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Autonomous robots are already present in a variety of domains performing
complex tasks. Their deployment in open-ended environments offers endless
possibilities. However, there are still risks due to unresolved issues in
dependability and trust. Knowledge representation and reasoning provide
tools for handling explicit information, endowing systems with a deeper
understanding of the situations they face. This article explores the use of
declarative knowledge for autonomous robots to represent and reason about
their environment, their designs, and the complex missions they accomplish.
This information can be exploited at runtime by the robots themselves to adapt
their structure or re-plan their actions to finish their mission goals, even in
the presence of unexpected events. The primary focus of this article is to
provide an overview of popular and recent research that uses knowledge-based
approaches to increase robot autonomy. Specifically, the ontologies surveyed
are related to the selection and arrangement of actions, representing concepts
such as autonomy, planning, or behavior. Additionally, they may be related to
overcoming contingencies with concepts such as fault or adapt. A systematic
exploration is carried out to analyze the use of ontologies in autonomous robots,
with the objective of facilitating the development of complex missions. Special
attention is dedicated to examining how ontologies are leveraged in real time
to ensure the successful completion of missions while aligning with user and
owner expectations. The motivation of this analysis is to examine the potential
of knowledge-driven approaches as ameans to improve flexibility, explainability,
and efficacy in autonomous robotic systems.

KEYWORDS
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1 Introduction

Autonomous robots have endless possibilities; they are applied in a variety of
sectors such as transport, logistics, industry, agriculture, healthcare, education, energy,
etc. Robotics has shown enormous potential in diverse tasks and environments.
However, there are still open issues that compromise autonomous robot dependability.
To support their deployment in real-world scenarios, we need to provide robots
with tools to act and react properly in unstructured environments with high
uncertainty.

Various strategies support the pursuit of a better grasp of intelligence: neuroscience tries
to understand how the brain processes information; mathematics seeks computation and
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rules to draw valid conclusions using formal logic or handling
uncertainty with probability and statistics; control theory and
cybernetics aim to ensure that the system reaches desired goals, etc.
(Russell andNorvig, 2021). One way that we explore in this survey is
the use of symbolic explicit knowledge as ameans to enhance system
intelligence.

Knowledge representation and reasoning (KR&R) is a sub-
area of artificial intelligence that concerns analyzing, designing,
and implementing ways of representing information on computers
so that computational agents can use this information to derive
information implied by it (Shapiro, 2003). Reasoning is the
process of extracting new information from the implications
of existing knowledge. One of the challenges of getting robots
to perform tasks in open environments is that programmers
cannot fully predict the state of the world in advance. KR&R
provides some background to reason about the runtime situation
and act in consequence. In addition to adaptability, these
approaches can provide an explanation; knowledge can be
queried so humans or other agents can understand why a
robot acts in a certain way. Lastly, KR&R provides reusability.
The robot needs information about its capabilities and the
environment in which it is involved; this information can be
shared among different agents, applications, or tasks because
knowledge bases can be stored in broadly applicable modular
chunks.

To be useable by robots, knowledge bases must be machine-
understandable because the robot shall read, reason about,
and update its content. In the context of intelligent robots,
ontologies allow us to define the conceptualizations that the
robot requires to support autonomous decision making. These
ontologies are written in specific computer languages. In this
article, we present a review of the ontologies used by autonomous
robots to perform complex missions. In our analysis, we focus
on the critical aspects of robot autonomy, that is, how KR&R
can contribute to increasing the dependability of these types
of systems. We aim to draw a landscape on how ontologies
can support decision making to build more dependable robots
performing elaborated tasks. The main contributions of this
work are:

1. A classification of ontologies based on concepts for
autonomous robots,

2. An analysis of existing approaches that use ontologies to
facilitate action selection, and

3. A discussion of future research directions to increase
dependability in autonomous robots.

This article is structured as follows. Section 2 provides
background information on KR&R with a special focus
on ontologies for robot autonomy. Section 3 discusses the
classification criteria for ontologies that support robust
autonomy in robotic applications. In Section 4, we describe
the selection process for a systematic review in the field of
ontologies for autonomous robots and briefly discuss other
surveys in the field. In Section 5, we classify and compare the
selected approaches based on their main application domain.
Section 6 provides a general discussion and describes future
research directions. Lastly, Section 7 presents the article's
conclusions.

