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The condition for artificial agents to possess perceivable intentions can be
considered that they have resolved a form of the symbol grounding problem.
Here, the symbol grounding is considered an achievement of the state where
the language used by the agent is endowed with some quantitative meaning
extracted from the physical world. To achieve this type of symbol grounding,
we adopt a method for characterizing robot gestures with quantitative meaning
calculated from word-distributed representations constructed from a large
corpus of text. In this method, a “size image” of a word is generated by defining
an axis (index) that discriminates the “size” of the word in the word-distributed
vector space. The generated size images are converted into gestures generated
by a physical artificial agent (robot). The robot’s gesture can be set to reflect
either the size of the word in terms of the amount of movement or in terms of
its posture. To examine the perception of communicative intention in the robot
that performs the gestures generated as described above, the authors examine
human ratings on “the naturalness” obtained through an online survey, yielding
results that partially validate our proposed method. Based on the results, the
authors argue for the possibility of developing advanced artifacts that achieve
human-like symbolic grounding.

KEYWORDS

word-distributed representation, human-robot interaction (HRI), co-speech iconic
gesture, natural language processing (NLP), robotics

1 Introduction

In their daily life, people interact with a variety of artifacts. In doing so, they sometimes
behave as if the objects have a kind of thinking ability (Nass et al., 1994; Nass and Moon,
2000). In this paper, the object causing such a behavior is called “an agent.” In other words,
an agent is an artifact that can interact with people with its purpose, motivation, and
intention (Levin et al., 2013; Kopp and Krämer, 2021; Human-Agent Interaction, 2023). We
posit that understanding the factors that lead people to perceive artifacts as having these
characteristics can facilitate enriching interactions, where humans naturally behave like in
human-human interaction (HHI).

Research in the field of human-agent interaction (HAI) has explored factors causing
people to perceive the agency in artifacts.Those factors aremainly classified into appearance
(MacDorman and Ishiguro, 2006; Yee and Bailenson, 2007), behaviors (Heider and Simmel,
1944; Laban and Ullmann, 1971) and social contexts (Nass et al., 1994; Shiomi, 2023).
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Yet, all of them are categorized as external factors, omitting the
discussion on the correspondences of internal states and processes
(i.e., algorithms and representations (Marr, 1982)) between the
artifacts and humans. We argue that studies focusing on the
internal factors of these objects pave the way for a foundational
design principle for agents. Such agents would appear to possess
the aforementioned conditions of agency: purpose, motivation,
and intention.

Building on this concept, the current study investigates the
relationship between the perception of agency and addressing the
symbol grounding problem (Harnad, 1990). Within our framework,
symbol grounding is understood as an internal state in which the
language(symbols)usedbytheagentisgivensomequantitativemeaning
extracted from the physical world. One possible form of assigning
quantitativemeaningtolanguageappears intheco-speechgesture(body
movement accompanied by verbal language). The correspondence
between utterances and actions made by the agent allows humans to
infer the existence of meaningful symbols in the agent.

In other words, we assume that some forms of gestures,
which are implicitly generated in communicative situations, convey
quantitative meaning attached to verbalized words. These gestures
can be distinguished from culturally formed emblematic gestures.
Rather than directly indexing a specific concept, the gestures focused
here iconically enhance imagistic links between linguistic form
andmeaning (McNeill, 1992;Murgiano et al., 2021).Murgiano et al.
(2021) also claimed that such an iconic gesture is part of multimodal
systems conveying imagistic meaning in communicative contexts.
Thus, a similar role is observed in the prosody that accompanies
spoken words. Herold et al. (2011) reported that children deduce
novel meaning of antonyms (e.g., “small” vs. “big”) by leveraging
prosodic features such as intensity (i.e., a loud and slow voice is
connected to a big object).

The connection between a physical image and word meaning
(the degree of symbol grounding) varies with word categories.
Concrete categories naturally exhibit stronger links than abstract
concepts (Utsumi, 2020). Nonetheless, abstract words can also
possess imagistic meaning. Lakoff and Johnson (1980) discussed
how language is metaphorically shaped through schemata that
involve movement within the external world. This concept, known
as an image schema, allows for the preservation of the external
world’s imagery while linking through metaphorical expressions.
For instance, when a speaker utters the phrase, “I have an important
idea,” we can envision a scenario where the speaker’s hand gesture
expands to signify the idea’s perceived significance. In this gesture,
the magnitude of the concept is metaphorically represented through
the spatial dimensions defined by the speaker’s body structure. Such
a set of metaphors connecting a physical experience and an abstract
concept is known as a primary metaphor (Grady, 1997).

Existence of the mechanism of exchange for these representations
(symbols and quantities) is also supported by various theories in the
field of cognitive science. According to the reference frames theory
by Hawkins (2021), a continuous space exists behind each concept,
mediating language use. Similarly, Tversky (2019) claimed that human
language and thoughts originally come from physical experiencemade
in a continuous time and space. In her discussion, the meanings of
words are essentially embedded in our living physical world. Other
similar discussions are also found in literature in the field of cognitive
linguistics (Pinker, 2007).

