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Collective predictive coding
hypothesis: symbol emergence
as decentralized Bayesian
inference
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2Graduate School of Informatics, Kyoto University, Kyoto, Japan

Understanding the emergence of symbol systems, especially language,
requires the construction of a computational model that reproduces both
the developmental learning process in everyday life and the evolutionary
dynamics of symbol emergence throughout history. This study introduces the
collective predictive coding (CPC) hypothesis, which emphasizes and models
the interdependence between forming internal representations through physical
interactions with the environment and sharing and utilizing meanings through
social semiotic interactionswithin a symbol emergence system. The total system
dynamics is theorized from the perspective of predictive coding. The hypothesis
draws inspiration from computational studies grounded in probabilistic
generative models and language games, including the Metropolis–Hastings
naming game. Thus, playing such games among agents in a distributed manner
can be interpreted as a decentralized Bayesian inference of representations
shared by a multi-agent system. Moreover, this study explores the potential
link between the CPC hypothesis and the free-energy principle, positing
that symbol emergence adheres to the society-wide free-energy principle.
Furthermore, this paper provides a new explanation for why large language
models appear to possess knowledge about the world based on experience,
even though they have neither sensory organs nor bodies. This paper reviews
past approaches to symbol emergence systems, offers a comprehensive survey
of related prior studies, and presents a discussion on CPC-based generalizations.
Future challenges and potential cross-disciplinary research avenues
are highlighted.

KEYWORDS
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1 Introduction

Understanding the emergence of symbolic communication is essential not only to unveil
the evolutionary origins of language but also to grasp high-level human cognitive capabilities
that enable us to communicate and collaborate with others. Humans understand their
subjectively experienced world, i.e., Umwelt Von Uexküll (1992), through interactions with
the environment based on their sensory-motor system to, subsequently or simultaneously,
acquire and use language (Cangelosi and Schlesinger, 2015; Taniguchi et al., 2023a). Thus,
while perceiving the world, they form societies through symbolic, especially linguistic,
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communication1. Language is a type of symbol system from
the perspective of semiotics, although languages are diverse and
complex in terms of syntax, semantics, pragmatics, phonology,
and morphology when compared to other types of symbol
systems (Chandler, 2002). Through language, humans understand
what others perceive and can behave cooperatively as a group.
This paper centrally questions why and how humans create
languages that dynamically change over time, but function stably
in society, realizing communication and collaboration. This study
aims to provide a new hypothesis to explain human cognitive
and social dynamics pertaining to the creation and upgrade
of their shared symbol systems including language. Despite
the existence of numerous philosophical, psychological, and
computational theories, no general computational theory has
explained the dynamics of symbol emergence systems. From
the evolutionary perspective, explanations must include how
the emergence of symbolic communication contributes to the
environmental adaptation of humans. Furthermore, the explanation
should be consistent with other theories that explain the dynamics
of the human cognitive system as a whole. Therefore, this study
focuses on those aspects of languages that somehow connect human
cognition and promote adaptation to the environment as a multi-
agent system. Moreover, by focusing on the emergent characteristics
of language, namely, symbol emergence, we introduce a new concept
of collective predictive coding (CPC), through which language
development for humans to predict and encode the world in terms
of collective intelligence can be studied. Conversely, language itself
can be termed as a subject that is coordinated in a distributed
manner utilizing human cognitive systems. The situation in which
language (symbol system) can be created using CPC is shown in
Figure 1. As CPC extends the idea of predictive coding (PC) (Hohwy,
2013; Ciria et al., 2021) from individual to society-wide adaptation
as a group, we propose the CPC hypothesis. PC posits that the
brain predicts sensory information and updates its mental models
to enhance predictability. Notably, CPC is shown to be closely
related to the free-energy principle (FEP), which has gradually gained
recognition as a general principle of the human brain and cognition
(Friston, 2019; 2010; Clark, 2013), theoretically. The FEP, a broader
concept, posits that the brain learns to predict sensory inputs and
makes behavioral decisions based on these predictions, aligningwith
the Bayesian brain idea (Parr et al., 2022). Additionally, the CPC
provides a new explanation for why large language models (LLMs)
appear to possess knowledge about the world based on experience,
even though they have neither sensory organs nor bodies.

When considering the emergence of symbol systems that
contribute to human environmental adaptation, it is crucial
to simultaneously take into account people’s sensory-motor
interactions with the environment and their communication
through speech and text. The challenge lies in modeling the
evolutionary and developmental dynamics of the cognitive
and social systems that form the basis for the emergence of
symbolic (and linguistic) systems and communications. From

1 In this paper, we consider both “symbolic communication” and “semiotic

communication” depending on the context and their relationship with

relevant discussions and research. However, both can be considered to

have the same meaning.

both developmental and evolutionary perspectives, knowledge
of symbolic (and linguistic) communication does not exist a
priori. Human infants learn symbolic communication, including
language, through interaction with their environment during
their developmental stages. Humans, as societies, gradually form
symbolic communication systems through evolutionary processes
and continuously adjust them in their daily lives. Hence, the quest
for symbol emergence or emergent communication should not
be limited to the development of a natural language processing
(NLP) system (Brown et al., 2020; Kojima et al., 2022; Liu et al.,
2023; Min et al., 2023), whose purpose is to create an artificial
system capable of processing natural languages appropriately to
satisfy certain engineering objectives. Instead, it should be extended
to grasp the dynamics of language systems themselves. Highlighting
the dynamics and emergence of the semantic aspects of symbol
systems, Taniguchi et al. (2016a) proposed the concept of symbol
emergence systems (SESs) (see Section 2). An SES is a multi-
agent system where each agent forms concepts, learns a symbol
system such as language, and communicates with other agents.
Additionally, a symbol system emerges in a bottom-up manner
through communication among agents.

As mentioned above, the phenomenon of symbol emergence
involves human linguistic and other high and low-level cognitive
capabilities. Thus, the mechanism, i.e., computational explanation,
of symbol emergence should be consistent with other principles
of cognition, such as PC and FEP, which have gradually gained
recognition as general principles of the human brain and cognition
(Friston, 2010; Clark, 2013; Hohwy, 2013; Friston, 2019; Ciria et al.,
2021). PC is a broadly accepted theory, especially in neuroscience,
which has been generalized and is almost synonymous with
FEP (Friston, 2019; Friston et al., 2021). Thus, animal brains
including that of humans constantly predict sensory information
and update their internal representations such as world models,
perceptual categories, language models, and motor commands.
Clarifying the connection between symbol emergence (or emergent
communication) and PC or FEP is crucial, given that symbol
emergence is rooted in human cognitive capabilities.

Humans communicate using complex languages that involve
numerous characteristics such as syntax, semantics, and pragmatics.
Notably, the meaning of a sign can change through long-term
interactionswith the environment and other agents, depending on the
context.Theadaptabilityandemergent propertiesofsymbolsystemsare
crucial inhumansymboliccommunication inrelation to theprinciples
of semiotics as outlined by Peirce (Chandler, 2002). Peirce emphasizes
the evolutionary nature of symbols in relation to humandevelopment.
In this view, the association between a sign and its object is not
predeterminedbutemergesthroughcollectivehumanexperience.This
perspective also asserts that the categorization of events and objects
as members of particular categories is not determined a priori. Our
human symbolic system is thus characterizedby the evolvingnature of
the relationship between “label” and ”category. Using the terminology
of Peircean semiotics, the relationship between signs and objects is
fluid and changes according to the interpretant. The exploration of
howpeople form categories and share signswithin a community leads
us to the framework of SES.

A variety of computational models have been proposed,
and numerous studies have been conducted, as described in
Section 5, to model the cultural evolution of language and language
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FIGURE 1
Overview of Collective Predictive Coding. Each agent (human) predicts and encodes environmental information through interactions using
sensory-motor systems. Simultaneously, the information obtained in a distributed manner is collectively encoded as a symbolic system (language).
When viewing language from the perspective of an agent, each agent plays a role similar to a sensory-motor modality that acts on the
environment (world).

acquisition in individuals. Such studies follow several types
of frameworks, including emergent communication (Lazaridou
and Baroni, 2020), multi-agent reinforcement learning (MARL)
(Lowe et al., 2017), iterated learning models (Kirby and Hurford,
2002), and symbol emergence in robotics (Taniguchi et al., 2016b).
However, a computational model framework that captures the
overall dynamics of SES is still necessary. The CPC aims to
offer a more integrative perspective, potentially incorporating
the pre-existing approaches to symbol emergence and emergent
communication.

Another challenge is to understand the potential capabilities
of LLMs. Recently, large language models, which are attracting
considerable attention in a variety of fields, have not received
a satisfactory explanation as to why they are so knowledgeable
about our world and can behave appropriately Mahowald et al.
(2023). Gurnee and Tegmark (2023) demonstrated that LLMs
learn representations of space and time across multiple scales.
Kawakita et al. (2023); Loyola et al. (2023) showed that there is
considerable correspondence between the human perceptual color
space and the feature space found by language models. The
capabilities of LLMshave often been discussed froma computational
perspective, focusing on the network structure of transformers
(Vaswani and Uszkoreit, 2017). However, while the architecture of
neural networks can explain the nature of computation, it cannot
explain why they possess extensive knowledge about the world as
experienced by humans, given their foundation in distributional
semantics (Harris, 1954). The knowledge embedded in LLMs

arises from distributional semantics, which is an intrinsic part
of the language formed by human society. So far, there has
been no demonstration or theoretical explanation of how human
language has evolved to embed representations of the world within
distributional semantics, to the extent that predictive learning in
LLMs can effectively decode this knowledge. In other words, how
language is formed in the context of human cognition of the world
through our bodies, namely, the Umwelt Von Uexküll (1992), and
how language systems reflect the structure of the world has not been
explained with a viable mathematical model.

