
selection and 3D
mapping

Robotics and
self-driving cars

++++ +++++ fpga.zynq.7020.soc
Intel®NUC6i3SYH

CVG, T. U. o. M. (2023)

DVO.S Kerl
et al

× ✓ × RGBD S-I 3D mapping
image alignment

Robotics and AR
Perception

+++ +++ Sony Xperia.z1,
Intel Xeon E5520

tum.v (2023)

Kimera.S
Ros. et al

✓ ✓ ✓ Lidar M-H Trajectory
estimate semantic
mesh

Robotics, UAV,
VR, and AGV

++++ +++++ Not mentioned MIT.S (2023)

-ILR, illumination and light robustness—evaluates how well each SLAM method responds to varying environmental lighting.
-RoLI, range of light intensity—measures the robot’s ability to operate effectively across a broad spectrum of light intensities, from very dark to very bright.
-T2D, tolerance to directionality—assesses the robot’s capability to function in environments with strong directional light sources, such as spotlights and windows.
-W-S, defines the operational scale and application field of the robot (M, medium; L, large; S, small, H, hybrid, I, indoor).
-S.M, sources and materials—provides links to the source codes used in the method.
-VINS.M.S, VINS-Mono SLAM; M, monocular camera; S, stereo camera; IMU, inertial measurement unit; O, other sensors; fish.e, fish-eye camera; rgbd, RGB-D camera.

which are direct mapping and feature-based mapping. It also covers
processes such as activation, marginalization, and direct bundle
adjustment. These operations shape the necessary map and manage

its pointsassesses their performance under varyin with semi-dense
adjustments for use in the output stage. In the final stage, the
estimated camera trajectory and pose with the dense 3D map are
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prepared for application in robotics’ SLAM functions; see Figure 5,
part 14 for a detailed workflow.

3.1.4 DVO-SLAM
DVO-SLAM, which stands for dense visual odometry SLAM, is

designed to facilitate real-time motion estimation and map creation
using depth-sensing devices, such as stereo and mono cameras
(Schöps et al., 2014). It stands out for its ability to generate detailed
and accurate environment maps while tracking the position and
orientation (Luo et al., 2021; Zhu et al., 2022). DVO-SLAM uses
point-to-plane metrics in photo metric bundle adjustment (PBA),
enhancing the navigation of robotic systems, especially in situations
with less textured points.Thepoint-to-planemetric is a cost function
and optimization tool that is used to optimize the depth sensor
poses and plane parameters for 3D reconstruction (Alismail et al.,
2017; Zhou et al., 2020;Newcombe et al., 2011).These featuresmake
DVO-SLAM suitable for more accurate applications such as in
robotics and augmented reality (AR), and it is robust for operating in
slightly unstable light sources (Khoyani and Amini, 2023; Kerl et al.,
2013); see Table 2.

3.2 Visual-inertial SLAM

VI-SLAM is a technique that combines the capabilities of
visual sensors, such as stereo cameras, and inertial measurement
sensors (IMUs) to achieve its SLAM objectives and operations
(Servières et al., 2021; Leut et al., 2015).This hybrid approach allows
a comprehensive modeling of the environment, where robots
operate (Zhang et al., 2023). It can be applied to various real-world
applications, such as drones and mobile robotics (Taketomi et al.,
2017). The integration of IMU data enhances and augments
the information available for environment modeling, resulting
in improved accuracy and reduced errors within the system’s
functioning (Macario Barros et al., 2022; Mur-Artal and Tardós
2017b). The methods and algorithms used in this approach, while
implemented in real-life applications, can be listed as shown in the
following section.

3.2.1 OKVIS-SLAM
OKVIS-SLAM, which stands for open keyframe-based

visual-inertial SLAM, is designed for robotics and computer
vision applications that require real-time 3D reconstruction,
object tracking, and position estimation (Kasyanov et al., 2017).
It combines visual and inertial measurements to accurately
predict the position and orientation of a robot simultaneously
(Leut et al., 2015).