2 Knowledge representation and
reasoning for robot autonomy

In this section, we introduce the use of ontologies to increase
dependability in autonomous systems and the main languages for
knowledge-based agents. Finally, we also discuss the essential and
desirable capabilities of fully autonomous robots.

Dependability is the ability to provide the intended services of
the systemwith a certain level of assurance, including factors such as
availability, reliability, safety, and security (SEBoK Editorial Board,
2023). As an introductory exploration into this field, Guiochet et al.
(2017) provide an analysis of techniques used to increase
safety in robots and autonomous systems. Avižienis et al. (2004)
offer definitions and conceptualizations of aspects related to
dependability and create a taxonomy of dependable computing
and its associated faults as a framework.

Dependability ensures consistent performance that goes beyond
reliability, as it also considers factors such as fault tolerance, error
recovery, and maintaining service levels. Various models of tackling
these challenges include fault trees, failure modes and effect analysis
(FMEAs), and safety case modes. There are also model-based
approaches in which fault analysis can be used in runtime to
evaluate goals and develop and execute alternative plans (Abbott,
1990). Similarly, this survey focuses on using explicit models to
select the most suitable actions for the situation the robot faces
to provide the desired outcomes. This survey concentrates on
leveraging ontologies as a means to enhance dependability rather
than analyzing dependability aspects concerning robotics.

2.1 Languages for ontologies

The most extended approach to robot programming is
procedural: The intended robot behavior is explicitly encoded
in an imperative language. Knowledge-based agents depart from
this, using declarative approaches to abstract the control flow. A
knowledge base (KB) stores information that allows the robot to
deduce how to operate in the environment. This information can
be updated with new facts, and repeated queries are used to deduce
new facts relevant to the mission. A successful agent often combines
declarative knowledge with procedural programming to produce
more efficient code (Russell and Norvig, 2021). This declarative
knowledge is commonly encoded in logic systems to formally
capture conceptualizations.

Prolog (PROgramming in LOGic) is the most widely used
declarative programming language.Many knowledge-based systems
have been written in this language for legal, medical, financial,
and other domains (Russell and Norvig, 2021). Prolog defines a
formalism based on decidable fragments of first-order logic (FOL).
In addition to its notation, which is somewhat different from
standard FOL, the main difference is the closed-world assumption.
The closed-world assumption asserts that only the predicates
explicitly defined in the KB are true; there is no way to declare that
a sentence is false.

Another widely used language for writing ontologies is Ontology
Web Language (OWL). OWL is not a programming language
like Prolog but rather a family of languages that can be used to
represent knowledge. It is designed for applications that need to

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2024.1377897
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Aguado et al. 10.3389/frobt.2024.1377897

process information rather than simply presenting information to
humans. Therefore, OWL facilitates greater machine interpretability
with a panoply of different formats, such as extensible markup
language (XML), resource description framework (RDF), and
RDF Schema (RDF-S). The language has been specified by
the W3C OWL Working Group (2012) and is a cornerstone of the
semantic web.

The formal basis of OWL is description logic (DL): a family
of languages with a compromise between expressiveness and
scalability. DL uses decidable fragments of FOL to reason with more
expressiveness. The main difference between Prolog and OWL is
that the latter uses the open-world assumption. This means that
a statement can be true whether it is known or not; that is, only
explicitly false predicates are false, in contrast to the closed-world
assumption in which only explicitly true predicates are true.

Regarding accessibility, OWL can be encoded by hand or
by editors such as Protégé (Musen, 2015) for a user-friendly
environment. OWL can be integrated into robotic software through
application program interfaces (APIs) such as Jena Ontology API1

or OWLAPI2 implemented in Java or OWLREADY (Lamy, 2017)
implemented in Python. There are also reasoners such as FaCT++3,
Pellet4>, or HermiT5.

Prolog can also be used to reason about knowledge represented
by OWL or to directly encode a Prolog ontology. The main Prolog
APIs are GNU-PROLOG6 and SWI-PROLOG7. There is even a
package for the robot operating system (ROS) called rosprolog8 that
interfaces between SWI-Prolog and ROS.