To overcome these challenges, we propose the CPC hypothesis,
which radically extends the concept of PC (Hohwy, 2013; Ciria et al.,
2021). This hypothesis expands PC from a single brain to a group
of brains, suggesting a multi-agent system. It posits that the symbol
system emerges as a result of CPC conducted collaboratively by
agents in a decentralized manner. In this framework, the emergent
symbol system, namely, language, is viewed as a kind of subject,
akin to a brain in PC. Within the CPC hypothesis, language is
considered a form of collective intelligence, implying that LLMs
are directly modeling this collective intelligence. Specifically, the
CPC hypothesis argues that symbol systems, especially language,
emerge to maximize the predictability of multi-modal sensory-
motor information (perceptual experiences) obtained by members
of an SES, such as human society. Additionally, the CPC hypothesis
regards symbol emergence as a decentralized Bayesian inference,
which can be considered as an extension of the Bayesian brain
concept to a Bayesian society developed by Doya et al. (2007).
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The CPC hypothesis is inspired from the findings of
computational studies based on probabilistic generative models
and the Metropolis–Hastings (MH) naming game, which
is a constructive approach to SESs (Hagiwara et al., 2019;
Taniguchi et al., 2023b). The approach provided a Bayesian view of
symbol emergence including a theoretical guarantee of convergence.
The theory proposed MH naming game as a decentralized Bayesian
inference of external representations shared among a multi-agent
system. This approach is seen as a distinct style of formalizing
emergent communication, differing from conventional models that
use Lewis-style signaling games, including referential games (see
Section 5.1). The former approach is grounded in generative models,
while the latter relies on discriminativemodels2. However, the broad
implications of their approach as a general hypothesis explaining the
emergence of symbols in human society were not fully discussed.
Therefore, this study establishes a connection between symbol
emergence and PC and proposes the CPC hypothesis. The CPC
hypothesis posits that self-organization of external representations,
i.e., symbol systems, can be conducted in a decentralized manner
based on representation learning and semiotic communication
ability of individual agents. Additionally, the possible connection
between theCPChypothesis andFEP, stating that symbol emergence
follows society-wide FEP, is discussed.

The main contribution of this study is the proposal of the CPC
hypothesis, which offers the following features:

1. CPC is a general framework of computational models for SESs
based on pre-existing constructive models and their variants.
It provides an approach for developing a computational
model and introduces a learning algorithm for artificial
agents that realize symbol emergence through decentralized
communication;

2. CPC hypothesis provides a new computational understanding
of symbol emergence in our human society, such as the
decentralized Bayesian inference of latent variables shared
among agents integrating sensory information of distributed
agents and maximizing their predictability;

3. The hypothesis establishes a theoretical connection between
PC, FEP, and symbol emergence.

4. CPC provides a new explanation for why LLMs appear to
possess knowledge about the world based on experience, even
though they have neither sensory organs nor bodies.

The remainder of this paper is organized as follows:
Section 2 briefly reviews SESs to provide an integrated view
of symbol emergence communication and the representation
learning processes of individuals; Section 3 describes the existing
probabilistic generative models for symbol emergence; Section 4
describes the CPC hypothesis and its relationship with existing
theories; Section 5 briefly discusses other studies that can be
considered constructive approaches to SESs; and Section 6
concludes the paper.

2 Ueda and Taniguchi (2024) provides the theory that connects these two

approaches.

2 Symbol emergence systems

2.1 Overview

Symbol emergence depends not only on social interactions
between agents but also on physical (sensorimotor) interactions of
individual agents with the environment. For instance, to interpret
the meaning of the sign “apple,” an agent must share this sign within
its society through social interactions, like semiotic communication,
which includes naming the object with others. Concurrently,
the agent develops a perceptual category through multi-modal
interactions with the object itself. In Peircean semiotics, a symbol
is a kind of sign emerging from a triadic relationship between the
sign, object, and interpretant (Chandler, 2002). An SES provides a
descriptive model for the complete dynamics of symbol emergence
(Taniguchi et al., 2016a; Taniguchi et al., 2018 T.) and a systematic of
the fundamental dynamics of symbolic communication, regardless
of artificial or natural agents.

Figure 2 presents an overview of an SES involving multiple
agents that initially consists of a group of humans interacting
with their environment through physical interactions using their
sensorimotor system. They also interact with other agents through
semiotic communication using signs. In SESs, interactions based
on the exchange of signs between agents are referred to as semiotic
communication. In this study, symbolic and semiotic communication
are considered to be the same. Taniguchi et al. (2016a) proposed
the concept of SES to overcome the issues of symbol grounding
(Harnad, 1990).

The two types of interactions coincide and affect each other.
However, from the perspective of semiotics, physical interactions and
semiotic communication are distinguishable. Generally, the meaning
of a sign in semiotic communication depends on its interpretation
(i.e., interpretant), and the interpretation heavily depends on a
symbol system, which is a cultural existence that people share
in the community. Therefore, the information source of a sign’s
meaning (i.e., what the sign represents or conveys) depends on and is
distributed throughout the symbol system. Conversely, what signals
convey in sensorimotor interactions typically does not depend on
the culturally shared symbol system within the community3. SESs

3 For example, when a certain amount of force is applied to an object

(such as a brick wall), a corresponding force is returned as a reaction,

hence when we strike an object with a certain force, we experience a

certain level of response in terms of force. When we look at an apple,

our visual system receives a sensation of the color red. These factors do

not change significantly with the community to which the agent belongs.

Here, “red” is distinguished as a sign and sensor signal, and its meaning is

dependent on language, as the famous example of colors of the rainbow

suggests. Thus, the physical information obtained by our visual system

is not different. However, the perception, (i.e., categorization) is affected

by linguistic or semiotic systems (Gliozzi et al., 2009; Deutscher, 2010;

Althaus and Westermann, 2016). Although the meaning of a linguistic

sign cannot be learned without semiotic communication with others, the

physical properties of the sign can be learned from physical interactions

with the target object without supervision because the physical properties

of the object can be ascertained from the interaction.
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FIGURE 2
Overview of an SES. Each agent physically interacts with its environment using its sensorimotor system (vertical arrows). Furthermore, every agent has
semiotic communication with other agents using signs or symbols (horizontal arrows). Through these interactions, each agent forms internal
representations (representation learning). Additionally, an emergent symbol system is organized and shared throughout the system (upward round
arrow). To achieve a proper semiotic communication, each agent must follow the rules embedded in the symbol system; communication and
perception are constrained by the emergent symbol system (downward round arrow). The total system involves top-down and bottom-up dynamics,
often referred to as a micro-macro loop (or effect) in complex systems theory (Kalantari et al., 2020). Further details are
discussed in (Taniguchi et al., 2016a).

exhibit twomain types of dynamics, namely, (internal) representation
learning by individual agents and symbol emergence by
multi-agent systems.

In artificial intelligence (AI), except for the studies on emergent
communications (see Section 5.1), discussions on language and
representation learning have focused primarily on learning by
individual agents. Language is not merely a static external linguistic
resource that a single agent internalizes and retains. It is distributed
throughout society and evolves continuously with use. A symbolic
system is neither directly observable nor owned by a single agent;
instead, it exists abstractly and is shared across systems in a
distributed manner. Humans recognize the world, communicate
with others, and are influenced in a top-down manner by
language, as illustrated by an arrow labeled “constraints” in Figure 2.
While individual cognition, development, learning, and behavior
undoubtedly underpin language learning and its use, the language
cultivated within society and the dynamics that support it extend
beyond individual cognition.

The concept of an SES embodies a model in which a
symbol system originates from the environmental adaptations
of individuals. However, the system emerges and functions
to enable communication among individuals and influence
their behavior within the society (Figure 2). As is discussed
in Section 2.4, the system possesses emergent properties4 in
the context of complex systems and is characterized by an
internal micro-macro loop (Taniguchi et al., 2016c). It is a
distributed autonomous system comprising multiple agents.
Notably, the term SES does not represent the symbol system
itself but denotes a group of agents with cognitive dynamics
that meet certain conditions. Therefore, each agent can be a
human or a robot. Moreover, as their cognition is enclosed

4 Note that the idea of emergent properties here is different from

that often mentioned recently in the context of foundation models,

including LLMs (Bommasani et al., 2021).
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within sensorimotor systems based on their bodies, they cannot
directly observe the internal states of others, nor can they be
directly observed or manipulated by external observers. Agents
act and continuously adapt to their umwelt (subjective world)
(Von Uexküll, 1992).