Summarizing the above background of cognitive science, the
authors consider that the gestures generated from a mechanism that
is analogous to what humans hold can lead to a realization of the
“intrinsically naturalistic” interactions with the agent, where people
can perceive “communicative intention (Grice, 1989)” in the agents.
In order to construct such a mechanism, a model of word meaning
is important. As already noted by the above theories (Pinker, 2007;
Tversky, 2019; Hawkins, 2021), word meanings are not defined
discretely or independently, but are considered to be defined in a
continuous space in which words are interconnected. In the history
of natural language processing, statistical analyses (bag of words, co-
occurrence frequency, or principal component analysis from word
vectors) have been applied to corpora derived from human language
operations to capture the semantic relations between words. More
recently, vector representations (word-distributed representations)
collapsed into the middle layer of a neural network (Bengio et al.,
2000) have become the mainstream method for understanding
words’ quantitative meanings. Such an approach is still evolving
and has led to the construction of a variety of large-scale language
models (LLM) that enable HAI with human natural communication
media (natural language) (Brown et al., 2020; Chowdhery et al.,
2023; OpenAI, 2023).

Various quantitative images such as “size” and “speed” can be
assumed in the space where words are positioned (Grand et al.,
2022). Among those, we focus on the “size images” as a first step
to obtain quantitative representations of words related to physical
image embedded in the space. Since this image has been frequently
utilized in numerous studies (Grady, 1997; Herold et al., 2011), it is
suggested that the most representative image for our investigation.
By creating iconic gestures (physical images) for a robot through the
conversion of “size images” into physical representations, we aim to
develop an agent that achieves symbol grounding, which leads to
actions that reflect the quantitative images of words. Our objective
is to determine whether such embodiment in an agent (robot) leads
to an increase in human perception of agency.

More specifically, as an initial step toward the above objective,
we set the following research questions:

1 How can “size images” evoking an agency perception
be extracted from the vector space of word-distributed
representations?

2 What forms of gesture expression are effective in constructing
more natural interaction based on the agency perception?

To address the first question, we introduce a method for
extracting “size images” using word-distributed representations and
evaluate this method through two experiments. These experiments
employ different approaches for associating “size images” with
“physical images” in a robot. By comparing the outcomes of
these experiments, we aim to investigate the second question.
Before presenting the experiments, we introduce a technological
background leading to the method of this study and the method of
generating “size images” in the following sections.

2 Related works

As a background of our method, we introduce research on
modeling word meaning and research on gesture generation for
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robots and agents. Based on the review of those related works, we
outline our specific approach to gesture generation.

2.1 Modeling word meaning

The meaning of a word or concept can be modeled by several
approaches. One traditional approach is to write down themeanings
of concepts circulating in society manually. Large-scale databases
such as WordNet (Miller, 1995) and ConceptNet (Speer et al., 2017)
have been developed so far. These databases define the normative
knowledge structure in society.

On the other hand, in recent years, there have been many
approaches to statistically capture the meaning of concepts based
on the way people use language in their daily lives. The word-
distributed representation (Bengio et al., 2000) considers a word as
a “pointer” embedded in a vector space. In this framework, the
meaning of a word is regarded as the relationship (distance or
similarity) between words in the vector space. The underlying idea
here is the distributional hypothesis that “words which are similar
inmeaning occur in similar contexts (Rubenstein andGoodenough,
1965; Sahlgren, 2008)”.

Attempts have been made to extract words’ quantitative images
by using word-distributed representations. For example, Utsumi
(2020) used word-distributed representations to classify words into
attributes and compared them with the classifications obtained
from human data. The results suggests that the vector space
of word-distributed representation captures aspects of human
knowledge, showing that abstract concepts are more deeply
(remotely) embedded in word distributions than in words with
physical meanings associated with animates.

In addition, Grand et al. (2022) proposed a method for
extracting context-dependent relations using word-distributed
representations. Context-dependent relations imply that a word
like “dog” can embody multiple semantic features such as “size,”
“intelligence,” and “danger,” with a particular feature becoming
prominent depending on the context. This study shows that by
projecting word vectors onto an axis representing a focused feature,
it is possible to simulate human estimation of the quantitative
features in various objects. Thus, it is suggested that human
quantitative images of words are embedded in word-distributed
representations. In other words, the quantitative meanings of
concepts that humans have physically acquired are inherent inword-
distributed representations created from our daily language use.

2.2 Gesture generations in human-agent
interaction

The current study focuses on symbol grounding as a factor
inducing agency perception. Regarding this focus, Section 1
introduced studies showing the relation between symbol grounding
and multimodal communication (Murgiano et al., 2021).

In the context of HAI studies, multimodal interaction has also
been extensively examined. Among these, human gestures have
been treated as a main modality that significantly influences verbal
communication (Maricchiolo et al., 2020). To approach this, data-
driven methods that learn from human gestures by using machine

learning techniques such as deep learning have become popular.
For example, Saund et al. (2022) analyzed the relationship between
body movement and meaning to generate effective gestures by
virtual agent.

There have also been many studies on gesture generation
from multimodal language corpus. Lin and Amer (2018) use
Generative Adversarial Networks (GAN) to control joints by
mapping embedded words to the space of body movements. Ahuja
andMorency (2019) also proposed amethod called “language2pose”
that integrates language and body movements through end-to-
end learning. More recently, Tevet et al. (2022) used a diffusion
model to generate human body movements and use sentences and
actions as input. Their study confirmed that gestures generated
from both inputs were evaluated better than gestures generated by
other generationmodels. Furthermore, possibility of natural gesture
generation or selection is explored by using LLM (Brown et al.,
2020; Chowdhery et al., 2023; OpenAI, 2023), which has become
popular in recent years. Hensel et al. (2023) have shown that LLM
can be used to select hand gestures that are compatible with the
content of speech. Yoshida et al. (2023) have successfully generated
emblematic gestures by incorporating LLMs into humanoid robot
motion generation.