It accurately tracks the camera’s position and orientation in real-
time control during a robot’s motion (Leutenegger, 2022). It uses
image retrieval to connect keyframes in the SLAMpose-graph, aided
by the pose estimator for locations beyond the optimization window
of visual–inertial odometry (Kasyanov et al., 2017; Wang et al.,
2023). For portability, a lightweight semantic segmentation CNN
is used to remove dynamic objects during navigation (Leutenegger,
2022). OKVIS’s real-time precision and resilience make it suitable
for various applications, including robotics and unmanned aerial
vehicles (UAVs). It can operate effectively in complex and unstable
illumination environments (Wang et al., 2023); see Table 2.

We have structured the OKVIS-SLAM workflow into three key
phases (Leutenegger, 2022; Kasyanov et al., 2017; Wang et al., 2023).
The first phase focuses on receiving initial sensor inputs, including
IMU and visual data. It initializes the system, conducts IMU
integration, and employs tracking techniques to prepare the data for
subsequent processing. The second phase is the real-time estimator
and odometry filtering phase, covering various operations, such
as landmark triangulation and status updating. The triangulation
process is used for estimation used to generate the 3D position
of visual landmarks to enhance SLAM operation (Yousif et al.,
2015). In the last phase, optimization and full graph estimation
are performed. This includes loop closure detection, window
sliding, and marginalization. The phase selects relevant frames and
optimizes the overall graph structure, ultimately providing essential
outputs for the SLAM system; see Figure 5, part 11.

3.2.2 ROVIO-SLAM
ROVIO-SLAM, which stands for robust visual-inertial

odometry SLAM, is a cutting-edge sensor fusion method that
smoothly combines visual and inertial data. This integration
significantly enhances navigation accuracy, leading to improved
work efficiency in robotics systems (Blo et al., 2015; Wang et al.,
2023). It brings valuable attributes for robotics, excelling in robust
performance in challenging environments, and presents a smooth
interaction between the robot and its surroundings (Li et al., 2023a).
It efficiently handles extensivemapping processes, making it suitable
for large-scale applications (Kasyanov et al., 2017). Moreover, it
operates with low computational demands and high robustness to
light, making it ideal for cost-effective robotic platforms designed
for sustained, long-term operations (Leutenegger, 2022).

ROVIO-SLAM workflow is divided into three stages
(Picard et al., 2023; Nguyen et al., 2020; Schneider et al., 2018).
First, data from visual cameras and IMU are obtained and prepared
for processing. In the next stage, feature detection, tracking, and
semantic segmentation are done for visual data, while IMU data are
prepared for integration from the other side. The processing stage
involves loop closure operations, new keyframes insertion, and state
transition, along with data filtering. State transitions lead to the
generation of the key output, which is then transferred to the final
stage, providing estimated position, orientation, and 3D landmarks;
see Figure 5, part 8.

3.2.3 VINS Mono-SLAM
VINS Mono-SLAM, which stands for the visual-inertial

navigation system, is an advanced sensor fusion technology that
precisely tracks the motion and position of a robot or sensor in
real-time. Utilizing only a single camera and an IMU, it combines
visual and inertial data to enhance accuracy and ensure precise
functionality of robot operations (Mur-Artal and Tardós, 2017b).
Known for its efficiency in creating maps and minimizing drift
errors, VINS-Mono excels in navigating challenging environments
with dynamic obstacles (Bruno and Colombini, 2021). Its smooth
performance in difficult lighting conditions highlights its reliability,
ensuring optimal functionality for mobile robots operating in
unstable lighting conditions (Song et al., 2022; Kuang et al., 2022).
This power-efficient, real-time monocular VIO method is suitable
for visual SLAM applications in robotics, virtual reality, and
augmented reality (Gu et al., 2022); see Table 2.
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The VINS-Mono SLAM workflow is organized into four stages
(Qin et al., 2018; Xu et al., 2021). In the first stage, we gathered
visual and inertial data and prepared them for acquisition and
measurement processing, including feature extraction, matching,
and IMU data preparation, and sent them for visual and inertial
alignment. The second stage handles loop closure operations and
re-localization to adjust old states with additional feature retrieval
for the next step. The third stage focuses on process optimization,
incorporating bundle adjustments and additional propagation for
efficiency. The final stage outputs the system’s estimated pose and
a keyframe database, applicable to SLAM; see Figure 5, part 13.