2.2 Learning internal representation based
on physical interactions

By integrating multi-modal sensorimotor information to better
predict future sensations, people can form internal representations5.
Even without supervision or linguistic input, humans can learn
the physical properties of objects by their autonomous interaction
via multi-modal sensorimotor system. For example, without any
linguistic input, children can find similarities between different
apples because of the similarities in color, shape, weight, hardness,
and sounds made when dropped. Such information is obtained
through the visual, haptic, and auditory senses. The internal
representation learning process or categorization begins before
learning linguistic signs, such as words (Quinn et al., 2001;
Bornstein and Arterberry, 2010; Junge et al., 2018). Therefore,
an internal representation system forms the basis of semiotic
communication, and the argument does not exclude the effects
of semiotic information provided by another agent during
representation learning.

Owing to advancements in neural networks, including
deep learning and machine learning techniques in general,
progress in computational models for representation learning
has successfully produced several types of generative models that
directly predict multi-modal sensorimotor information and form
distributed internal representations (Suzuki et al., 2016; Pandey
and Dukkipati, 2017; Wu and Goodman, 2018). The achieved
success and remaining challenges suggest that human cognitive
systems form internal representations in a bottom-up manner in

5 The term “internal representations” is used in a more general sense

than in representational theories of the mind (i.e., representationalism)

in the theory of SESs. The internal representations in this study

do not strictly refer to (physical) symbol systems that are often

considered in classical representational accounts of the mind and

AI. For example, the activation patterns in neural networks are

regarded as a type of internal representation. Conversely, the internal

representation system is not an amodal “symbol system.” Unlike the

amodal physical symbol system in conventional symbolic AI, the

representation system can be formed without symbolic information or

language and does not require symbolism in the sense of logic and

physical symbol systems (Newell, 1980). Such a system is similar to

the perceptual symbol system in cognitive psychology proposed by

Barsalou (1999). The perceptual symbol system theory (Barsalou, 1999)

argues that bottom-up patterns of sensory-motor multi-modal data are

associated with the perceptual process and that perceptual symbols

are formed.

interactions with top-down priors (Bengio, 2017; Lake et al., 2017;
Taniguchi T. et al., 2018)6.

2.3 Organizing a symbol system through
semiotic communications

Symbols possess inherent arbitrariness in labels. An object
labeled as “X” by one agent may not be recognized as “X” by
another agent. The crux of symbols (including language) in the
human society is that symbolic systems does not pre-exist, but
they are developed and transformed over time; thereby forming
the premise of the discussion on symbol emergence. Through
coordination between agents, the act of labeling an object as “X”
becomes shared across the group, gradually permeating the entire
society. Symbols exhibit variability in associating signs with objects.
An object identified as the sign “X” by one agent may not be
recognized as “X” by another. The essence of symbols, including
language, in human society lies in the fact that symbolic systems
are not pre-existing; rather, they evolve and transform over time,
forming the basis for discussions on the emergence of symbols.
Through coordination, agents collectively begin to recognize an
object as the sign “X,” a concept that gradually becomes widespread
throughout society.

Semiotic communication primarily shares the internal states
and intentions of agents. However, these internal representations
should not be explicitly discretized or directly shared without
(arbitrarily designed) signs. Given the flexible nature of symbols,
agents negotiate and strive to align symbols. For example, if
two agents are jointly attending to a stone and one of them
names it “bababa,” if the other agent agrees with this naming,
then “bababa” can be agreed to be used as a sign for the
object. As similar interactions and agreements proliferate, “bababa”
solidifies as a commonly recognized symbol within the multi-
agent system. Although this example is the simplest version
of negotiation, this kind of dynamics becomes the basis of
symbol emergence.

Although a symbol system is a multifaceted system, in its
simplest form, it comprises at least a collection of (structured)
signs and their associated internal representations of perceptual
experiences, events, intentions, abstract concepts, or their
relationships. An integral aspect of symbol emergence theory
is the inclusion of both syntax and pragmatics as parts of the
shared system. However, in this study, our primary focus is
on the representational relationships based on the semantic
aspect formation of symbol systems. Such an organized structure
underscores its emergent nature, with the symbol system
developing bottom-up through physical interactions and semiotic
communication among agents. This system is then referred to as
an ‘emergent symbol system’ (Figure 2), highlighting its emergent
characteristics.

6 However, merely forming an internal representation system, which

involves representation learning or categorization, is not sufficient for

semiotic communication. This is because it is crucial to consider the

degree of freedom associated with signs.
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2.4 Micro-macro loop in SESs

The organization of an emergent symbol system can be
considered a self-organization process in the SES. However, the
emergence of symbolic systems is not a unilateral, bottom-up
process. Instead, it imposes top-down constraints on semiotic
communication among agents and on the physical interactions of
individual agents, especially on the perception and interpretation
of events. Owing to the arbitrariness of symbols, every sensible
communication must follow an emergent symbol system involving
phonetics, semantics, syntax, and pragmatics shared across the
multi-agent system. Agents that do not follow an emergent symbol
system cannot benefit from semiotic communication. The effect of a
symbol system that emerges in a high-level layer can be regarded as
a top-down constraint on a complex system (Kalantari et al., 2020).

Bilateral feedback between higher and lower layers is called
the micro–macro loop (or effect) (Figure 2). A pattern (or order)
in a higher layer is organized in a bottom-up manner through
interactions in the lower layer, and the organized pattern imposes
top-down constraints on the interactions of the lower layer. This
bilateral feedback provides functionality to the system, and the
loop is a feature of a complex system with an emergent property
used to obtain a function that is not originally discovered by the
agents in the lower layer. An emergent system is a complex system
with emergent properties. Taniguchi et al. argued that symbolic
communication emerges as a function of the micro–macro loop
in complex systems. Hence, SESs act as the basis for semiotic
communication (Taniguchi et al., 2016a; Taniguchi et al., 2018 T.).
An SES is a type of emergent system (Kalantari et al., 2020), which
is crucial for explaining the emergence of symbolic communication.

An intuitive example can be found in perceptual categorization
and naming behaviors. From the perspective of an individual agent,
categorization is influenced by the symbol system, such as language,
which is learned in a top-down manner. Perceptual categorizations
affect semiotic communication, i.e., naming objects, in a bottom-up
manner. SESs capture bilateral influence as a part of the total symbol
emergence dynamics in a social system7

3 Probabilistic generative models for
symbol emergence

Prior studies aimed at modeling SESs using probabilistic
generative models are introduced before proposing the
CPC hypothesis. These studies provide a mathematical and
computational basis for the CPC hypothesis.

3.1 Multi-modal concept formation and
representation learning

Constructive computational and robot models exhibiting
internal representation learning capabilities are explored. Roy
and Pentland (2002) developed a language-learning system based

7 This is closely related to the discussion on the theory of linguistic relativity

(i.e., Sapir–Whorf hypothesis)Deutscher (2010).

on the multi-modal perception model. Cangelosi et al. (2000)
tackled the symbol grounding problem using an artificial cognitive
system. Developmental robotics researchers studied language
development models (Cangelosi and Schlesinger, 2014). Unlike
most classical AI studies in the 2000s and 2010s that mainly focused
on a single modality, such as visual, auditory, or linguistic inputs,
studies in robotics encompass a wider range of methods as they deal
with multi-modal sensorimotor information. Embodied cognitive
systems include various sensors and motors, and a robot is an
artificial human with a multi-modal perceptual system.

Unsupervised multi-modal categorization and representation
learning is an important prerequisite for concept formation
and semiotic communication. When considering an “apple,” the
concept of an “apple,” is based on multi-modal information.
As Barsalou (1999) argued, multi-modal perceptual information
is crucial for the basis formation of perceptual categories and
learning a grounded language. Accordingly, bottom-up patterns of
sensory-motor multi-modal data were associated via the perceptual
process, and perceptual symbols, i.e., internal representations,
were formed. Recently, it has been discovered that self-supervised
learning methods, such as contrastive learning and masked
prediction, endow AIs with multi-modal representation learning
capabilities without label data Chen and He (2021); Akbari et al.
(2021); Radford et al. (2021); Kwon et al. (2022); Nakamura H. et al.
(2023). However, even before the emergence of self-supervised
learning trends, the field of symbol emergence in robotics
had already been exploring multi-modal concept formation and
representation learning, using real robots equipped with multi-
modal sensorimotor systems. In this context, we revisit these
conventional studies.

Researchers studying symbol emergence in robotics aimed
to create computational models and robotic systems that
performed multi-modal concept formation, including multi-
modal categorization through representation learning based on
sensorimotor interactions with the environment, such as objects
(Taniguchi et al., 2016c; Taniguchi et al., 2018 T.; Friston et al.,
2021). Nakamura et al. developed an unsupervised multi-modal
latent Dirichlet allocation (MLDA) learning method that enabled
a robot to perform perceptual categorization in a bottom-up
manner (Nakamura et al., 2009). MLDA is an extension of the
latent Dirichlet allocation (LDA), which is a probabilistic generative
model widely used in NLP for topic modeling (D.M. Blei and
Jordan, 2003), and is a constructive model of the perceptual symbol
system. The MLDA system integrates visual, auditory, and haptic
information from a robot to form a variety of object categories
without human intervention8. Thus far, various extensions of the
model have been proposed. Nakamura et al. (2011b) proposed a
multi-modal hierarchical Dirichlet process (MHDP) that allowed
a robot to determine the number of categories. Ando et al. (2013)
proposed a hierarchical model that enabled a robot to form object
categories with hierarchical structures. The weight of each modality
is important for integrating multi-modal information. For example,
to form the concept of “yellow,” a color sense is important, whereas
haptic and auditory information are not necessary. A combination of

8 Essential software for controlling robots and their behaviors to obtain

sensor information are programmed by human developers.
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MLDA and MHDP methods has been proposed and demonstrated
to be capable of searching for appropriate correspondences
between categories and modalities (Nakamura et al., 2011a;
2012). Nakamura et al. (2015) also proposed a non-parametric
Bayesian extension of these models.Studies on multi-modal
categorization provided linguistic information such as utterances
to a robot as a type of multi-modal information (i.e., observations
of a probabilistic generative model (PGM)). After performing
multi-modal categorization, the robot inferred through cross-
modal inferences that a word corresponded to information
from other modalities, such as visual images. Thus, multi-modal
categorization is expected to facilitate grounded language learning
(Nakamura et al., 2011b; 2015). Similarly, spatial concept formation
models have been proposed by extending the concept of multi-
modal object categorization9. Recently, owing to the enormous
progress in deep generative models, PGMs that exploited the
flexibility of deep neural networks achieved multi-modal object
category formation from raw sensory information (Suzuki et al.,
2016). Thus, high and low-level internal representations (i.e., object
and spatial categories and features, respectively) were formed in a
bottom-up manner.