2.2 Fundamental and domain ontologies

Ontological systems can be classified according to several
criteria.Wedistinguish three levels of abstraction based onGuarino’s
hierarchy (Guarino, 1998): upper level, domain, and application.
Upper-level or foundational ontologies conceptualize general terms
such as object, property, event, state, and relations such as parthood,
constitution, participation, etc. Domain ontologies provide a formal
representation of a specific field that defines contractual agreements
on the meaning of terms within a discipline (Hepp et al., 2006);
these ontologies specify the highly reusable vocabulary of an area
and the concepts, objects, activities, and theories that govern it.
Application ontologies contain the definitions required to model
knowledge for a particular application: information about a robot
in a specific environment, describing a particular task. Note that
the environment or task knowledge could be a subdomain ontology,
depending on the reusability it allows. In fact, the progress from
upper-level to application ontologies is a continuous spectrum of

1 https://jena.apache.org/documentation/ontology

2 https://github.com/owlcs/owlapi/wiki

3 http://owl.cs.manchester.ac.uk/tools/fact

4 https://github.com/stardog-union/pellet

5 http://www.hermit-reasoner.com/

6 http://www.gprolog.org/

7 https://www.swi-prolog.org/

8 https://github.com/KnowRob/rosprolog

concept subclassing, with somewhat arbitrary divisions into levels
of abstraction reified as ontologies.

Perhaps themost extended upper-level ontology is the Suggested
Upper Merged Ontology (SUMO) (Niles and Pease, 2001; Pease,
2011)9. SUMO is the largest open-source ontology that has
expressive formal definitions of its concepts. Domain ontologies
for medicine, economics, engineering, and many other topics are
part of SUMO. This formalism uses the Standard Upper Ontology
Knowledge Interchange Format (SUO-KIF), a logical language
to express concepts with higher-order logic (a logic with more
expressiveness than first-order logic) (Brown et al., 2023).

Another relevant foundational ontology for this research is
the Descriptive Ontology for Linguistic and Cognitive Engineering
(DOLCE), described as an “ontology of universals” (Gangemi et al.,
2002), which means that it has classes but not relations. It aims
to capture the ontological categories that underlie natural language
and human common sense (Mascardi et al., 2006). The taxonomy
of the most basic categories of particulars assumed in DOLCE
includes, for example, abstract quality, abstract region, agentive
physical object, amount of matter, temporal quality, etc. Although
the original version of the few dozen terms in DOLCE was defined
in FOL, it has since been implemented in OWL; most extensions of
DOLCE are also in OWL.

The DOLCE + DnS Ultralite ontology10 (DUL) simplifies some
parts of the DOLCE library, such as the names of classes and
relations with simpler constructs. The most relevant aspect of DUL
is perhaps the design of the ontology architecture based on patterns.

Other important foundational ontologies are the Basic Formal
Ontology (BFO) (Arp et al., 2015), the Bunge–Wand–Weber
Ontology (BWW) (Bunge, 1977; Wand and Weber, 1993), and the
Cyc Ontology (Lenat, 1995). BFO focuses on continuant entities
involved in a three-dimensional reality and occurring entities, which
also include the time dimension. BWW is an ontology based on
Bunge’s philosophical system that is widely used for conceptual
modeling (Lukyanenko et al., 2021). Cyc is a long-term project in
artificial intelligence that aims to use an ontology to understand
how the world works by trying to represent implicit knowledge and
perform human-like reasoning.

2.2.1 Robotic domain ontologies
Ontologies have gained popularity in robotics with the growing

complexity of actions that systems are expected to perform. A well-
defined standard for knowledge representation is recognized as a
tool to facilitate human–robot collaboration in challenging tasks
(Fiorini et al., 2017).The IEEE StandardAssociation of Robotics and
Automation Society (RAS) created the Ontologies for Robotics and
Automation (ORA) working group to address this need.

They first published the Core Ontology for Robotics and
Automation (CORA) (Prestes et al., 2013).This standard specifies the
most general concepts, relations, and axioms for the robotics and
automation domain. CORA is based on SUMO and defines what a
robot is and how it relates to other concepts. For this, it defines four
main entities: robot part, robot, complex robot, and robotic system.

9 https://www.ontologyportal.org, https://github.com/ontologyportal

10 http://ontologydesignpatterns.org/wiki/Ontology:DOLCE+

DnS_Ultralite
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CORA is an upper-level ontology currently extended in the IEEE
Standard 1872-2015 (IEEE SA, 2015) with other subontologies, such
as CORAX, RPARTS, and POS.

CORAX is a subontology created to bridge the gap between
SUMO and CORA. It included high-level concepts that the authors
claimed to not be explicitly defined in SUMO and particularized in
CORA, in particular those associated with design, interaction, and
environment. RPARTS provides notions related to specific kinds of
robot parts and the roles they can perform, such as grippers, sensors,
or actuators. POS presents general concepts associated with spatial
knowledge, such as position and orientation, represented as points,
regions, and coordinate systems.