3.2.4 Kimera-SLAM
Kimera-SLAM is an open-source SLAM technique applied

for real-time metric semantic purposes. Its framework is highly
dependent on previous methodologies such as ORB-SLAM, VINS-
Mono SLAM, OKVIS, and ROVIO-SLAM (Ros. et al., 2020).
Exhibiting robustness in dynamic scenes, particularly in the
presence of moving objects (Wang et al., 2022), Kimera-SLAM
showcases resilience to variations in lighting conditions. It operates
effectively in both indoor and outdoor settings, making it highly
compatible with integration into interactive robotic systems
(Rosinol et al., 2021). In summary, Kimera-SLAM provides a
thorough and efficient solution for real-time metric-semantic
SLAM, prioritizing accuracy, modality, and robustness in its
operations (Rosinol et al., 2021); see Table 2.

The procedural workflow of this technique can be summarized
in five stages (Ros et al. (2020). First, the input pre-processing
includes dense 2D semantics, dense stereo, and Kimera-VIO. It also
includes front-end and back-end operations such as tracking, feature
extraction, and matching, which yield an accurate state estimation.
The second stage involves robust pose graph optimization (Kimera-
RPGO), tasked with optimization and the formulation of a global
trajectory. Subsequently, the third stage features the per-frame
and multi-frame 3D mesh generator (Kimera–Mesher), responsible
for the execution and generation of 3D meshes representing the
environment. The fourth stage introduces semantically annotated
3D meshes (Kimera-Semantics), dedicated to generating 3D meshes
with semantic annotations. This stage sets the groundwork for the
subsequent and final stage, where the generated 3D meshes are
utilized for output visualization, ultimately serving SLAM purposes,
as illustrated in Figure 5, part 9.

3.3 RGB-D SLAM

RGB-D is an innovative approach that integrates RGB-D
cameras with depth sensors to estimate and build models of
the environment (Ji et al., 2021; Macario Barros et al., 2022).
This technique has found applications in various domains,
including robotic navigation and perception (Luo et al., 2021). It
demonstrates efficient performance, particularly in well-lit indoor
environments, providing valuable insights into the spatial landscape
(Dai et al., 2021).

The incorporation of RGB-D cameras and depth sensors
enables the system to capture both color and depth information
simultaneously. This capability is advantageous in indoor
applications, addressing the challenge of dense reconstruction in

areas with low-textured surfaces (Zhang et al., 2021b). The objective
of RGB-D SLAM is to generate a precise 3D reconstruction for the
system surroundings, with a focus on the acquisition of geometric
data to build a comprehensive 3D model (Chang et al., 2023). The
methods used in this section are listed as follows:

3.3.1 RTAB-Map SLAM

RTAB-Map SLAM, which stands for real-time appearance-
based mapping, is a visual SLAM technique that works with
RGB-D and stereo cameras (Ragot et al., 2019). It is a versatile
algorithm that can handle 2D and 3D mapping tasks depending
on the sensor and data that are given (Peter et al., 2023; Acosta-
Amaya et al., 2023). It integrates RGB-D and stereo data for
3D mapping, enabling the detection of static and dynamic 3D
objects in the robot’s environment (Ragot et al., 2019). It is
applicable in large outdoor environments where LiDAR rays cannot
reflect and manage the field around the robot (Gurel, 2018).
Variable lighting and environmental interactions can cause robotic
localization and mapping errors. Therefore, RTAB’s robustness and
adaptability to changing illumination and scenes enable accurate
operation in challenging environments. It can handle large, complex
environments and is quickly adaptable to work with multiple
cameras or laser rangefinders (Li et al., 2018; Peter et al., 2023).
Additionally, the integration of T265 (Intel RealSense Camera)
and implementation of ultra-wideband (UWB) (Lin and Yeh,
2022) address robot wheel slippage with drifting error handling,
enhancing system efficiency with precise tracking and 3D point
cloud generation, as done in Persson et al. (2023); see Table 2.