In the context of co-speech gesture generation, Yoon et al.
(2019) applied deep learning technology to generate various
gestures, including iconic, metaphoric, deictic, and beat gestures.
Ishii et al. (2018) also proposed a model of co-speech gesture
focusing on appropriate timing. In their study, Conditional Random
Fields (CRFs) were used to parse information from natural
language.

2.3 Top-down gesture from abstract index

As described thus far, numerous studies have focused on
bottom-up approaches that extensively learn low-level features
from human motion data. Although these approaches have proven
effective for generating natural gestures, using the bottom-up
approach to identify intrinsic yet infrequently occurring features
related to spoken words remains challenging due to the inherent
bias of deep learning technologies towards the majority of data
samples.Therefore, a top-down approach that targets specific aspects
of wordmeanings is necessary to achieve a robot that acts as an agent
“grounded to the external world,” as described in Section 1.

Based on these ideas, Sasaki et al. (2023) proposed a gesture
generationmethod by extracting intrinsic images of words as shown
in Figure 1. The details will be explained in the next section,
but their method has advantages in assuming an abstract axis
(index) to be extracted from the data, by following Grand et al.
(2022). We consider that such an intentional setting of an axis is
essential to represent communicative intention in the agent (Grice,
1989). However, their study did not present sufficient evaluations
of the variety of body expressions. Therefore, this study extends
the previous method (Sasaki et al., 2023) to evaluate the effects
of physical images generated from the abstract index on agency
perception. In the following sections, we describe the method of
constructing “size index” and “size images,” which are the process
presented in the left side of Figure 1.
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FIGURE 1
Gesture generation proposed by Sasaki et al. (2023).

3 Generating “size images” of words

In this study, we generate gestures of embodied agents (robots)
by using the method proposed by Sasaki et al. (2023). After
presenting an overview of the method, we apply it to survey data
to extract the “size images” of words.

3.1 Basic method

Figure 2 illustrates the methodology employed in this study to
generate “size images.” Figure 2A details the procedure for extracting
a “size index” applicable to any word in the word-distributed
representation. This involves identifying quantitative dimensions
related to the attribute of size. Following this, Figure 2B outlines
the process of creating a “size image” for a specific word using the
derived size index. The output of this step is utilized to translate
the abstract semantic feature into a physical representation (robot
movement) that can be recognized within the context of human-
agent interaction, thereby facilitating the symbol grounding of the
word based on its size attribute.

These processes adapt and modify the approach presented by
Grand et al. (2022), whichwas introduced in Section 1. To overcome
the limitations of Grand et al.’s method, which we will discuss later,
ourmethod (Sasaki et al., 2023) employs an approach that combines
word-distributed representations with a human-curated thesaurus,
introduced in the beginning of Section 2.1. This approach reduces
the arbitrariness of the method and enhances its applicability to
languages with comprehensive linguistic resources. In this study,
to assess the method’s applicability beyond English, we utilize a
linguistic resource developed for the Japanese language.

The remainder of this subsection details the specific procedure
employed in this study for extracting the “size index” and
constructing the “size image”.

3.1.1 Composition of “size index”
We first present Grand et al. (2022)’s method of extracting the

“size index” (the blue arrow in Figure 2A). In this method, an axis
with a meaning specific to “large,” is constructed by subtracting a
polar vector with a meaning of “small” (Small in Figure 2A, the

antonym of “large”) from a different polar vector with a meaning
of “large” (Large in Figure 2A). To define the poles, we only need
to extract the coordinates of the “large” and “small” values in the
distributed multidimensional vector space. However, in addition to
their size-related meanings, these two words have extra meanings
that derive from their adjectival roles in the sentence1. To exclude
such meanings unrelated to the degree of “size,” Grand et al. (2022)
defined a set of synonyms (red dotted square in Figure 2A) that
have the same role as “large” and “small” in the distribution word
representation. Then, the polar coordinates are determined by
computing the mean vector of these synonyms, respectively.

Thus, the “size index” I is defined by the following equation:

I =
∑n

i=1
li

n
−
∑m

j=1
sj

m
where li and sj are word belonging to the set of “large” synonym
vectors (SynsetL = {l1, l2,…, ln}) and the set of “small” synonym
vectors (SynsetS = {s1, s2,…, sm}).

3.1.2 Composition of “size image”
Once the “size index” is defined, we can calculate “size image”

from the index. Figure 2B shows the calculation of the “size images”
as the cosine similarity between the “size index” and the input word
vector. Thus, the size image S is calculated by

S = I ⋅w
‖I‖ ‖w‖

wherew represents the input word vector. In this method, the larger
this value is, the larger the word is assumed.

3.1.3 Selection of synset
The limitation of Grand et al.’s method is arbitrariness in

selecting SynsetL and SynsetS. In their study, SynsetS consisted of

1 The distance between the words “large” and “small” is quite close within

the entire space of word-distributed representation because both are

commonly used in contexts describing the size of an object. Therefore,

poles defined solely by these two words have limited distinguishability for

other words in terms of size.
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FIGURE 2
Procedure of the proposed method. (A) Construction of “size index”, (B) Calculation of “size image”.

“tiny” and “little” while SynsetL was constructed by “big” and
“huge.” Nevertheless, they didn’t specify the criteria for selecting
these synonyms.