However, CORA and its extensions are intended to cover a broad
community, so their definitions of ambiguous terms are based solely
on necessary conditions and do not specify sufficient conditions
(Fiorini et al., 2017). For this reason, concepts in CORA must be
specialized according to the needs of specific subdomains or robotics
applications.

CORA, like most of the other application ontologies considered
here, is defined in a language of very limited expressiveness,
mostly expressible in OWL-Lite, and is therefore limited to simple
classification queries. Although it is based on upper-level terms from
SUMO, it recreated many terms that could have been used directly
from SUMO. Moreover, given its choice of representation language,
it did not use the first- and higher-order logic formulas from SUMO,
limiting its reuse to only the taxonomy.

The IEEE ORA group created the Robot Task Representation
subgroup to produce a middle-level ontology with a comprehensive
decomposition of tasks, from goal to subgoals, that enables humans
or robots to accomplish their expected outcomes at a specific instance
in time. It includes a definition of tasks and their properties and terms
related to the performance capabilities required to perform them.
Moreover, it covers a catalog of tasks demanded by the community,
especially in industrial processes (Balakirsky et al., 2017).

This working group also created three additional subgroups for
more specific domain knowledge: Autonomous Robots Ontology,
Industrial Ontology, and Medical Robot Ontology. Only the first
of these has been active. The Autonomous Robot subgroup (AUR)
extends CORA and its associated ontologies for the domain of
autonomous robots, including, but not limited to, aerial, ground,
surface, underwater, and space robots.

They developed the IEEE Standard for Autonomous Robotics
Ontology (IEEE SA, 2022) with an unambiguous identification
of the basic hardware and software components necessary to
provide a robot or a group of robots with autonomy. It was
conceived to serve different purposes, such as to describe the design
patterns of Autonomous Robotics (AuR) systems, to represent
AuR system architectures in a unified way, or as a guideline to
build autonomous systems consisting of robots operating in various
environments.

In addition to the developments of the IEEE ORA working
group, there are other relevant domain ontologies, such as OASys
and the Socio-physical Model of Activities (SOMA). The Ontology
for Autonomous Systems (OASys) (Bermejo-Alonso et al., 2010)
captures and exploits concepts to support the description of any
autonomous systemwith an emphasis on the associated engineering
processes. It provides two levels of abstraction systems in general and
autonomous systems in particular. This ontology connects concepts

such as architecture, components, goals, and functions with the
engineering processes required to achieve them.

The SOMA for Autonomous Robotic Agents represents the
physical and social context of everyday activities to facilitate
accomplishingtasksthataretrivial forhumans(Beßler et al.,2021). It is
based onDUL, extending their concept to different event types such as
action, process, and state, the objects that participated in the activities,
and the execution concept. It is worth mentioning that SOMA was
intendedtobeusedintheruntimealongwiththeconceptofnarratively
enabled episodic memories (NEEMs), which are comprehensive logs
of raw sensor data, actuator control histories, and perception events,
all semantically annotated with information about what the robot is
doing and why using the terminology provided by SOMA.

The relationship between upper-level ontologies and domain
ontologies is a relationship of progressive domain focalization
(Sanz et al., 1999). The frameworks described in the following
sections are mostly specializations of these general robotic
ontologies and other foundations.

2.3 Capabilities for robot autonomy

Etymologically, autonomy means being governed by the laws of
oneself rather than by the rules of others (Vernon, 2014). Beer et al.
(2014) provide a definitionmore closely related to robotics: autonomy
as the extent to which a robot can sense its environment, plan
based on that environment, and act on that environment with the
intention of reaching some task-specific goal (either given or created
by the robot) without external control. A related, systems-oriented
perspective pursued in our lab considers autonomy as a relationship
between system, task, and context (Sanz et al., 2000).

Rational agents use sense-decide-act loops to select the best
possible action. According to Vernon (2014), cognition allows one
to increase the repertoire of actions and extend the time horizon
of one’s ability to anticipate possible outcomes. He also reviews
several cognitive architectures to support artificial cognitive systems
and discusses the relationship between cognition and autonomy.
For him, cognition includes six attributes: perception, learning,
anticipation, action, adaptation, and, of course, autonomy.