The RTAB-MAP SLAM method involves a series of steps that
enable it to function (Gurel, 2018; Labbé and Michaud, 2019).
Initially, the hardware and front-end stage is responsible for tasks
such as obtaining data from stereo and RGB-D cameras, generating
frames, and integrating sensors. This stage prepares the frames that
will be used in the subsequent stage. After the frames have been
processed simultaneously with the tracking process, the loop closure
is activated to generate the necessary odometry. Subsequently, the
keyframes equalization and optimization processes are initiated to
improve the quality of the 2D and 3D maps generated for SLAM
applications, as shown in Figure 5, part 7.

3.3.2 DTAM-SLAM
DTAM-SLAM, which stands for dense tracking and mapping,

is a V-SLAM algorithm specified for real-time camera tracking.
It provides robust six degrees of freedom (6 DoF) tracking
and facilitates efficient environmental modeling for robotic
systems (Ne. et al., 2011; Macario Barros et al., 2022). This
approach plays a fundamental role in advancing applications
such as robotics, augmented reality, and autonomous navigation,
delivering precise tracking and high-quality map reconstruction.
Furthermore, it is slightly dynamic with light; thus, it is accurate
to operate in high and strong illumination fields (Zhu et al., 2022;
Yang et al., 2022); see Table 2.

The DTAM-SLAM workflow is divided into a series of steps,
each with its own purpose (Ne et al., 2011; Macario Barros et al.,
2022). It begins with the input such as the RGB-D camera,
which helps initialize the system work. In the camera tracking
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and reconstruction stage, the system selects frames and estimates
textures on the image. It then accurately tracks the 6DoF
camera motion, determining its exact position and orientation.
Furthermore, the optimization framework is activated and uses
techniques such as spatially regularized energy minimization to
enhance data terms, thereby improving the image quality that
is captured from video streaming. As a result, the advanced
process tuning carries out operations that improve the method’s
performance and producing precise outputs such as dense models,
surface patchwork, and texture depth maps (see Figure 5, part 2).

3.3.3 RGBD-SLAM
RGDB-SLAM, which stands for simultaneous localization and

mapping using red–green–blue and depth data, is an important
method that creates a comprehensive 3D map containing both
static and dynamic elements (Ji et al., 2021). This method involves
the tracking of trajectories and mapping of points associated with
moving objects (Steinbrücker et al., 2011; Niu et al., 2019). Using
these data types enhances and provides precise SLAM results
(End et al., 2012; Li Q. et al., 2022a). It has the ability to create
registered point clouds or OctoMaps for the purpose that can be
used for robotic systems (Zhang and Li 2023; Ren et al., 2022). In
robotics applications, RGB-D SLAM, specifically V-SLAM, excels
in both robustness and accuracy. It effectively addresses challenges
such as working in a dynamic environment (Steinbrücker et al.,
2011; Niu et al., 2019).The implementation of RGB-D SLAM faced a
challenge in balancing segmentation accuracy, system load, and the
number of detected classes from images. This challenge was tackled
using TensorRT, optimized by YOLOX for high-precision real-
time object recognition (Chang et al., 2023; Martínez-Otzeta et al.,
2022). It has versatile applications in real-world robotics scenarios,
including autonomous driving cars,mobile robotics, and augmented
reality (Zhang and Li, 2023; Bahraini et al., 2018); see Table 2.

The RGB-D SLAM workflow can be organized into five essential
stages, each playing a crucial role in the SLAM process (Ji et al.,
2021; Hastürk and Erkmen, 2021; End et al., 2012). The initial stage
involves data acquisition, where RGB-D and depth camera data are
collected as the foundational input for subsequent stages. Moving
on to the second stage, processing of RGB-D details was activated.
During this phase, tasks include feature extraction and pairwise
matching while simultaneously addressing depth-related activities,
such as storing point clouds, and aligning lines or shapes. In the third
stage, activities such as noise removal and semantic segmentation
(SS), in addition to loop closure detection, are performed to lay the
groundwork for map construction. The fourth stage is dedicated
to focus on pose estimation and optimization techniques, leading
to improvement in the accuracy of the system output. The final
stage involves generating trajectory estimation and maps, refining
the outputs for use in SLAM applications in robotic systems; see
Figure 5, part 3.