Computational models for multi-modal concept formation
in symbol emergence in robotics are based on the mathematical
framework of PGM. PGM represents a generative process
of observations using multi-modal data and is trained to
predict multi-modal information (i.e., model joint distribution).
Figure 3 illustrates the PGM of MLDA and an overview of the
experiment using a robot (Araki et al., 2012). Latent variables
of the PGM were inferred using Bayesian inference. The
inference of p(zd|od,wd) corresponded to the categorization.
Thus, the system was trained to predict sensory information
and automatically identify categories. Researchers reported that
PGM could realize internal representation learning using multi-
modal sensorimotor information. Furthermore, the inference
of the posterior distribution could be obtained using Markov-
chain Monte Carlo (MCMC) algorithms such as Gibbs sampling
(Araki et al., 2012). Variational inference was also used to infer
the posterior distribution of PGMs for multi-modal concept
formation, e.g., Nakamura et al. (2009).

Based on the variational inference perspective, multi-modal
categorization (i.e., internal representation learning) and the

9 Taniguchi et al. (2017a) proposed spatial concept acquisition and

simultaneous localization and mapping (SpCoSLAM) for spatial concept

formation. SpCoSLAM integrated visual, positional, and (auditory)

linguistic information to form a map, located the position of the

robot, identified clusters of positions, and discovered words in a

bottom-up manner. Although the detailed features of PGM differed

from that of MLDA, SpCoSLAM could be regarded as a variant of

a multi-modal categorization model. Additionally, SpCoSLAM was

trained to predict observations and infer latent variables (i.e., spatial

concepts) via Bayesian inference. These studies were related to

semantic map formation in robotics (Kostavelis and Gasteratos, 2015;

Garg et al., 2020).

accompanying optimization criteria are discussed.

q∗ (z) = arg min
q(z)

DKL [q (z)‖p (z|o,w)] (1)

where DKL represents the Kullback–Leibler divergence. Instead of
the direct minimization of Eq. 1, variational inference is obtained
by minimizing the free energy DKL[q(z)‖p(z,o,w)], suggesting
a close theoretical relationship between multi-modal concept
formation and FEP.

3.2 Symbol emergence through
Metropolis–Hastings naming games

To develop a constructive model of the entire SES, the challenge
lies in mathematically modeling the process by which a group of
agents, while adapting to the environment and engaging in internal
representation learning, forms a common symbol system. Conversely,
the agents create and share external representations. In this section,we
discussanapproachbasedonPGM,whichcharacterizes the formation
of a symbol system in an SES from the perspective of the entire group
as it engages in representation learning. Furthermore, this perspective
can be interpreted as viewing the emergence of symbols through the
lens of collective intelligence.

Previous studies on emergent communication employed various
types of language games, including referential games, as detailed
in Section 5. The naming game is one such language game (Steels,
1995). Hagiwara et al. (2019) offered theoretical insight into naming
games and introduced the concept of inter-personal categorization.
In their naming game, each agent suggested a name for a target
object and communicated the relationship between the names
(i.e., signs) and their corresponding classes or attributes. The
naming game was inspired from the Metropolis–Hastings (MH)
algorithm (Hastings, 1970), a variant of the MCMC algorithm.
Subsequently, Taniguchi et al. (2023b) expanded the naming game
by dubbing it the MH naming game.

In the MH algorithm, a new sample of the latent variable
z was drawn as z∗ from the proposed distribution q(z|zτ) at
step τ, where zτ denotes the current state. If the sample z⋆ was
accepted with probability A(z⋆,z(τ)) = min(1,

p(z⋆)q(z(τ)∣z⋆)
p(z(τ))q(z⋆∣z(τ))

), the
samples converged to the targeted distribution p(z). The theoretical
relationship between the derived naming game and the MCMC
algorithm rendered symbol emergence in the game straightforward.
The symbol system emerged as the posterior distribution of the
latent variable z shared by the agents, conditional on all of their
observations. An overview of the MH naming game and its
derivation has been discussed, because it forms the basis of the CPC
hypothesis. The MH naming game was derived as:

First, the PGM shown in Figure 4 (top) was considered. The
PGM represented a hierarchical Bayesian model that integrated
multiple types of sensory information. Two types of sensory
observation, oAd and oBd , were assumed from the two types of
sensors for the dth object. The low-level latent variables zAd and
zBd corresponded to oAd and oBd , respectively. The high-level discrete
latent variable w integrated two latent variables, zAd and zBd , which
represented 2 bits of different sensory information. The total PGM
was a simplified version of MLDA (Nakamura et al., 2009), which is
a generative model for multi-modal categorization. In the graphical
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FIGURE 3
Multi-modal object categorization using MLDA (Nakamura et al., 2009). Left: a robot collecting multi-modal sensory information from objects and
samples of formed object categories. Right: Simplified representation of MLDA probabilistic generative model (PGM). Sensory observation for the dth
object od consists of visual o

v
d, auditory oa

d, and haptic oh
d observations. Linguistic observation wd, such as words, is also provided as a type of

observation. The dotted arrows denote inference processes.

FIGURE 4
Overview of the computational model of inter-personal categorization proposed by Hagiwara et al. (2019). Top: Integrative probabilistic graphical
model for inter-personal categorization. Bottom: Inference of the shared node, wd, is implemented as a naming game based on the
Metropolis–Hastings (MH) algorithm. The emergence of symbols is guaranteed to maximize the marginalized likelihood of the sensory observations
obtained by the two agents.

model shown in Figure 4, the two types of sensors were considered
two different modalities of multi-modal categorization: auditory
and haptic. Assuming that PGM to be a cognitive model of a
single agent with two modalities, A and B, the Bayesian inference
of wd (e.g., Gibbs sampling, which is a widely used MCMC
inference algorithm (Bishop, 2006))was determined bymulti-modal
categorization. Thereafter, the internal representations of objects
were formed through Bayesian inference to predict multi-modal
sensory information.

Second, PGM was decomposed into two parts corresponding to
sensors A and B, as shown on the bottom of Figure 4. Although the
two elemental PGMs shared a latent variable wd, the variables in one
elemental PGM were conditionally independent of those in the other.
Therefore, when the latent variable wd or its probabilistic distribution

was provided, the other variables were inferred independently from
another elemental PGM by using Gibbs sampling (Bishop, 2006).
Only the shared variable wd was updated depending on the internal
parameters of the two PGMs. By exchanging information regarding
the probability distribution of wd between two modules, wd was
updated. This algorithm represented as an example of the SERKET
implementation:a frameworkfordecomposinga large-scalePGMinto
multiple elemental PGMs (Nakamura et al., 2018; Taniguchi T. et al.,
2020).Currently, totalPGMisanagentmodel formulti-modal internal
representation learning.

Third, the two PGMs were reconsidered as models of two
different agents, where wd represented an external sign. Here, oXd
and zXd , with X ∈ {A, B}, were regarded as the observation and
internal representations of agent X, respectively. From a generative
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FIGURE 5
Metropolis–Hastings naming game (Taniguchi et al., 2023b). By presuming joint attention, the naming game, which does not require explicit feedback,
operates as a distributed Bayesian inference of latent variables representing shared external representations.

perspective, PGM indicated wd as a prior information shared by
the internal representation of each agent. Thus, metaphorically,
language constraints governed the thoughts of each agent in a
probabilistic manner and the latent variable was shared among the
society members. Inferring the latent variables without referring to
the internal variables of another agent remained unclear. When the
two elemental modules were considered the cognitive components
of an agent, any information found in both PGMs was theoretically
available for the inference procedure. Therefore, to update wd, the
probabilistic distribution over wd calculated using each module
was directly utilized. However, when two elemental modules were
regarded as different agents, the internal information of each agent
could not be used simultaneously because each was a self-enclosed
system, which served as a fundamental constraint in semiotic or
symbolic communication.