Following the link between cognition and autonomy, Langley et al.
(2009) also review cognitive architectures and establish the main
functional capabilities that autonomous robots must demonstrate.
Knowledge is described as an internal property to achieve the
following capabilities: (i) recognition and categorization to generate
abstractions from perceptions and past actions, (ii) decision
making and choice to represent alternatives for selecting the most
prosperous action considering the situation, (iii) perception and
situation assessment to combine perceptual information from
different sources and provide an understanding of the current
circumstances, (iv) prediction and monitoring to evaluate the
situation and the possible effects of actions, (v) problem solving
and planning to specify desired intermediate states and the actions
required to reach them, (vi) reasoning and belief maintenance to
use and update the KB in dynamic environments, (vii) execution
and action to support deliberative and reactive behaviors, (viii)
interaction and communication to share knowledge with other
agents, and (ix) remembering, reflection, and learning to use
meta-reasoning to use past executions as experiences for the future.
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Brachman (2002) argues about the promising capabilities of
reflective agents. For him, real improvements in computational
agents come when systems know what they are doing, that is, when
the agent can understand the situation: what it is doing, where,
and why. Brachman establishes practically the same foundations
as Langley et al. (2009) but explicitly mentions the necessity of
coordinated teams and robust software and hardware infrastructure.

In conclusion, most authors recall the importance of the features
described above with different levels of granularity. In the next
section, we explain and conceptualize those functional capabilities
that enable robot operation autonomously. Note that the systems
under study use explicit knowledge—ontologies—as the backbone
to achieve autonomy.

3 Processes for knowledge-enabled
autonomous robots

In this section, we introduce the classification on which we will
base the review of ontologies for dependable robot autonomy in
Section 5. The classification criterion is based on the capabilities
introduced in Section 2.3. It establishes the fundamental processes
that an autonomous robot should perform.

3.1 Perception

Apercept is the belief produced as a result of a perceptor sensing
the environment in an instant. Perception involves five entities:
sensor, perceived quality, perceptive environment, perceptor, and
the percept itself.

A sensor is a device that detects, measures, or captures a property
in the environment. Sensors can measure one particular aspect
of the physical world, such as thermometers, or capture complex
characteristics, such as segmenting cameras.

A perceived quality is a feature that allows the perceptor to
recognize some part of the environment—or the robot itself. Note
that this quality is mapped into the percept as an instantiation,
a belief produced to translate physical information to the system
model. Examples of perceived qualities are the temperature, visual
images of the environment, and the rotation of a wheel measured by
a rotative encoder placed in a robot.

A perceptive environment is the part of the environment that the
sensor can detect. The perceptive region can be delimited by the
sensor’s resolution or to save memory or other resources.

An agent that perceives is a perceptor. It constitutes the link
between perception and categorization because it takes sensor
information and categorizes it. Usually, the perceptor embodies the
sensor, as is the case in autonomous robots, but the two could
be decoupled if the system processes information from external
sensors. Finally, the percept is the inner entity—a belief—that results
from the perceptual process.

3.2 Categorization

Percepts are instantaneous approximate representations of a
particular aspect of the physical world. To provide the autonomous

robot with an understanding of the situation in which it is deployed,
the perceptor must abstract the sensor information and recognize
objects, events, and experiences.

Categorization is the process of finding patterns and categories
to model the situation in the robot’s knowledge. It can be done at
different levels of granularity. Examples of categorizations appear
everywhere: at sensor fusion processes from different types of
sensors, with their corresponding uncertainty propagation; at the
classification of an entity as a mobile obstacle when it is an
uncontrolled object approaching the robot; or, in a more abstract
level, when a mobile miner robot recognizes the type of mine ore
depending on its geo-chemical properties.

In general, this step corresponds to a combination of
information about objects, events, action responses, physical
properties, etc., to create a picture of what is happening in the
environment and in the robot itself. For this purpose, the robot shall
incorporate other processes, such as reasoning and prediction.

3.3 Decision making

An autonomous robot must direct its actions towards a goal.
When an action cannot be performed, the robot shall implement
mechanisms to make decisions and select among the most suitable
alternatives for the runtime situation.

Note the difference between decision making and planning.
Decision making has a shorter time frame because it focuses on the
successful completion of the plan. An example of a decision at this
level could be to slightly change the trajectory of a robot to avoid an
obstacle and then return to the initial path. Planning, on the other
hand, is concernedwith achieving a goal; it has a longer time horizon
to establish the action sequences to complete amission. For example,
the miner robot presented above must examine the mine, detect the
mineral vein, and dig in that direction.