3.3.4 SCE-SLAM
SCE-SLAM, which stands for spatial coordinate errors SLAM,

represents an innovative real-time semantic RGB-D SLAM
technique. It has been developed to tackle the constraints posed by
traditional SLAMsystemswhen operating in dynamic environments
(Li et al., 2020). The method was improved to increase the
performance of existing V-SLAM methods such as ORB-SLAM3

andmakes it useful with greater accuracy and robustness in dynamic
situations with the help ofmerging semantic and geometric data and
leveraging YOLOv7 for quick object recognition (Wu et al., 2022).
Thanks to these improvements, the SLAM algorithms can be well-
suited for dynamic scenarios which allows in greater adaptability
and comprehension of system surroundings. This enables robotic
systems to operate in more complex circumstances with the fewer
mistakes or slippage errors (Liu and Miura, 2021). Moreover, robots
equipped with SCE-SLAM are empowered to operate in a more
flexible and error-reduced manner, and it can operate in challenging
light environments (Son et al., 2023; Ren et al., 2022); see Table 2.

The SCE-SLAM workflow is divided into three key stages
(Son et al., 2023). The first stage involves the semantic module.
This module processes camera input data and employs Yolov2 to
remove noise from the input. The second stage is the geometry
module, where depth image analysis and spatial coordinate recovery
are performed, preparing the system for integration with ORB-
SLAM3. The final stage is dedicated to the integration of ORB-
SLAM3.This integration facilitates the execution of processes within
ORB-SLAM3. The process works in parallel with the loop closure
technique, which results in a more accurate and precise system
output; see Figure 5, Part 12.

4 Visual SLAM evolution and datasets

The roots of SLAM can be traced back to nearly three decades
ago, when it was first introduced by Smith et al. Picard et al. (2023);
Khoyani and Amini (2023). Recently, visual SLAMhas changed a lot
and made a big impact on robotics and computer vision (Khoyani
and Amini, 2023). Along this journey, different V-SLAM methods
have been created to tackle specific challenges in robot navigation,
mapping, and understanding the surroundings (Aloui et al., 2022;
Sun et al., 2017). To verify and compare these V-SLAM methods,
important datasets have been created which played a crucial role
in the field (Pal et al., 2022; Tian et al., 2023a). In this section, we
explore the evolution of V-SLAM methods over time and how they
have advanced with the help of using the suitable datasets.

To offer a more comprehensible perspective, we provide an
illustrative timeline depicting the evolution of the most well-
known V-SLAM methods, as shown in Figure 6. This graphical
representation illustrates the development of the V-SLAM
methodologies from 2007 to 2021. These methods have been
applied in various fields, including agriculture, healthcare, and
industrial sectors, with a specific focus on interactive mobile
robots. Additionally, we highlight several significant and widely
recognized benchmark datasets crucial to V-SLAM, as shown in the
following section.

4.1 TUM RGB-D dataset

The TUM RGB-D dataset is a widely used resource in the
field of V-SLAM, which helps demonstrate the effectiveness and
practicality of V-SLAM techniques. This dataset provides both
RGB images and depth maps, with the RGB images saved in a
640 × 480 8-bit format and the depth maps in a 640 × 480 16-
bit monochrome (Chu et al., 2018). It offers RGB-D data, making
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FIGURE 6
Timeline illustrates the evolutionary journey of SLAM techniques, accompanied by the datasets that have played a pivotal role in their development. It
showcases the dynamic progression of SLAM technologies over time, reflecting the symbiotic relationship between innovative methods and the rich
variety of datasets they have been tested and refined with.

it appropriate for both depth-based and V-SLAM techniques.
Its usefulness extends to essential tasks such as mapping and
odometry, providing researchers with a considerable volume of data
for testing SLAM algorithms across diverse robotic applications
(Ji et al., 2021; End et al., 2012). The adaptability of these datasets is
remarkable, as they find application inmobile robotics and handheld
platforms, demonstrating effectiveness in both indoor and outdoor
environments (Martínez-Otzeta et al., 2022; Son et al., 2023).