To address this issue, and to compose a “size index” properly
matching human perception, it is important to set up a set
of synonyms for the polar words (“large” and “small”) without
any arbitrariness. A possible method is leveraging a standardized
thesaurus. However, a thesaurus does not automatically determine
the appropriate synonym set. Words are usually polysemous and
havemultiplemeanings. In a thesaurus, a set of synonyms for a word
is defined as a synset for each meaning. To improve the consistency
with human perception, it is necessary to select appropriate synsets.
In this study, we seek the combination of synsets that maximizes the
distance between “large” and “small” words obtained from human
reports to determine the polar coordinates consistent with human
perception. In this procedure, we first prepare SynsetL associated
with the word “large” and SynsetS associated with the word “small”.

We also prepare a set of words Largeh that humans perceive
as “large” and a set of words Smallh that humans perceive as
“small.” In extracting Largeh and Smallh, it is necessary to distinguish
categories to which the word refers. According to Tversky (2019)
and others, the meaning of a concept is originally composed
of human movement. However, as shown by Utsumi (2020),
physical quantities are not expected to be strongly embedded in
word-distributed representations composed of socially published
documents. Either way, the scale of the “size index” has the
possibility to be changed by the categories the word belongs to.
Following such discussions, this study assumes.

• Largeh, animate
• Largeh, inanimate
• Largeh, intangible

as subclasses of Largeh, and.

• Smallh, animate

• Smallh, inanimate
• Smallh, intangible

as subclasses of Smallh.
In the selection process of the synset combinations, the

“size index” I i,j is composed for SynsetS,i (∈ AllSynseetS) and
SynsetL,j (∈ AllSynseetL). The “size images” of the human-perceived
small word wS,k (∈ Smallh) and large word wL,l (∈ Largeh) are
severed to calculate the “size images” S(I i,j,wS,k) and S(I i,j,wS,l),
respectively. Those individual “size images” are aggregated
into average images as S(I i,j,wL), and S(I i,j,wS). From those
indices, the “size index” of the combination of SynsetL and
SynsetS that maximizes the difference (S(I i,j,wL) − S(I i,j,wS)) are
selected as the optimal index to compose human compatible
“size images”.

3.2 Application of the method

The construction of the “size index” described so far requires
a vector representation of words (w), a thesaurus (AllSynsetS,
AllSynsetL), and human perceived small/large words (Smallh,
Largeh).

Of these, this study uses the Japanese Wikipedia entity vector
developed by (Suzuki et al., 2016), which we call JWikiEntVec
in this paper, as a distributed representation model to construct
a vector of words (w). This is a trained model built by
word2vec (Mikolov et al., 2013). We used this because the
model is well used in Japanese academic societies2. Also the
development method and the data set used to construct the
model are clearly presented by the authors of this model.
These characteristics make it particularly advantageous for

2 We can find more than sixty citations in Google Scholar at the point of

submission.

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2024.1362463
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Sasaki et al. 10.3389/frobt.2024.1362463

FIGURE 3
Distribution of “size image” difference.

foundational research like this study, despite the model’s
performance not being as high as that of more advanced
LLMs.

Furthermore, we employed the Japanese WordNet (Bond et al.,
2009) for the selection of synonyms. This thesaurus contains
28 synsets for “large” and 14 synsets for “small.” Words not
included in JWikiEntVec and synsets with no synonyms were
excluded from the later analysis. As a result, we obtained
23 synsets for “large” and 13 synsets for “small.” The “size
index” was calculated for the combinations of these synsets
(23× 13 = 299).

The humanword sets (Smallh and Largeh) were collected through
a questionnaire survey whose participants (n = 100) were recruited
from a Japanese crowdsourcing site (Lancers).The participants were
asked to write down five “large” and “small” words for animate,
inanimate, and intangible concepts (30words in total). Table 1 shows
the top five words and their frequency for each question. From the
table, we find the word “Mind” appears in the top five words for both
large and small intangible. This duplication is considered to indicate
the ambiguous nature of the meaning of this word. Therefore, this
study used “Mind” in both Smallh and Largeh and calculated the
“size index” by using these 29 words as the elements of Smallh and
Largeh.

Figure 3 shows the differences (S(I i,j,wL) − S(I i,j,wS)) calculated
for the 299 combination of synsets. The horizontal axis of
this figure corresponds to the combination of synsets ordered
by rank. Overall, there are many combinations where the
difference of the “size image” is larger than 0 (above the red
dotted line), indicating that the size index calculated for more
than half of the synset combinations is consistent with the
human image.

Table 2 shows the highest-ranked synset combinations (with
the largest difference), the lowest-ranked synset combinations
(with the smallest difference), and the synonyms in each
synset. The combination of the synset with the largest
difference is “larger-than-life” and “peanut,” and the combination
of the synset with the smallest difference is “major” and
“small-scale”.

4 Experiment 1: “size image” in effort

The following two sections present an evaluation of the physical
images (iconic gestures) generated from the “size images” composed
in the previous section.

To address the first research question presented in Section 1, we
tested the above procedure of selecting synsets. Thus, the gesture
generation using the top-ranked synset combination and that using
the bottom-ranked synset combination are treated as the proposed
and controlled methods, respectively. If the procedure described in
the previous section successfully extracted the axis that grounds the
symbol to the physical world, and if the correspondence between the
axis and the body is compatible with what people own, we can claim
that the proposed method is effective to extract “size image” that
evokes agency perception from the vector space of word-distributed
representation.