Surprisingly, an MCMC algorithm for sampling wd without
referring to the internal variables of another agent could be derived
as a naming game (Figure 5). Samplewd, based on the inferred latent
variables (i.e., learned parameters) of agent X, was regarded as an
utterance of the name of the object agent X interacting with (X, Y)
∈ { (A, B), (B, A) }. The signal was received by another agent Y,
who judged whether the name wd was appropriate for the object by
considering the latent variables (i.e., internal representations zYd and
learnedparameters θY andϕY) of agentY in a probabilisticmanner. If
the uttered name was acceptable by agent Y, the internal parameters
of Y were updated based on the accepted name wd. Otherwise, the
namewd was discarded.WhenMetropolis choice was adopted as the
acceptance ratio, the total naming game was theoretically the same
as that of theMHalgorithm.Generally, during the naming game,wd,

whichwas highly probable considering the observations and learned
knowledge of agentY,was acceptedwith high probability.Theoverall
process was a natural computational model for naming games, in
terms of language evolution and symbol emergence.

Importantly, from a generative perspective, the total PGM
remained an integrative model that combined all the variables of
the two different agents. Therefore, the MH naming game worked
as an MCMC algorithm (considering strict mathematics), and signs
such as words were guaranteed to be sampled from the posterior
distribution conditioned on those inputs as the sensory information
of the agents, p(w|oA,oB). Thus, MH naming games could integrate
the sensory information of different agents and infer a word as the
category of an object similar to that by multi-modal categorization
methods used to infer object categories in a bottom-up manner
as a Bayesian inference. Further additional algorithmic details are
provided by (Hagiwara et al., 2019; Taniguchi et al., 2023b).

Hagiwara et al. (2019) were the first to provide a mathematical
basis for bridging symbol emergence involving inter-personal
sign sharing and perceptual category formation based onPGMs.The
proposed MH naming game guaranteed improved predictability by
the SES throughout the multi-agent system (i.e., the SES).

Here, we can consider the possible connection with the free-
energy principle. Given that symbol emergence between two agents
was considered as decentralized Bayesian inference using MCMC,
i.e., the MH naming game, we can possibly consider decentralized
Bayesian inference based on variational inference in a similar way.
Although a language game that acts as decentralized variational
inference has not been invented yet, Ueda et al. (2024) proposed an
emergent communicationmodel based on beta-VAE and variational
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FIGURE 6
Overview of Predictive Coding. Each agent (human) predicts and encodes the environmental information through interactions using sensorimotor
systems. Through the interactions, the agent forms internal models and infers states.

inference. This approach may lead us to a naming game based on
variational inference, i.e., decentralized Bayesian inference based on
variational inference. From a variational inference perspective, the
inference process corresponds to free energyminimization, with the
optimization criterion described as follows:

q∗ ({zk}
k
,w) = arg min

q({zk}k,w)
DKL [q({zk}k,w)‖p({z

k}
k
,w|{ok}

k
)] (2)

where variational inference was obtained by minimizing the
free energy DKL[q({z

k}k,w)‖p({z
k}k, {o

k}k,w)], suggesting a close
theoretical relationship between multi-modal concept formation
and FEP.The aforementioned process was regarded as a PC that uses
the total multi-agent system.Thus, symbol emergence corresponded
to free-energy minimization throughout the multi-agent system.
Although we currently do not have an algorithm for decentralized
variational Bayesian inference that can be considered a naming
game, I believe suggesting the possible link between the view of
symbol emergence based on decentralized Bayesian inference and
the free-energy principle is meaningful for future discussions. These
findings lead us to propose the CPC hypothesis.

4 CPC hypothesis

4.1 PC, FEP, and world models

PC is a broadly accepted theory in several disciplines
including neuroscience, which posits that the human brain
constantly predicts sensory information and updates its mental,
world, or internal models to enhance predictability (Hohwy,
2013). During this process, the brain generates predictions of
sensory inputs, compares them with actual inputs, and uses
the prediction errors to revise the mental model (Figure 6).
Furthermore, the aforementioned approach suggests that the
brain learns to forecast sensory information and formulates
behavioral decisions based on its predictions. A more generalized
concept related to such an approach is FEP (Parr et al., 2022),
which is associated with the idea of the Bayesian brain proposed
by Doya et al. (2007).

From a statistical perspective, prediction errors are naturally
interpreted as negative log-likelihoods. For example, least-squares

errors are regarded as the negative log-likelihood of normal
distributions, ignoring the effects of variance parameters. Hence,
minimizing the prediction errors corresponds to maximizing the
marginal likelihood, which is a general criterion for training PGMs
using the Bayesian approach. In PGMs, latent variables are usually
inferred by model joint distributions over observations (i.e., sensory
information). Thus, a PGM-based approach usually falls under the
umbrella of PC. Considering variational inference, the inference of
latent variables z corresponds to the minimization of the free energy
DKL[q(z)‖p(z,o)], where o denotes observations. The FEP proposed
by Friston was a generalization of PC (Friston, 2019), which is a
general and powerful concept.

The FEP explains animal perception and behavior from the
perspective of minimizing free energy.The perceptual state or future
actions of animals are defined as latent variables of a cognitive
system that continuously interacts with the environment. Free
energy emerges when variational inferences of these latent variables
are performed. From the perspective of variational inference, the
aforementioned PC approximates p(x|o) by minimizing the free
energy using an approximate posterior distribution q(x). This
represents the crux of the FEP.

In contrast, world models are representation-learning models
that include action outputs (Ha and Schmidhuber, 2018;
Friston et al., 2021). An agent is an entity that acts in the world
and learns the representation of the world in relation to its
actions and understanding of events. Most research on VAEs
often considers only sensory information as somewhat static and
neglects the temporal dynamics and actions of the agent. World
models, rooted in the umwelt of an agent, present the internal
representation learning of the agent as it operates within a cognitive
world bounded by its sensory-motor information. The relationship
between world models and PC or FEP is discussed in detail by
Friston et al. (2021); Taniguchi et al. (2023a).

For simplicity, the dynamics in the temporal direction is
temporarily ignored (or concatenated into a vector representing
a sequence) and the PC of the sensory information is focused.
However, arguments that temporal dynamics are essential in
contexts such as active inference do exist.Therefore, such extensions
were incorporated later by including actions and considering
temporal dynamics. For the sensory information o, assuming an
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internal representation x, the prediction was presented p(o|x). This
recognition was expressed as p(x|o) = p(o|x)p(x).The former, p(o|x),
represented the generative model, while the latter was referred to as
p(x|o) Taniguchi et al. (2023a). The idea behind PC was to recognize
the world by predicting sensory information o using the internally
predicted internal representation x and to adapt the internal state for
predictions.

Notably, thus far, concepts of PC and world models have been
utilized primarily to explain and model single-brain cognition and
learning capabilities. In contrast, the FEP offers a broader spectrum
for explaining the self-organization of cognitive and biological
systems (Friston, 2013; Constant et al., 2018; Kirchhoff et al., 2018).
However, the relationship between FEP and SES has not been
thoroughly described.

4.2 CPC

CPC extends the idea of a PC from a single brain to
multiple brain regions. In neuroscience, the subject of a PC is a
single agent (i.e., the brain of a person). With the emergence of
symbolic communication, society has become the subject of PC
via symbol emergence. A mental model in the brain corresponds
to language (a symbol system) that emerges in society (Figure 1).
Decentralized physical interactions and semiotic communications
comprise CPC. The sensory–motor information observed by every
agent participating in the system is encoded into an emergent
symbol system, such as language, which is shared among the agents.

A PGM (Figure 7) was conceptually obtained as an extension
of the PGM for interpersonal categorization (Figure 4). Generally,
in contrast to representation learning, which is performed by
individual agents to form efficient sensory-motor system internal
representations for mental model formation, the generative model
for symbol emergence frames the process in terms of society (i.e.,
a multi-agent system) to form a symbol system such as language,
representing the sensory-motor information obtained by all agents.
In the CPC hypothesis, the emergence of a symbolic system was
considered as the social representation learning. Moreover, multi-
modal representation learning by the brain was mathematically and
structurally equivalent to the multi-agent categorization or social
representation learning using the SES.

The computational model for CPC was obtained by extending
the PGM to interpersonal categorization10. Similar to the
interpersonal categorization process, we first defined the total
PGM by integrating multiple elemental modules. Each elemental
PGM was assumed to involve latent variables zkd, and observations
okd corresponding to the k-th agent. If a super system capable
of observing the internal variables of every agent existed, a
general inference procedure, such as Gibbs sampling or variational
inference (Bishop, 2006), could be used to estimate the shared
representation wd. However, no such super system exists.

10 The model described in this section is conceptual in the sense that the

type of probabilistic distributions, precise architectures of the generative

model, or inference procedures are not specified. By specifying these,

a variety of concrete models of CPC (i.e., symbol emergence) can

be obtained.

Mathematically, the CPC in the simplest case can be
described as follows:

Generativemodel: p({ok}
k
, {zk}

k
,w) = p (w)∏

k
p(ok ∣ zk)p(zk ∣ w)

(3)

Inferencemodel: q(w, {zk}
k
∣ {ok}

k
) = q(w ∣ {zk}

k
)∏

k
q(zk ∣ ok)

(4)

Where q(zk ∣ ok) corresponds to representation learning by
the k-th agent, and q(w ∣ {zk}k) is assumed to be estimated
through a language game within a group. As a whole, symbol
emergence by a group is performed to estimate q(w, {zk}k ∣ {o

k}k) in
a decentralized manner.