Some of the recent studies used TUMdatasets, such as in Li et al.
(2023c). They have leveraged the TUM RGB-D dataset to establish
benchmarks customized to their specific research objectives. The
study initiated its investigations with RGB-D images and ground
truth poses provided by the TUM datasets, utilizing them to
construct 3D scenes characterized with real space features. The
integrative role assumed by the TUM RGB-D dataset in this context
attains profound significance as a fundamental resource within the
domain of V-SLAM research. For more details, refer to the TUM
RGB-D SLAM dataset.

4.2 EuRoC MAV benchmark dataset

The EuRoC MAV benchmark dataset is specifically designed for
micro aerial vehicles (MAVs) and contributes a valuable resource
in the domain of MAV-SLAM research since it includes sensor data
such as IMU and visual data such as stereo images. These datasets,
published in early 2016, are made accessible for research purposes
and offer a diverse usability in indoor and outdoor applications.
Consequently, it serves as a relevant choice for evaluating MAV
navigation and mapping algorithms, particularly in conjunction
with various visual V-SLAM methodologies (Sharafutdinov et al.,
2023; Leutenegger, 2022; Burri et al., 2016).

The EuRoC MAV benchmark dataset, of notable benefits to
robotics, is particularly valuable for researchers working on visual-
inertial localization algorithms like OpenVINS (Geneva et al.,
2020; Sumikura et al., 2019) and ORB-SLAM2 (Mur-Artal and
Tardós, 2017a). This dataset incorporates synchronized stereo
images, IMU measurements, and precise ground truth data,

providing comprehensive resources for algorithm development.
Its comprehensive data structure makes it highly suitable for
thoroughly testing and validating algorithms tailored for MAV
purposes (Burri et al., 2016). For more details, refer to the EuRoC
MAV dataset.

4.3 KITTI dataset

The KITTI dataset is a widely utilized resource in robotics
navigation and SLAM, with a particular emphasis on V-SLAM.
Designed for outdoor SLAM applications in urban environments,
KITTI integrates data from multiple sensors, including depth
cameras, lidar, GPS, and inertial measurement unit (IMU),
contributing to the delivery of precise results for robotic applications
(Geiger et al., 2013). Its versatility extends to supporting diverse
research objectives such as 3D object detection, semantic
segmentation, moving object detection, visual odometry, and
road-detection algorithms (Wang et al., 2023; Raikwar et al., 2023).

As a valuable asset, researchers routinely rely on the KITTI
dataset to evaluate the effectiveness of V-SLAM techniques in real-
time tracking scenarios. In addition, it serves as an essential tool for
researchers and developers engaged in the domains of self-driving
cars and mobile robotics (Geiger et al., 2012; Ortega-Gomez et al.,
2023). Furthermore, its adaptability facilitates the evaluation of
sensor configurations, thereby contributing to the refinement and
assessment of algorithms crucial to these fields Geiger et al. (2013).
For more details, refer to the KITTI Vision Benchmark Suite.

4.4 Bonn RGB-D dynamic dataset

The Bonn dataset is purposefully designed for RGB-D SLAM,
containing dynamic sequences of objects. It showcases RGB-D
data accompanied by a 3D point cloud representing the dynamic
environment, which has the same format as TUM RGB-D datasets
(Palazzolo et al., 2019). It covers both indoor and outdoor scenarios,
extending beyond the boundaries of controlled environments. It
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proves valuable for developing and evaluating algorithms related
to tasks such as robot navigation, object recognition, and scene
understanding. Significantly, this dataset is versatile enough to
address the complexities of applications used in light-challenging
areas (Soares et al., 2021; Ji et al., 2021). In addition, it proves
to be an important resource for evaluating V-SLAM techniques
characterized by high dynamism and crowds where the robot might
face the challenge of object detection and interaction with the
surrounding environment (Dai et al., 2021; Yan et al., 2022). For
more details, refer to the Bonn RGB-D dynamic dataset.