Regarding the second question, we can consider several possible
methods for mapping the “size image” to “physical image.” Dance
theories generally pursue a physical expression that effectively
externalizes the human internal states. Among these theories, Laban
movement analysis (Laban and Ullmann, 1971) has been widely
used in the field of HAI (Ishino et al., 2018). This theory assumes
twomodalities in the correspondence betweenhuman internal states
and body: shape for posture and effort for movement. In Experiment
1, we mapped the axis of space, which is one of the axes of the
effort modality to the “size index.” In other words, the amount
of movement is considered to be larger when a large concept is
recalled. In the following section, we explain the construction of
body movements based on this idea.

4.1 Methods

4.1.1 Materials
The procedure of generating physical image (iconic gesture)

according to the “size image” is shown below.

1 Setting large and small movements. Mapping the “size
image” to the posture composed of the body parts. For
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TABLE 1 Responses obtained for each question (Top five words).

Animate

Large Small

Word Freq Word Freq

Elephant (zo-u) 85 Ant (a-ri) 74

Whale (ku-ji-ra) 68 Daphnia (mi-ji-n-ko) 33

Giraffe (ki-ri-n) 60 Mosquito (ka) 31

Bear (ku-ma) 25 Tick (da-ni) 30

Hippopotamus (ka-ba) 19 Fleas (no-mi) 23

Inanimate

Large Small

Word Freq Word Freq

Tokyo Sky Tree (to-kyo-su-ka-i-tu-ri) 45 Sand (su-na) 26

Mt. Fuji (fu-ji-sa-n) 35 Beads (bi-zu) 20

Tokyo Tower (to-kyo-ta-wa) 29 Needle (ha-ri) 26

Everest (e-be-re-su-to) 22 Microchip (ma-i-ku-ro-chi-ppu) 15

Pyramid (pi-ra-mi-ddo) 18 Screw (ne-ji) 14

Intangible

Large Small

Word Freq Word Freq

Space (u-tyu-u) 36 Mind (ko-ko-ro) 13

Love (a-i) 18 Jealousy (si-tto) 9

Dream (yu-me) 17 Envy (ne-ta-mi) 7

Mind (ko-ko-ro) 16 Vanity (mi-e) 6

Sea (u-mi) 15 Point (te-n) 5

∗Words are translated from Japanese. Japanese pronunciation in hepburn romanization is presented in parentheses.

this purpose, we define the body posture corresponding
to the smallest and largest words recognized by humans.
Using this posture as a reference (0 for the image of the
smallest word and 1 for the image of the largest word),
the “size image” of each word is positioned in the range
from 0 to 1.

2 Calculation of parameters at each joint. The above scaling
is applied to the angles of each joint that constitute the
posture.

3 Generation of physical image. A gesture is generated
based on the values obtained by step 2. This generation
is assumed to be made simultaneously with the utterance
of the word.

In order to embody the above steps, we used Sota, a small
communication robot by Vstone3. Sota’s body movements
are controlled by nine joints (one torso, three necks, two
shoulders, and two arms joints). By controlling the angle
and speed of these joints, Sota can generate a variety
of movements. In addition, Sota has a speech function
and can speak any word while simultaneously displaying
gestures.

In this study, the parameters of Sota’s arm and shoulder joints
were instantiated by “size image” of each word. Sota’s default

3 https://www.vstone.co.jp/english/index.html
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TABLE 2 Top and bottom synsets combinations.

Top synset Bottom synset

word “large” “small” “large” “small”

synset larger-than-life peanut major small-scale

meaning very impressive unimportant effective very small

Synonym 1 magnificent (so-da-i) insignificant (bi-bi-ta-ru) great (o-o-ki-na) modest (sa-sa-ya-ka)

Synonym 2 large scale (da-i-ki-bo) only (wa-zu-ka) significant (o-o-ha-ba) cottage (re-i-sa-i)

Synonym 3 trivial (sa-sa-i) serious (ju-da-i) tiny (ti-ttya-i)

Synonym 4 cheap (ya-su-ppo-i)

Synonym 5 slight (ke-i-bi)

∗Words and meanings are translated from Japanese. Japanese pronunciation in hepburn romanization is presented in parentheses.

TABLE 3 Maximum and minimum values of parameters for “size image”
and each joint in Experiment 1.

Maximum Minimum Default

Size Image (proposed) 0.39 −0.17 -

Size Image (control) 0.28 −0.12 -

Shoulder angle 75 −68 −70

Arm angle −20 88 90

TABLE 4 Maximum and minimum values of parameters for “size image”
and each joint in Experiment 2.

Maximum Minimum Default

Size Image(top synset) 0.39 −0.17 -

Size Image(bottom synset) 0.28 −0.12 -

Shoulder angle 30 −30 −70

Arm angle −20 90 20

Neck angle 10 −10 0

posture in this study is shown in the upper image in Figure 4, with
its shoulders down and arms slightly bent. From this state, the
parameters of the arm and shoulder joints are changed to generate
a gesture corresponding to the size of the word. Table 3 shows the
maximum and minimum values of the “size image”, as well as the
parameters of the shoulder and arm joints and the default position
that corresponds to them. The “size image” computed for both the
proposed and controlled methods is mapped to these values: 0 for
theminimum and 1 for themaximum in the proposedmethod, with
the reverse applied in the control method.

4.1.2 Design and measures
In the experiment, the physical images generated by the

above procedure were recorded as movies. Supplementary Material
included examples of the movies (each for about 4 s duration4) and
all the pictures showing poses representing each word, captured
from the end of each movie. In this experiment, 30 words (with
one duplication) in Table 1 were used to generate physical images
for both the control and proposed methods5. Among them, two
examples are shown in the lower images of Figure 4. The lower
left and right images depict gestures for the words “tick (da-ni)”
(the smallest animate concept) and “pyramid (pi-ra-mi-ddo)” (the
largest inanimate concept), respectively. Thus, a small “size image”
results in the robot making small movements from the default
position6, while a large “size image” results in larger movements.