Nonetheless, if humans could engage in a language game that
allowed inference wd in a decentralized manner, similar to the MH
naming game, then a symbol system, such as language, could emerge
to integrate the distributed sensorimotor information gathered by
individual agents. Thus, a symbolic system arises when agents
collaboratively engage in PC.

4.3 CPC hypothesis

Forthefirsttime,CPCoffersaframeworkthatcantheoreticallyand
comprehensively capture the entire picture of a symbolic emergence
system. By capturing the dynamics of both cognition and society,
CPC can holistically explain the dynamics bywhich language emerges
in human society. This depiction provides new hypotheses on the
functions imparted by emergent languages. One such hypothesis
suggests “Is language/symbol formed to collectively predict our
experiences of the world through our sensory-motor system?” The
foundation for the dynamics through which language emerges in
human society is proposed in this study as the CPC Hypothesis.

Hypothesis 1. Collective Predictive Coding Hypothesis
Human language is formed through CPC.

The CPC hypothesis has the following sub-components:

1. Symbol emergence is perceived as social representation learning,
which is a form of distributed Bayesian inference. This
distributed Bayesian inference is embodied through the
autonomous decisions made by each agent to reject or adopt
a sign referring to their respective beliefs.

2. Language collectively encodes information about the world as
observed by numerous agents through their sensory-motor
systems. This implies that distributional semantics encode
structural information about the world, and LLMs can acquire
world knowledge by modeling large-scale language corpora.

From the perspective of language evolution, the question,
“On what cognitive functions did human language evolve?” was
analyzed. The CPC hypothesis offers a new explanation for
environmental adaptation. Since CPC provides the perspective of
environmental adaptation as collective intelligence (Surowiecki,
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FIGURE 7
Probabilistic graphical models representing the CPC hypothesis. Left: Probabilistic model that integrates the sensory observations of all agents using a
single global variable. The PGM assumes that the observation (i.e., sensory information), ok

d, of an agent for the dth object is generated from a word or a
sign (e.g., a sentence), wd, via an internal representation, zkd, for the k-th agent. The global parameters (including learned parameters representing
internal, mental, or world models) of the k-th agent is θk. The number of agents and objects are K and D, respectively. Right: Decomposed graphical
models. The global variable, wd, is updated via communications, a type of Bayesian inference realization. The MH naming game via inter-personal
categorization (Hagiwara et al., 2019) is an example of this approach. Thus, wd is inferred to be a representation of the dth object in a collective manner.

2004), an extension of PC, more general explanatory principles
such as FEP were connected and a one-step extension from PC
and the FEP, transitioning from “a system that merely adapts to
the environment based on the sensory-motor system” to “a system
that forms symbol systems to adapt to the environment based on
the sensory-motor system together with others as a society,” was
further demanded.

The key concept of the CPC hypothesis is the possibility of
decomposing the inference process of an integrative PGM and
its structural similarity to the multi-modal concept formation.
The decomposed PGMs are shown in Figure 7. The interpersonal
categorization model presented an example of a decomposition,
wherein the number of agents was K = 2. Hagiwara et al.
(2019) suggested a naming game that performed decentralized
inference of the shared (emergent) symbol system. Similarly, the
process of symbol emergence was regarded as a decentralized
inference process involving sharing between multiple agents.
Inukai et al. (2023) introduced a recursive MH naming game,
which theoretically enabled multiple agents, more than two, to
undertake symbol emergence similarly to the MH naming game
described by Hagiwara et al. (2019).

The CPC hypothesis has the following implications for the
origins of symbolic communication. If humans evolutionarily
obtain the capability of internal representation formation, which
involves categorization and concept formation, by using multi-
modal sensorimotor information and judging the believability of
utterances of others based on appropriate probabilities calculated
using their own beliefs, they can share signs and optimize the
shared external representation system to predict the observations
of all agents belonging to the SES. This system is referred to as
the emergent symbol system illustrated in Figure 2. Thus, the CPC
hypothesis suggests that the ability to determine whether humans
believe the statements of other agents based on their own beliefs is
crucial for symbol emergence.

At present, we do not have sufficient empirical evidence to
support theCPChypothesis. It is important to design experiments to

test the hypothesis in different ways. One approach is experimental
semiotics. Okumura et al. (2023) conducted an experiment in which
human participants played a naming game similar to the MHNG
and showed that the MH acceptance probability predicted human
acceptance behaviormore accurately than othermethods compared.
This provides some level of support for the CPC hypothesis. To
further test the hypothesis, it is essential to develop computational
simulations based on CPC principles and compare the results with
human data to validate the model’s predictions.

4.4 Society-wide FEP

Considering Figure 7 a deep generativemodel, CPCwas regarded
as representation learning involving multi-agent multi-modal
observations. Nevertheless, the agents conducted representation
learning, in which representations were not only organized inside the
brain but also formed as a symbol system at the societal level. Thus,
symbol emergence was termed as social representation learning.

Since PC could be paraphrased as FEP in many contexts, CPC
was viewed from the perspective of FEP. The inference of the
latent variables (i.e., representations) was formulated using free-
energy minimization considering variational inference. FEP is a
general notion of PC and an influential idea in neuroscience as
scholars frequently mention that the human brain performs free-
energy minimization. Beyond individual FEP, the CPC hypothesis
suggests that human society performs free-energy minimization at
the societal level by creating symbolic systems. This speculation
suggested that symbol emergence was driven by society-wide FEP.
Notably,MHnaming games based onMCMCalgorithmand specific
language games that performed variational inference of free-energy
minimization have not been invented. However, if decentralized
Bayesian inference was viewed from the perspective of variational
inference, it would present a society-wide free-energyminimization.
This approach clearly provided a theoretical connection between
symbol emergence and FEP.
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In terms of FEP, the CPC hypothesis suggests that the symbol
system emerges by inferring internal representations and shared
symbols p(z,w|o) in a decentralized manner considering variational
inference. The CPC hypothesis posits that the formation of a
symbolic system is the product of collective human intelligence,
which is rooted in the capabilities of each agent who allows
its engagement in multi-modal representation learning and
individually rejects inputs or signs from other agents. Consequently,
an emergent symbol system is collectively structured as a
system-level (or society-level) representation.

The FEP is not only concerned with the activities of individual
brains but is also applicable to collective behaviors and the
cooperation of multiple agents. Researchers such as Kaufmann et al.
(2021); Levchuk et al. (2019); Maisto et al. (2022) have explored
frameworks for realizing collective intelligence and multi-agent
collaboration within the context of FEP and active inference.
However, the theorization of language emergence based on FEP
has not yet been accomplished. Furthermore, CPC represents the
first attempt to extend the concepts of PC and FEP by making
language itself the subject of PC. Regarding the relationship between
language and FEP, Kastel et al. (2022) provides a testable deep
active inference formulation of social behavior and accompanying
simulations of cumulative culture. However, even this approach
does not fully embrace the CPC perspective, where language
performs external representation learning utilizing multi-agent
sensorimotor systems.

From the viewpoint of FEP, the CPC hypothesis argues that
symbol emergence is a phenomenon of free-energy minimization
throughout a multi-agent system. In addition, the interpersonal
categorization by Hagiwara et al. (2019) suggests the possibility of
decentralized minimization of the free energy for symbol emergence.
This hypothesis provides direction for future computational studies
on symbol emergence, communication, and collaboration between
computational studies in language evolution and neuroscience.
Additionally, understanding linguistic communication from the
viewpoint of CPC enables us to incorporate ideas related to FEP,
especially active inference, into language understanding and speech
acts, thereby expanding the scope of FEP.

4.5 LLM as collective intelligence

Why do LLMs seem to know so much about the “world”?
Many studies have suggested that LLMs behave as if they have
grounded language (Gurnee and Tegmark, 2023; Kawakita et al.,
2023; Loyola et al., 2023) as we briefly described in Section 1. The
reason why LLMs are so knowledgeable about our world has not
been fully understood (Mahowald et al., 2023). The perspectives
offered by the CPC hypothesis give us new speculative thoughts
on this question. The CPC hypothesis explains how the language
acquired by LLMs is grounded.

In the concept of collective predictive coding, symbol/language
emergence is thought to occur through distributed Bayesian
inference of latent variables, which are common nodes connecting
numerous agents. This Bayesian inference can be performed in
a distributed manner without necessarily connecting brains, as
exemplified by certain types of language games such as MHNG.
Unlike conventional discriminative language games for emergent

communication, emergent communication based on generative
models (e.g., Taniguchi et al., 2023b; Ueda and Taniguchi, 2024) is
consistent with the view of CPC. Thus, even without connected
brains, the observations of multiple agents are embedded in a
language W. Each utterance wd ∈W is sampled from this shared
node. Conversely, the prior distribution P(w) over the collection can
be considered a language model. As a result, language corpora have
distributional semantics (Harris, 1954).

In more computational terms, if representational learning for
the i-th agent involves inferring an internal representation p(zi|xi)
for the observation xi, then symbol emergence for a group involves
inferring a collective symbol/language (i.e., external representation)
p(w|{xi}i) for the observations {xi}i. In the context of variational
inference, maximizing ELBO with respect to w corresponds to
minimizing the free energy for all agent observations {xi}i in a group
performing symbol emergence, i.e., SES.