Decision making acts upon the different alternatives that the
robot can select, for example, in terms of directions and velocity,
but also in terms of what component with functional equivalence
can substitute for a defective one. The execution of the action—how
it is done—changes slightly, but the plan—the action sequence that
achieves the goal—remains the same.

3.4 Prediction and monitoring

Once the robot has an internal model, it can supervise the
situation. This model can be given a priori or created before
stating the task; it could also be learned. The model reflects
the understanding of the robot about its own characteristics, its
interactions with the environment, and the relationships between its
actions and its outcomes. At runtime, the robot can use the model
to predict the effect of an action. It can also anticipate future events
based on the way the situation is evolving.

This mechanism also allows the robot to monitor processes and
compare the result obtained with the expected response. In the
event of inconsistencies, it can inform an external operator or use
adaptation techniques to solve possible errors. For example, if a
robot is stuck, it may change its motion direction to get out, and if
this is not possible, it can alert the user.
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The prediction process can also benefit from a learning
procedure to improve the models from experience and refine them
over time. Furthermore, monitoring can be used during learning, as
it detects errors that can help improve the model.

3.5 Reasoning

Reasoning is the process of using existing knowledge to draw
logical conclusions and extend the scope of that knowledge. It
requires solid definitions and relationships between concepts. It uses
instances of such concepts to ground them to the robot’s operation
and to be used during the mission.

The reasoning process can be used to infer events based on
the current percepts, such as the dynamic object approaching
the robot, or to infer the best possible action to overcome it
based on its background knowledge, such as reducing speed
and slightly changing the direction. Lastly, as robots operate
in dynamic worlds—specifically, they operate by changing their
environment—the knowledge shall evolve over time.

Reasoning includes two processes: (i) infer and maintain beliefs
and (ii) discard beliefs that are no longer valid. Logical systems
support assertions and retractions for this purpose; however, they
must be handled carefully tomaintain ontological consistency. Truth
maintenance is a critical capability for cognitive agents situated in
dynamic environments.

3.6 Planning

Planning is the process of finding a sequence of actions to
achieve a goal. To reach a solution, the problem must be structured
and well defined, especially in terms of the starting state, which
the robot shall transform into a desired goal state. The system
also needs to know the constraints to execute an action and its
expected outcome, that is, preconditions and postconditions. These
conditions are also used to establish the order between actions and
the effect that they may have on subsequent actions.

The required information is usually stored in three types of
models: environment, robot, and goal models. Most authors only
mention the environmentalmodel, which includes themost relevant
information about the robot world and its actions, tasks, and goals;
however, we prefer to isolate the three models to make explicit
the importance of proprioceptive information and performance
indicators for a more dependable autonomous robot.

Plans can completely guide the behavior of the robot or suggest
a succession of abstract actions that can be expanded in different
ways. This can result in branches of possible actions, depending on
the result of previous states.

Planning is also closely related to monitoring; the supervision
output can conclude the effectiveness of the plan or detect some
unreachable planned actions. In this case, the plan may need
adjustments, such as changing parameters or replacing some actions.
Replanning can use part of the plan or draw a completely new
structure depending on the progress and status of the plan and the
available components.

Lastly, successful plans or sub-plans can be stored for reuse.
These stored plans can also benefit from learning, especially with

regard to the environmental response to changes and action
constraints and outputs.

3.7 Execution

A key process in robotic deployments is the execution of
actions that interact with the environment. The robot model
must represent the motor skills that produce such changes.
Execution can be purely deliberative or combinedwithmore reactive
approaches; for example, a patrolling robot may reduce its speed
or stop to ensure safety when close to a human—reactiveness—but
it also needs a defined set of waypoints to fully cover an
area—deliberation.

Hence, an autonomous robot must facilitate the integration
of both reactive and deliberative actions within a goal-oriented
hierarchy. A strictly reactive approach would limit the ability to
direct the robot’s actions toward a defined objective. Meanwhile,
an exclusively deliberative approach might be excessively
computationally intensive and lead to delayed responses to
instantaneous changes.

Another aspect of execution is control. Robots use controllers
to overcome small deviations from their state. These controllers can
operate in open-loop or closed-loop mode. Open-loop controllers
apply predetermined actions based on a set of inputs, assuming
that the system will respond predictably. Although they lack
the ability to correct runtime deviations, they are often simpler
and faster. Closed-loop controllers provide a more accurate and
precise action based on inputs and feedback received. Control
grounds the decision-making process by specifying the final target
value for the robot effectors. It constitutes the final phase of
action execution.