The participants were asked to observe thosemovies and rate the
naturalness of the correspondence between the robot’s movements
and the words it speaks on a 5-point scale (1: not at all natural—5:

4 This duration corresponds the time to change the pose from the default to

the final position. Aside from this time, the proposedmethod also requires

time to load the model (JWikiEntVec) and compute the size image. The

average of the initial loading time is 6.28 s (n = 10), which is required only

once to initialize the entire system. After the initial setup, the method

only requires 0.59 s, on average (n = 10), to compute the size images.

Those computational times were recorded by a 2020 MacBook Pro with

an Apple M1 CPU.

5 These words were assumed to be samples of Largeh and Smallh for each

category. There might be several confounding factors, among which

we examined iconicity rating as one of the factors possibly influencing

gesture perception. However, from the publicly available dataset of

iconicity ratings (Thompson et al., 2020; Winter et al., 2023), we could

not find clear evidence of the influence on gesture perception in our

experiment. Supplementary Material show the details of this analysis.

6 The movement of the shoulder and arm at the minimum value is

generated by taking the parameter of the smallest unit of movement of

the internal motor.
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FIGURE 4
Examples of Sota gestures (left: “Pyramid”, right: “tick”).

very natural). The standard of “naturalness” here assumes a natural
communication between humans (Kopp and Krämer, 2021). In
human communication, people usually try to achieve, intention
sharing (i.e., mutual understanding) (Tomasello, 2010). Therefore,
we specifically asked the participants to rate whether or not they
feel that the robot understands the meaning of the words as
humans would. As the question indicates, this rating demands
the participants to perceive the robot’s internal state from the
short movie. By presenting such a question, evaluating the agency
perception in terms of communicative intention (Grice, 1989)would
be possible.

4.1.3 Participants and procedure
The 300 participants recruited from Lancers joined the

experiment after reading the instructions provided on the request
screen (reward: 110 JPY). The instructions explained the evaluation
procedure, the definition of naturalness, and the obligation to
answer dummy questions. After agreeing to the above instructions,
participants were presented 14 movies, which were randomly

selected for each participant from 58 movies (2 conditions × 29
words in Table 1). In between the evaluation of themovies, a dummy
question in which the participants were asked to answer a specified
number was inserted.

4.2 Results

Nine participants who answered the dummy questions
incorrectly were excluded from the following analysis. From the
remaining 291 participants’ responses, the average of the ratings was
calculated for the 29 words in each condition. Utilizing this value as
a unit of analysis, we calculated the average of 12 naturalness ratings
(condition × size × category)7, as shown in Figure 5. By using these
values, we try to test the following hypotheses:

7 The average rating for “Mind” was included both for large intangible and

small intangible conditions.
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FIGURE 5
Mean rating of naturalness in Experiment 1 (Error bars: standard errors, Dots: ratings for naturalness for each word).

1 The proposed method has a greater effect on the ratings than
the control method.

2 The above effect is affected by the difference between the word
categories.

The first hypothesis directly relates to the first research
question introduced in Section 1. The second hypothesis was
explored in response to previous studies (Utsumi, 2020), which
have demonstrated that the impact of physical experience on
word meaning diminishes in abstract concepts. Consequently, it is
advantageous for future research to elucidate the extent to which
symbol grounding influences the perception of agency.

We conducted a three-way [condition (proposed vs. control)
× size (large vs. small) × category (animate vs. inanimate vs.
intangible)] analysis of variance (ANOVA) to test the above
hypothesis. Among the effects obtained from the ANOVA, we
focused on the main effect of the condition and the interactions
involving the condition and the category (a second-order interaction
between the condition, the size and the categories, and a first-order
interaction between the condition and the category). During this
process, the significance level was set to 0.10, reflecting small sample
size in this study (n = 5 for each condition). We also control type-1
error by reporting corrected p-values as q-value calculated using the
Benjamini-Hochberg (B-H) method.

From the analysis, we obtained a significant main effect
of the condition (F(1,48) = 6.48, p = 0.01, q = 0.04, η2 = 0.07),
confirming that the proposed condition was evaluated more
naturally than the control condition. However, we also found a
significant second-order interaction between the condition, the
size, and the categories (F(2,48) = 4.09, p = 0.02, q = 0.05, η2 = 0.14)
and a significant interaction between the condition and the
categories (F(2,48) = 3.78, p = 0.02, q = 0.05, η2 = 0.08), suggesting
that the difference in naturalness between conditions depends on
other factors.

To examine the details of the interaction effect, we conducted
post hoc two-way [condition (proposed vs. control) × size (large vs.
small)] ANOVAs for each category. The p-values were corrected

using the BH-method, accounting for nine tests in total (one
interaction and two main effects for three ANOVAs). Significant
effects (p < .05) related to the condition were observed only in the
inanimate category (the main effects of condition: F(1,16) = 18.72,
p < .01, q < .01, η2 = 0.53 and the interaction: F(1,16) = 10.50,
p < .01, q = 0.02, η2 = 0.66). The simple main effect of the condition
in the inanimate category was observed for the large concept
(F(1,16) = 21.29, p = 0.01, q < .01, η2 = 1.78). These results suggest
that the proposed condition was evaluated as significantly more
natural than the control condition for the large inanimate concept.