4.5 ICL-NUIM dataset

It is a benchmark dataset which is designed for RGB-D
applications, serving as a valuable tool for evaluating RGB-D,
visual odometry, and V-SLAM algorithms, particularly in indoor
situations (Handa et al., 2014). It includes 3D sensor data and
ground truth poses, facilitating the benchmarking of techniques
related to mapping, localization, and object detection in the domain
of robotic systems. Its pre-rendered sequences, scripts for generating
test data, and standardized data formats are beneficial for researchers
in evaluating and improving their SLAM algorithms (Chen et al.,
2020). A unique aspect of the ICL-NUIM dataset is its inclusion
of a three-dimensional model. This feature empowers researchers to
explore anddevise new scenarios for robotic systems,which operates
in unknown environments. Moreover, it promotes improvements
in V-SLAM, which makes it possible to generate semantic maps
that improve robots’ flexibility and adaptability to integration into
that environment easily and flexibly (Zhang et al., 2021a). For more
details, refer to the ICL-NUIM dataset.

5 Guidelines for evaluating and
selecting visual SLAM methods

Choosing the right visual SLAMalgorithm is crucial for building
an effective SLAM system. With the continuous advancements in V-
SLAMmethodologies responding to diverse challenges, it is essential
to navigate structured criteria to deploy and implement precise
solutions (Placed et al., 2023; Sousa et al., 2023). In the context of
robotic systems, we provide important parameters. We outline them
by offering concise explanations of the selection criteria that guide
how to choose suitable SLAM methods for field applications. These
parameters are listed below.

5.1 Robustness and accuracy

When choosing among V-SLAM methods, a key consideration
is the robustness and accuracy of the method (Zhu et al., 2022). In
particular, a robust algorithm can handle sensor noise, obstacles, and
changing environments to ensure continuous and reliable operation
(Bongard, 2008). Additionally, accuracy is equally important for
creating precise maps and localization, allowing the robot to make
informed decisions and move through the environment without
errors (Kucner et al., 2023; Nakamura et al., 2023). These qualities

collectively enhance the algorithm’s reliability in challenging real-
world situations, making them crucial factors for successful mobile
robotic applications.

5.2 Computational efficiency and real-time
requirements

In the application of mobile robotics, the selection of the SLAM
algorithm is extremely important, focusing on the efficiency of the
process happening inside the robot’s computational architecture
(Macario Barros et al., 2022). Therefore, the chosen V-SLAM
algorithm must be carefully tailored to meet the computational
demands imposed by the real-time constraints of the robot. This
entails a delicate balancing act as the selected algorithm should
be seamlessly integrated with the available processing power and
hardware resources, all while satisfying the stringent real-time
requirements of the application. The critical consideration for this
step is the quality of the sensors, the professors, and/or computers
so that they can generate a quick response and accurate localization
in a very limited time (Henein et al., 2020).

5.3 Flexible hardware integration

In robotic applications, it is important for researchers to choose
a SLAM algorithm that works well with the robot’s sensors.
Integrating suitable hardware improves speed and performance
in SLAM systems through accelerators, method optimization,
and energy-efficient designs (Eyvazpour et al., 2023). Various V-
SLAM algorithms are designed for specific sensor types such
as RGB-D, lidar, and stereo cameras. This facilitates seamless
integration into the SLAM system, enhancing the functionality
of utilizing integrated hardware (Wang et al., 2022). Moreover, the
availability of ROS packages and open-source software for sensors
and cameras provides increased modality and flexibility during
system installation. This, in turn, enhances adaptability and makes
integration easy and free of challenges (Sharafutdinov et al., 2023;
Roch et al., 2023). For example, the OAK-D Camera, also known as
the OpenCV AI Kit, is a smart camera that is great for indoor use. It
can automatically process data files and use neural reasoning right
inside the camera, without needing extra computer power from the
robot.Thismeans it can run neural networkmodels withoutmaking
the robot’s operating system work harder (Han et al., 2023).

5.4 System scalability

In SLAM algorithms for robotics, scalability is a vital factor
to keep in mind during the design of the system Middleware
architecture. It enables rapid situational awareness over large
areas, supports flexible dense metric-semantic SLAM in multi-
robot systems, and facilitates fast map learning in unknown
environments (Castro, 2021). This parameter needs to evaluate
the algorithm’s capability to adjust to different mapping sizes and
environmental conditions, particularly considering light emission,
video, and/or image clarity. It should also provide versatility for
various application needs, applicable to both indoor and outdoor
scenarios (Laidlow et al., 2019; Zhang et al., 2023).
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5.5 Adapting to dynamic environments

The ability of a SLAM algorithm to handle dynamic objects
in the environment is an important consideration for robotics
systems. This parameter assesses the algorithm’s ability to detect,
track, and incorporate dynamic objects and moving obstacles
into the mapping process (Lopez et al., 2020). It focuses on the
algorithm’s capability to enable the robot to handle these objects
effectively and respond quickly during the ongoing SLAM process
(Wu et al., 2022). A robust dynamic environment should ensure the
algorithm’s ability to adapt and respond in real-time applications.
This is crucial for systems operating in environments where changes
occur instantaneously, such as in interactive robotics applications
(Li et al., 2018).