Integrating the information in sensorimotor observations
of multiple agents’ Umwelts, i.e., self-centered worlds, and
forming representations that predict the sensorimotor observations
requires more than categorical representations; more complex
information representations are needed. Therefore, it is suggested
that language adopts compositionality based on syntax. In the
conventional work using MHNG, the common node w in Figure 7
has been considered a discrete categorical variable. However, w
can be many types of variables, including compositional discrete
sequences of variable length, typically found in natural language.
In such a case, W becomes a space of (external) representations
that model sensorimotor information observed by all
agents in the SES.

CPC provides a worldview in which language integrates our
internal representations formed through our embodied experiences,
corresponding to world models Ha and Schmidhuber (2018);
Friston et al. (2021); Taniguchi et al. (2023a), and represents this
information as a series or set of sequences. If this is true, then
predictive learning of these collections of sequences indirectly
models the world experiences we obtain through our human
sensorimotor systems. In other words, the latent structure
embedded in large-scale language corpora as distributional
semantics, which can be learned through language modeling,
represents the latent structure of the world. This is because the
language system has emerged to represent or predict the world
as experienced by distributed human sensorimotor systems.
This may explain why LLMs seem to know so much about the
‘world’, where ‘world’ means something like ‘the integration of our
environments’.

Recently, LLMs have been considered as candidates for creating
artificial general intelligence, and there are also studies focusing
on the development of autonomous agents based on LLMs. This
has led to a growing perspective that treats LLMs as analogous to
individual humans. However, from the viewpoint of CPC, it seems
more accurate to consider LLMs as models of collective intelligence,
which is comprised of the cognitive systems of a large number
of people performing PC, rather than as models of an individual
cognitive system engaging in PC. Therefore, the CPC hypothesis
suggests that LLMs potentially possess the capability to encodemore
structural information about the world and make inferences based
on it than any single human can.
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5 Related works

This section presents an overview of previous studies on the
emergence of symbol systems and language, and examines their
relationship with the CPC hypothesis.

5.1 Emergent communication

Steels et al. proposed a variety of computational models
for language emergence using categorizations based on sensory
experiences (Steels, 2015). In their formulation, several types of
language games were introduced and experiments using simulation
agents and embodied robots were conducted. In a computational
experiment conducted in a simulated environment, a group of
agents created ways to identify each other using vocabulary-related
spatial concepts (Steels, 1995). Steels and Belpaeme (2005) proposed
a variety of models to examine mechanisms through which a
population of autonomous agents could arrive at a repertoire of
perceptually grounded categories. In real-world environments, Steels
et al. conducted the “Talking Heads” experiment, where each agent
grounded a lexicon to a concept based on visual information to
develop a method of communication among agents (Steels, 2015).
These experiments showed that language games allowed agents to
share lexicons and meanings of simple objects, such as red circles
and blue rectangles. Several studies extended the concept of the Talk-
Heads experiment.Mobile robots (e.g., AIBO), which have numerous
modalities and behavioral capabilities, were used in experiments to
learnwordsandmeaningsofsimpleobjectsandspatialconcepts (Steels
and Kaplan, 2000; Steels and Loetzsch, 2008). Spranger et al. studied
the evolution of grounded spatial languages within a language-game
framework (Spranger, 2011; 2015). They implemented a perceptual
system for the Sony humanoid robots (Spranger et al., 2012). This
study was extended by Vogt et al. from the perspective of semantical
and grammatical complexity (Vogt, 2002; 2005; De Beule et al., 2006;
Bleys, 2015; Matuszek, 2018). Furthermore, a model for the evolution
andinductionofcompositionalstructuresinasimulationenvironment
was reported (Vogt, 2005).

Since 2016, the advancement of deep learning, particularly
its capability for representation learning, has invigorated
research on emergent communications based on machine
learning Foerster J. N. et al. (2016); Lazaridou et al. (2017a);
Lazaridou and Baroni (2020). Trends followed until 2020
were discussed in detail by Lazaridou and Baroni (2020). The
group led by Lazaridou and Baroni achieved significant results.
Constructive models, such as signaling and reference games, were
frequently employed to encourage the emergence of language
Lazaridou et al. (2017b); Havrylov and Titov (2017). Primary
research focused on the formation of languages with compositional
structures were conducted in which simple representations (such as
words) were combined to form complex sentences.

In the same way as the CPC extends the idea of generative
model-based emergent communication in the joint-attention
naming game (Okumura et al., 2023) to population level, models
of emergent communication based on Lewis-style signaling games
have been extended to populations (Chaabouni et al., 2021). It has
been revealed in populated signaling games that larger communities
tend to develop more systematic and structured languages

(Michel et al., 2022). Moreover, Rita et al. (2021) introduced the
idea of partitioning, which separates agents into sender-receiver
pairs and limits co-adaptation across pairs, demonstrating that such
structure leads to the emergence of more compositional language.

One issue involved the reliance on reinforcement learning
(RL)-like feedback principles based on “success/failure of
communication.” In Shannon’s information theory, understanding
the symbol system was confined to forming a communication
channel Shannon (1948), either between two parties or among
multiple parties. However, their perspective did not adequately
capture the emerging characteristics of symbols in social
systems. The communication model foundation relied heavily
on the Shannon–Weaver type, where the success or failure of
communication served as feedback, rewriting the codebook
(relationship between the sign and object) of the speaker or listener.
Such a view of language acquisition was criticized by researchers
such as Tomasello, who stated that the approach was not a valid
metaphor for explaining child language development Tomasello
(2005). Before experiencing vocabulary explosion, human infants
engage in joint attention. Csibra and Gergely (2009) highlighted
that children pre-suppose the intention that parents are trying to
teach them when integrating instructions from parents into their
learning. Rather than being post-communicative as in reference
games, shared attention and teaching intentions were foundational
in language development.

From a computational perspective, most studies of emergent
communication employed discriminative models to represent
semiotic communication. The receiver was required to distinguish
between the targeted objects. Contrarily, the CPC hypothesis is
based on generative models. The objective of symbol emergence was
not merely the “success of communication,” but rather “organizing
a symbol system to better predict or understand the world.” This
distinction was significant from a philosophical perspective.

5.2 Multi-agent reinforcement learning

The MARL framework was used to model the emergence of
symbolic communication. In MARL-based studies of symbolic
emergence communication, agents were allowed to output signals
as a particular type of action, whereas other agents were allowed
to use them as additional sensory information. Such an approach
had a long history of application. However, after the introduction
of deep RL, RL systems could easily use emergent signals to solve
RL problems, benefiting from representation learning (i.e., feature
extraction), which is a capability of neural networks.

From the perspective of environmental adaptation,
communication fundamentally alters the behavior of others using
signs emitted by oneself and changes one’s own behavior based on
signs received from others, thereby realizing adaptive behaviors for
the group as a whole.This concept wasmodeled usingMARL, which
included emergent communication. With recent advancements
in deep RL, flexibly interpreting the meaning of signals issued
in communication using the representational capability of deep
learning has been possible Buşoniu et al. (2010).

Research on symbol emergence using deep-learning-based
MARL, such as differentiable inter-agent learning (DIAL)
(Foerster J. et al., 2016) and CommNet (Sukhbaatar et al., 2016),
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has gained momentum since the mid-2010s. Several methods have
been proposed, including multi-agent deep deterministic policy
gradient (MADDPG), an extension of the deep reinforcement
learning method known as deep deterministic policy gradient
(DDPG) (Lillicrap et al., 2015; Lowe et al., 2017).These studies were
focused on the formation of efficient communication channels for
collaboration (Jiang and Lu, 2018; Kilinc and Montana, 2018; Iqbal
and Sha, 2019; Kim et al., 2019; Kim et al., 2021). Often, the success
of communication in a givenMARL task is evaluated by the achieved
performance, specifically the amount of reward obtained, with less
attention paid to the structure of the emergent language.

When viewed as a model of language emergence, research on
symbol emergence based on multi-agent reinforcement learning
produced languages that were task dependent. Thus, such issues
require attention when considering language emergence.

A theoretical connection exists between the MARL and PGM-
based approaches (i.e., PC). Within the past decade, the concept
of control as a probabilistic inference (CaI) has gained significant
attention (Levine, 2018). CaI allowed for the reformulation of RL
as a probabilistic modeling of Bayesian inference. Considering the
reward function as an energy function of the probability distribution
ofoptimality ̄ot:p( ̄ot = 1 ∣ st,at) = exp(r(st,at)),madeoptimalaction
selection (i.e., policy search) equivalent to the Bayesian inference
of future actions: p(at|st, ̄o1:T). Several model-based RL methods
have been interpreted as variational inferences of a future trajectory
p(τ| ̄o1:T), where τ = (st+1,T,at,T) (Okada and Taniguchi, 2020).

Here, we considered partially observable Markov decision
process (POMDP) settings, which are more general settings in RL
where the state st is estimated from observations o1:t. In RL, we were
interested in a latent state sequence s = s1:T, a future action sequence
a = at,T, and observations up to the present o = o1:t, assuming a
sequence of optimalities ̄o = ̄o1:T. Thus, we demonstrated that RL
could be considered as a PC and Bayesian inference of latent
variables, that is, states and a future action sequence, respectively.
By introducing CaI into MARL, emergent communication was
formulated in terms of PGM-based modeling (i.e., the context of PC
performed by multi-agent systems).