The above results partially align with the previous study
(Utsumi, 2020). Additionally, the result revealed an effect of the
“size” (small vs. large) on agency perception, which was not
expected. To investigate this effect further, a post hoc correlation
analysis was conducted. Figure 6 shows the scatter plots of the
naturalness ratings and the “size image” for the proposed and
controlled conditions. From the figure, we found amoderate positive
correlation (r = 0.51, p < 0.01) in the proposed condition.This result
indicates that the proposed method generates more natural gestures
for larger-size words.

4.3 Discussion

The above analysis indicates that the proposed condition
outperformed the control condition in terms of overall naturalness.
Therefore, the results of this study suggest that the proposedmethod
can generate physical images that enhance agency perception.

However, this effect was affected by the word category and the
size of the gesture. When dividing the overall effect into the three
categories and two sizes, the proposed method outperformed the
control method only significantly for the large inanimate category.

Those results partially support the hypotheses presented
Section 4.2.Theoverallmain effect of the condition supports the first
hypothesis.The interaction between the condition and the categories
supports the second hypothesis, suggesting the weak effect of the
symbol grounding in an abstract category.
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FIGURE 6
Correlation between naturalness and “size image” in Experiment 1.

There are several possible reasons why the expected effect was
not strongly observed in this experiment. Although we cannot deny
the possibility that our assumptions (i.e., artifacts become agents
through symbol grounding) are incorrect, more robust results may
be obtained by improving experimental settings. For instance, the
data obtained in this experiment came from a crowdsourcing survey,
which may have introduced noise into the participants’ ratings. We
can also consider that mapping the “size image” to the physical
image was inadequate. The scatter plots in Figure 6 suggest the latter
possibility, indicating that our method does not exhibit sufficiently
natural behavior for small-size words. The next experiment explores
this possibility.

5 Experiment 2: “size image” in shape

This experiment also addresses the first research question by
assessing the naturalness of gestures generated from the “size index.”
However, to explore the second research question, we employed
a different mapping of the “size index” to the body. The method
adopted here focuses on the shape modality in Laban theory. From
the correlations in Figure 6, it can be speculated that the small
movements in Experiment 1 did not appear to be performed as a
gesture. Based on this speculation, this experiment examines the
research questions by mapping size images to body size so that
perceptible gestures are generated even when small-sized words
are uttered.

5.1 Methods

The experiment method was the same as Experiment 1 except
for the movies presented to participants. In the movies in this
experiment, we arranged the correspondence between the “size

image” and the physical image to express the size of the posture.
The default posture of the robot is the same as in Experiment 1.
In addition to the body parameters (arms and shoulders) used in
the previous experiment, the neck joints were controlled according
to the “size image” of the word. Table 4 shows the minimum and
maximum values of the word “size image” and the corresponding
values of Sota’s joint angle parameters for the proposed and
controlledmethods. All the pictures showing the finishing pose used
in this experiment are presented in the Supplementary Material.
Examples from them are shown in Figure 7.

As illustrated in 4.1.1, the upper left and lower left images
are gestures for uttering the word with the largest (pyramid) and
smallest (tick) “size image” in Experiment 1. In this experiment,
we changed these gestures as shown in the upper right and lower
right images of Figure 7. When the “size image” was largest, the
parameters of the arm and shoulder were set at the position where
the distance between the arm and the arm was the largest, and the
neck was also set upward. When the “size image” was the smallest,
the arm and shoulder parameters were set at the position where the
arm-to-arm distance was the smallest, and the neck was also set
downwards. As can be seen in Figure 7, the camera position was also
changed to make the differences in posture obvious.

5.2 Results

As in Experiment 1, 300 participants were recruited from
Lancers joined the experiment. 43 participants who incorrectly
responded to the dummy questions were excluded from the analysis.
From the remaining 257 participants’ responses, the average
ratings for 29 words in two conditions were calculated. Using the
calculated value as the unit of analysis, the naturalness ratings were
summarized in Figure 8.

From the data shown in the figure, we tested the same
hypotheses in Experiment 1. We report the results of the statistical
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FIGURE 7
Example of gesture control by posture (top: maximum value, bottom: minimum value).

FIGURE 8
Mean rating of naturalness in Experiment 2 (Error bars: standard errors, Dots: ratings for naturalness for the five words).

tests of the main effect of the condition, and the second-order
interaction between the condition, size and categories, and the
first-order interaction between the condition and the categories
from the three-way [condition (proposed vs. controlled) × size

(large vs. small) × category (animate vs. inanimate vs. intangible)]
ANOVA performed for Figure 6. As a result, we obtained a
significant main effect of the condition (F(1,48) = 4.14, p = 0.04,
q = 0.08, η2 = 0.09) and no significant interactions involving the
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FIGURE 9
Correlation between naturalness and “size image” in Experiment 2.

condition (the second-order interaction: F(1,48) = 0.91, p = 0.41,
q = 0.57, η2 = 0.04, the interaction between condition and category:
F(2,48) = 0.20, p = 0.81, q = 0.81, η2 = 0.22). These results indicate
that the difference in naturalness between conditions is not affected
by category or size.

As in Experiment 1, we also conducted a correlation analysis.
Figure 9 shows the scatter plots of the naturalness scores and the
“size image” for the proposed condition. From the figure, we found a
moderately positive correlation (r = 0.57, p < 0.01) in the proposed
condition as in Experiment 1. This result indicates that the larger
the value of “size image,” the more natural the image tends to
be evaluated.