5.6 Open-source availability and
community support

When choosing a SLAM algorithm for our project, it is
important to observe whether it is open-source and has a
community of active users. It is important because it makes it
easier to customize and adapt the system according to our needs,
benefiting from the experiences of the user community (Khoyani
and Amini 2023; Xiao et al., 2019). Additionally, having community
support ensures that the algorithm receives updates, bug fixes, and
improvements. This enhances the reliability and longevity of the
algorithm, making it better equipped to handle challenges during
system implementation (Persson et al., 2023).

5.7 Map data representation and storage

This parameter focuses on how a SLAMalgorithm is represented
and manages maps, allowing the researcher to determine its
suitability for system hardware implementation. The evaluation
includes the chosen method’s map representation, whether it is
grid-based, feature-based, or point cloud, helping in assessing the
efficiency of storing map information in the robotic system without
encountering challenges (Persson et al., 2023; Acosta-Amaya et al.,
2023). The selection of map representation influences memory
usage and computational demands. It is a critical factor for robotic
applications, especially those based on CNN and deep learning
approaches (Duan et al., 2019).

In conclusion, we have summarized the preceding details in
Table 2, offering a comprehensive overview of various V-SLAM
algorithms. This table serves as a valuable resource for informed
algorithm selection with comparative details for each method. It
offers insights into the sensor capabilities, examining the types
of sensors most effectively used by each algorithm and their
role in facilitating algorithmic functionality. Moreover, the table
underscores the potential application domains of the methods,
empowering researchers to align their research objectives with
suitable V-SLAMmethodologies.The table also classifies algorithms
based on theirmapping scale distinguishing between small-scale (up
to 100 m), medium-scale (up to 500 m), and large-scale (1 km and
beyond) mapping capabilities (Tian et al., 2023b; Hong et al., 2021).

It also assesses their performance under varying illumination
conditions, classifying algorithms based on their robustness, with
categories ranging from the lowest, which represents (+) and
to the highest which represents (+++++). Additionally, the table
categorizes the algorithms based on their range of light intensity
(RoLI), which reflects the robot’s ability to operate effectively in
diverse lighting conditions, spanning from very dim to extremely
bright. Moreover, the tolerance to directionality (T2D) category
assesses the algorithm’s ability to function in environments with
strong directional light sources, such as spotlights and windows.
Collectively, these criteria collectively furnish a valuable resource for
researchers seeking to pick themost fitting SLAM approach for their
specific research endeavors.

6 Conclusion

The study simplifies the evaluation of V-SLAM methods,
making it easy to understand their behavior and suitability for
robotics applications. It covers various active V-SLAM methods,
each with unique strengths, limitations, specialized use cases,
and special workflows. It has served as a solid foundation for
the proposed research methodology for selection among V-
SLAM methods. Throughout the research, it becomes evident
that V-SLAM’s evolution is importantly linked to the availability
of benchmark datasets, serving as a ground base for method
validation. Consequently, the work has laid a strong foundation
for understanding the system behavior of the working V-SLAM
methods. It explores SLAM techniques that operate in the ROS
environment, offering flexibility in simplifying the architecture
of robotic systems. The study includes the identification of
suitable algorithms and sensor fusion approaches relevant to
researchers’ work.

By examining previous studies, we identified the potential
benefits of incorporating V-SLAM software tools into the system
architecture. Additionally, the integration of hardware tools
such as the T265 camera and OAK-D camera emerged as a
valuable strategy. This integration has a significant potential in
reducing errors during robot navigation, thereby enhancing overall
system robustness.
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