3.8 Communication and coordination

In many applications, robots operate with other
agents—humans or robots of a different nature. Communication is a
key feature to organize actions and coordinate them towards a shared
goal. Moreover, in knowledge-based systems, communication
provides an effective way to obtain knowledge from other agents’
perspectives.

Shared information provides a means to validate perceived
elements, fuse them with other sources, and provide access
to unperceivable regions of the world. However, this requires
a way to exchange information between agents in a neutral,
shared conceptualization that is understandable and useable
for both.

Once communication is established, we shall coordinate the
actions of the systems involved. Decision-making and planning
processes should take into account the capabilities and availability
of agents to direct and sequence their actions toward the most
promising solution. For example, in multirobot patrols, agents
shall share their pose and planned path to avoid collisions.
Another example could be exploring a difficult-to-access mine in
which a wheeled robot could be used for most of the inspection
activities, and a legged robot could be used to inspect the
unreachable areas.
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3.9 Interaction and design

Interaction and design are often omitted when analyzing
autonomous capabilities. Although they are part of the design phase,
this engineering knowledge holds considerable influence over the
robot’s performance and dependability.

Interaction between agents can be handled through
coordination; however, the embodiment of robots can produce
interactions between software and/or hardware components. Robots
should be aware of the interaction ports and the possible errors
that arise from them. This concern is presented by Brachman
(2002), as awareness of interaction allows the robot to step back
from action execution and understand the sources of failure. This
becomes particularly significant during the integration of diverse
components and subsystems, where the application of systems
engineering techniques proves to be highly beneficial.

Hernández et al. (2018) argue about the need to exploit
functional models to make explicit design decisions and alternatives
at runtime.These models can provide background knowledge about
requirements, constraints, and assumptions under which a design is
valid. With this knowledge, we can endow robots with more tools
for adaptability, providing the capability to overcome deviations or
contingencies that may occur. For example, a manipulator robot
with several tools may have one optimal tool for a task, but if this
component is damaged, it can use an alternative tool to solve the
problem in a less-than-optimal way.

3.10 Learning

Most of the processes described above can improve their efficacy
through learning: categorization, decision making, prediction
and monitoring, planning, execution, coordination, design, etc.
Learning can be divided into three steps: remember, reflect, and
generalize.

• Remember is the ability to store information from previous
executions.
• Reflect involves analyzing remembered information to detect
patterns and establish relationships.
• Generalize is the process of abstract conclusions derived from
reflection and subsequently extended to use them in future
experiences.

The classification of these competencies reveals their
incorporation into KBs, identifies potential underrepresented
elements, and explores the contributions of knowledge structures to
the decision-making process.

4 Review process

One of our main objectives in this article is to conduct a
systematic analysis of recent and relevant projects that use ontologies
for autonomous robots. The methodology followed is inspired by
relevant surveys discussed in the next section, such as those by
Olivares-Alarcos et al. (2019) and Cornejo-Lupa et al. (2020). To
avoid personal bias, the entire article selection process has been

cross-analyzed by two people, and the framework analysis has been
validated by the five authors.

The first step in our review process was to search for relevant
keywords in scientific databases. Specifically, we used the most
extended literature browsers, Scopus11 and Web of Science12. These
databases provide awide range of peer-reviewed literature, including
scientific journals, books, and conference proceedings. Scopus
includes more than 7,000 publishers, and WOS includes more than
34,000 journals, including important journals in the field, such as
those from IEEE, Springer, and ACM. It also has a user-friendly
interface to store, analyze, and display articles. Moreover, related
articles cited in the analyzed articles are included in the review
process to ensure that relevant articles were not missed. The search
was done in terms of title, abstract, or keywords containing the
terms robot, ontology, plan, behavior, adapt, autonomy, or fault. In
practice, we used the following search string. The search can be
replicated using the provided query. However, it is important to note
that the survey was conducted in 2022, and there may have been
developments or new publications since then. Additionally, a list of
the analyzed works and intermediate documents is available upon
request.