5.3 Discussion

In Experiment 2, we reexamined the research questions using
a different mapping of the “size image” to the physical image than
in Experiment 1. The results showed that, as in Experiment 1, the
proposed method produced more natural images than the control
method.However, contrary to Experiment 1, Experiment 2 foundno
interaction between the condition and the other factors. Therefore,
we can assume that the gestures generated in Experiment 2 can be
applied to more general situations to cause an agency perception.

However, the effect size of the condition obtained in Experiment
2 was smaller than that in Experiment 1. In addition, as in
Experiment 1, we observed a correlation between the “size image”
and naturalness ratings. This suggests that the small-sized words in
Experiment 2 also exhibited unnatural gestures.

6 General discussion

This study was guided by two research questions. Concerning
the first question (how can “size images” evoking an agency

perception be extracted from the vector space of word-distributed
representations?), we assessed a method proposed in our previous
study (Sasaki et al., 2023) as one potential answer. The observed
difference between the proposed and the control conditions
indicates the necessity of selecting appropriate synonyms for
constructing the “size index.” The current study has demonstrated
the advantage of our modification (Sasaki et al., 2023) from the
previous method (Grand et al., 2022).

Furthermore, for the second question (what forms of gesture
expression are effective in constructing natural interaction based
on the agency perception?), by comparing the results of the two
experiments, we can assume that expression using the mapping
in the posture has a more general effect. However, in common
with both experiments, there was a positive correlation between the
naturalness rating and the “size image.”

The fact that the gestures corresponding to smaller “size images”
did not receive good ratings requires further examination. In the
discussion of Experiment 1, it was considered that the small amount
of movement was a factor causing the low naturalness ratings.
However, neither the small “size image” nor a large amount of
movement in Experiment 2 improved the naturalness rating for
small-sizedwords.These resultsmay suggest an asymmetry between
the small and large poles of the “size index”; Words at the smallest
pole may be less associated with the body, while words at the largest
pole may be more associated with the body.

We also need to consider the influence of categories on
the effectiveness of the proposed method. Previous studies have
noted that abstract concepts are less grounded in the physical
experience (Lakoff and Johnson, 1980; Utsumi, 2020). Consistent
with this discussion, in Experiment 1, only one of the concrete
categories demonstrated the effectiveness of the proposed condition.
Additionally, the observation that the same word “Mind” appeared
in both “large” and “small” abstract concepts indicates the limited
extent of symbol grounding.
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Our experiment also suggests that using a single size index
across various categories has limitations. In this study, we applied
the same “size index,” derived from the pairs of synsets listed in
Table 2, to all three categories. We did not differentiate categories
when calculating the size index because of enhancing the index’s
applicability. Considering that the method might be applied to any
arbitrary words, it appears difficult to determine the abstractness of
a word beforehand. However, our results, particularly the observed
differences in the effects of the condition between animate and
inanimate categories, clearly indicate the necessity of adjusting the
scale of the mapping from “size image” to “physical image.”

7 Conclusion

In this study, we started from the hypothesis that symbol
grounding is important in generating the agency perception. In
line with this hypothesis, we composed a “size image” of a
symbol grounded in a quantitative vector space of word-distributed
representations. We also explored the hypothesis by examining two
mapping of “size image” to body images. The experiments verified
the proposed method although the effect size was not large.

We consider that the reason for the small effect size is partially
attributed to our approach. Unlike recent research on gesture
generation based on deep learning technologies, this research has
many assumptions. We especially composed an abstract axis that
mediates speech and body. Although these top-down approaches do
not reach bottom-up approaches in terms of performance, it is useful
to guide the novel interaction design with agents. Thus, we believe
our study contributes to theoretical and practical developments in
HAI research.

There are several other limitations to this study. The first
concerns the gestures with small-sized words as already noted. Even
though the problem noted in Section 6 may exist, it is beneficial
to invent expressions of small-sized gestures that humans can
evaluate as natural. To overcome this problem, we need to improve
expression ability in the used body image. The currently used robot
(Sota) has limitations in performing detailed gestures. Therefore, to
confirm our hypothesis, it may be necessary to use other robots or
virtual agents.

The robustness of the results also needs to be improved.The data
collection in this study was conducted using crowdsourcing, and a
lot of noise was possibly introduced in the data collection process.
A future study employing face-to-face situations in a laboratory has
the possibility of leading to more insights with the additional effect
of the presence of embodied robots.

The model update on the distributed representation might also
improve the result of the study. The recent rapid development
of natural language processing provides a more naturalistic
correspondence between discrete symbols and quantitative images.
Although existing LLM hold a problem of explainability, it is useful
to include those in our approach for demonstration purposes.

In addition to addressing the issues mentioned above, we plan
to explore the physicalization of body images using various indices
such as “sharpness” and “fastness,” alongside “size” in future work.
We are considering the possibility that such semantic axes could be
associated with the dimensions of body movement (space, weight,
and time) as proposed in the dance theory (Laban and Ullmann,

1971). This direction for future research aims to bring our method
closer to the generation of human gestures. Theories of human
gesture (McNeill, 1992) indicate that human gestures encompass
many aspects beyond those addressed in this study. Our approach
is an endeavor to deconstruct such complex gestures based on
the fundamental physical experience (symbol grounding), drawing
on several cognitive science theories (Pinker, 2007; Lakoff and
Johnson, 1980; Tversky, 2019; Hawkins, 2021). We believe that this
foundational research will ultimately contribute to the development
of advanced artifacts capable of seamless interaction with humans,
featuring a mechanism for converting between human symbols and
quantitative representations.
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