Thus, the aforementioned interpretation paved the way for
extendingMARL from aCPC viewpoint. For simplicity, we included
optimality ̄o as part of the observations o. Emergent communication
in RL was suggested to be interpreted as a probabilistic inference
of the shared variable w, that is, p(w|{ok}k). From this perspective,
emitting amessagewk

t corresponded to sampling amessage from the
posterior distribution p(w|{ok}k). From the viewpoint of variational
inference, emergent communication (i.e., symbol emergence in
MARL) estimated the approximate distribution q(w) for the prior
distribution p(w|{ok}k) as

q∗ ({zk}
k
,w) = arg min

q({zk}k,w)
DKL [q({zk}k,w)‖p({z

k}
k
,w|{ok}

k
))] (5)

Optimization was performed by minimizing the free
energy DKL[q(z,w)‖p(z,w,o′)]. Thus, a multi-agent system-
wide free-energy minimization was interpreted. For example,
Nakamura T. et al. (2023) and Ebara et al. (2023) extended the
MH naming game and proposed a probabilistic emergent
communication model for MARL.

5.3 Iterated learning models

The iterated learning model (ILM) emulates the process of
language inheritance across generations and seeks to explain
how compositionality in human languages emerges through
cultural evolution (Kirby, 2001). The ILM has been validated
using agent-based simulations (Kirby, 2001; 2002; Kirby et al.,
2015), mathematical models (Brighton, 2002; Griffiths and
Kalish, 2007; Kirby et al., 2007), and laboratory-based language
evolution experiments (Kirby et al., 2008; Scott-Phillips and
Kirby, 2010; Kirby et al., 2015). ILM models the social transmission
of knowledge from parent to child generations. Specifically, the
process through which the language and cultural knowledge of
one generation is passed on to the next is modeled, allowing a
compositional study on how language and culture evolve over
time. While research on emergent communication, multi-agent RL,
and symbol emergence robotics has often focused on the learning
capabilities of individual agents, ILM adopts a more holistic view by
examining the transmission of language and culture through society.
Thus, an approach akin to complex system simulation research is
offered, providing a compositional understanding by observing
phenomena that arise through interactions among groups of
agents. The theoretical significance of ILM suggests that the unique
compositional language of humans can be reduced to a learning
ability that does not pre-suppose linguistic compositionality but
is based on specific linguistic functions. However, ILM does not
address how the resulting languages represent and segment the
world, especially in terms of continuous, multi-modal perceptual
information such as images and sounds, and how they contribute to
the environmental adaptation of agents.

Unlike CPC, ILM does not concentrate on representation
learning but places more emphasis on the social transition
of linguistic knowledge between generations. Incorporating
intergenerational communication into CPC is a direction for future
research. Theoretically, the integration is feasible. If realized, CPC
can be emphasized as a comprehensive framework that captures
the dynamics modeled by the ILM. However, forging a concrete
connection between the CPC and ILM remains a challenge.

5.4 Symbol emergence in robotics

Symbol emergence in robotics is a constructive approach for
SESs (Taniguchi et al., 2016c). Central to these discussions is the
question of how robots equipped with sensory-motor systems
(embodiment) segment (differentiate) the world, form concepts
based on subjective experiences, acquire language, and realize
symbol emergence.

As introduced in Section 3, models have been proposed for the
formation of orients/concepts based on multi-modal information.
Such methods focused on the formation of internal representations
based on multi-modal information. An environment even
without a pre-existing symbol system can exist. Therefore,
numerous studies have integrated multi-modal information
such as visual, auditory, and tactile data to form the concepts
of objects and locations (Nakamura et al., 2009; 2011a; 2015;
Taniguchi et al., 2017b; Taniguchi et al., 2020 A.).
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Symbolic communication involves exchanging arbitrary signs.
SESs require agents to segment continuous vocal sounds into words
as clusters of arbitrary symbols for language acquisition. Furthermore,
research on automatically discovering word units and acquiring
vocabulary by obtaining unsegmented sound sequences, together
with multi-modal information related to objects and places, has
been conducted (Nakamura et al., 2014; Taniguchi A. et al., 2018).
Although word units can be discovered from character strings
usingunsupervisedlearning(Goldwater et al.,2009;Mochihashi et al.,
2009), such approaches have been extended to consider speech input
as an observation. PGMs and inference methods have been proposed
to analyze the two-layer structure (dual segmentation structure)
unique to a language, consisting of phonemes and words, and
simultaneously estimate phonemes and words through unsupervised
learning (Taniguchi et al., 2015; 2016d).

Existing studies demonstrated that PGM-based approach could
achieve word discovery and lexical acquisition from continuous
perceptual sensory information. Thus, the concept of PC could
explain the learning process of signs. However, such studies did
not consider the emergence of signs (i.e., bottom-up formation).
Each robot learned phonemes and words assuming that the
system of signs was fixed. Hence, the lists and distributional
properties of phonemes and words were fixed. Therefore, these
studies were insufficient for modeling the emergence of symbolic
communication.

However, discussions on symbol emergence in robotics
that evolved throughout the 2010s primarily focused on multi-
modal concept formation and language acquisition by individual
robots. They were unable to address the emergence of symbols
(languages) in society. Following the discussion in Sections 3 and
4, CPC could be extended to the frontiers of symbol emergence
in robotics (Taniguchi, 2024).

6 Conclusion and discussion

This study proposes the CPC hypothesis. First, the SES was
revisited, providing an integrative view that encompasses both
individual internal representation learning and the emergence
of symbols, i.e., external representations, for communication.
This serves as preliminary knowledge to clarify the complete
phenomenon of symbol emergence. Second, multi-modal concept
formation based on (probabilistic) generative models was revisited,
and a generative emergent communication model, symbol
emergence through MHNG, was explained as an extension of
internal representation learning, called interpersonal categorization.
Third, by extending the idea of interpersonal categorization, we
propose the CPC hypothesis, which posits that symbol emergence
in a multi-agent system can be regarded as decentralized Bayesian
inference through language games. This can be considered social
representation learning, as well. This is computationally analogous
to the representation learning of multi-modal sensory information
conducted by an individual agent, with social representation
learning performed through CPC in the same manner as by
individual PC.The connection to FEP and LLMs was also discussed.
Fourth, four branches of research related to computational models
for symbol emergence are introduced: multi-modal categorization
and representation learning, word discovery and lexical

acquisition, language-game-based approaches, and MARL-based
approaches.

The advantage of the CPC hypothesis is its generality in
integrating preexisting studies related to symbol emergence
into a single principle, as described in Section 5. In addition,
the CPC hypothesis provides a theoretical connection between
the theories of human cognition and neuroscience in terms
of PC and FEP.

The limitations of the CPC hypothesis are as follows. Although
CPC has new implications in terms of the origin of human
symbolic communication, including language, the CPC hypothesis
does not explain why symbolic communication emerged only
in humans and not in other living species. However, certain
types of symbolic communication have also been observed in
other living species (Rendall et al., 2009). The symbol emergence
described in this paper is not argued to be strictly limited to humans.
Considering that language and symbolic communication are multi-
faceted phenomena, some types of the CPC may be found in other
living species.

The CPC hypothesis focuses primarily on the semantic aspects
of the SESs. Language, the most popular symbolic human system,
is multi-faceted. Furthermore, the emergence of speech codes,
such as phonological systems, is an important topic in the
study of SESs. This study focuses on the emergence of the
semantic aspects of symbol systems. However, the emergence of
phonological systems is not discussed, although word discovery
is mentioned in relation to speech signals in Section 3.2, from
the viewpoint of PC by a single agent. Computational models
for the self-organization of speech codes in multi-agent systems
have also been studied for more than a decade (Oudeyer, 2005).
In particular, the work by Moulin-Frier et al. (2015) proposed a
Bayesian framework for speech communication and the emergence
of a phonological system, termed COSMO (Communicating about
Objects using Sensory–Motor Operations). Integrating this concept
into the CPC framework may provide a possible path for creating
a more general computational model for SESs. We believe that
the CPC framework possesses the generality to accommodate such
discussions.

Therefore, testing the CPC hypothesis is important. Tests
may involve at least two computational and cognitive approaches.
Computational models can be developed to enable AIs and robots to
perform symbol emergence in a variety of tasks to test the feasibility
of the CPC hypothesis in a constructive manner. Psychological
experiments can also be conducted to determine whether humans
actually perform the learning processes assumed in the CPC
hypothesis. Particularly, Hagiwara et al. (2019) assumed that agents
decide whether to accept or reject another agent’s utterance using
a certain probability calculated based on their individual beliefs.
The extent to which individuals act according to these assumptions
must be validated. Okumura et al. (2023) conducted initial studies
on the aforementioned topic and reported that human participants
adhered to the acceptance probability suggested by the theory of
the MH naming game to a certain extent. In addition, the extent
to which the free energy of wd in Figure 7 can be minimized
must be tested.

Understanding the dynamics of SESs that realize daily semiotic
communications will contribute to understanding the origins of
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semiotic and linguistic communications. To enable robots to
participate in daily human communication in the long term,
the fundamental capability that enables humans to organize
emergent symbol systems in a decentralized manner without a
designer or centralized mechanism to create a language should
be clarified. The CPC hypothesis, including the computational
approach that decomposes the CPC into a decentralized individual
representation of learning and communication, can be adapted
to provide a general and promising direction for illuminating
the mystery of the emergence of symbolic communications and
language.
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