The required terms are “ontology” and “robot,” as they are the
foundation of our survey. Using this restrictionmay seem somewhat
limiting because there could be knowledge-based approaches to
cognitive robots that are not based on ontologies. However, in this
review, we are specifically interested in using explicit ontologies for
this purpose, hence the strong requirement regarding “ontology.”
We also target at least one keyword related to (i) selection and
arrangement of actions—autonomous, planning, behavior—or (ii)
overcoming contingencies—fault, adapt. Note that we use asterisks
to be flexible with the notation.

This search returned 695 articles after removing duplicates. To
mitigate potential biases, we implemented specific inclusion criteria
based on publication dates and citation counts. We only include
articles widely cited, with 20 or more citations, before 2010; articles
between 2010 and 2015 with five or more citations; and articles
between 2015 and 2018 with two or more citations. All articles from
2018 onward were included. With these criteria, we reduced the list
to 351 articles.The selection process applied these criteria to identify
articles that are not only recent but have also demonstrated impact
and influence within their respective publication periods.

Then, we analyzed the content of the articles.We included works
in which the main point of the article is the ontology. In particular,
the work (i) proposes or extends the ontology and (ii) uses the
ontology to select, adapt, or plan actions. We eliminated a number
of articles on how to use ontologies to encode simulations, on-line
generators of ontologies, or ontologies only used for conversation,
perception, or collaboration without impact on robot action. The
application of these criteria produced 26 relevant articles.

Finally, we complemented our search with articles from related
surveys described in Section 4.1. This ensured that we included all
relevant and historical articles in the field with a snowball process.
In this step, we obtained 22 more articles; some of them were
already included in the previous list, and others did not meet our

11 https://www.scopus.com

12 https://www.webofscience.com/wos/alldb/basic-search
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FIGURE 1
PRISMA flow diagram, adapted from Page et al. (2021).

inclusion criteria. After evaluating them, we included six more
articles, resulting in a total of 32 articles in deep review. The entire
process is depicted in Figure 1 with a Preferred Reporting Items for
Systematic reviews and Meta-Analyses (PRISMA) flow diagram.

4.1 Related surveys

This section evaluates a variety of comparative studies and
surveys on the application of KR&R to several robotic domains.
Theseworks address robot architecture, aswell as specific topics such
as path planning, task decomposition, and context comprehension.
However, our approach transcends these specific domains, aiming
to offer a more comprehensive view of the role of ontologies in
enhancing robot understanding and autonomy.

Gayathri and Uma (2018) compare languages and planners for
robotic path planning from the KR&R perspective. They discuss
ontologies for spatial, semantic, and temporal representations and
their corresponding reasoning. In Gayathri and Uma (2019), the
same authors expand their review by focusing on DL for robot task
planning.

Closer to our perspective are articles that compare and
analyze different approaches for ontology-based robotic systems,
specifically those articles that focus on what to model in
an ontology. Cornejo-Lupa et al. (2020) compare and classify
ontologies for simultaneous localization and mapping (SLAM) in
autonomous robots. The authors compare domain and application

ontologies in terms of (i) robot information such as kinematic,
sensor, pose, and trajectory information; (ii) environment mapping
such as geographical, landmark, and uncertainty information; (iii)
time-related information and mobile objects; and (iv) workspace
information such as domain and map dimensions. They focus on
one important but specific part of robot operation, autonomous
navigation, and, in a particular type of robot, mobile robots.

Manzoor et al. (2021) compare projects based on application,
ideas, tools, architecture, concepts, and limitations. However,
this article does not examine how architecture in the compared
frameworks supports autonomy. Their review focuses on objects,
environment maps, and task representations from an ontology
perspective. It does not compare the different approaches regarding
the robot’s self-model. It also does not tackle the mechanisms
and consequences of using such knowledge to enhance the robot’s
reliability.

Perhaps the most relevant review from our perspective is the
one by Olivares-Alarcos et al. (2019). They analyze five of the main
projects that use KBs to support robot autonomy.They ground their
analysis in (i) ontological terms, (ii) the capabilities that support
robot autonomy, and (iii) the application domain. Moreover, they
discuss robots and environment modeling. This work is closely
related to the development of the recent IEEE Standard 1872.2
(IEEE SA, 2022).

Our approach differentiates itself from previous reviews because
we focus onmodeling not only robot actions and their environments
but also engineering design knowledge. This type of knowledge
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is not often considered but provides a deeper understanding of
the robot’s components and its interaction, design requirements,
and possible alternatives to reach a mission. We also base our
comparison on explicit knowledge of the mission and how we
can ensure that it satisfies the user-expected performance. For this
reason, we focus on works that select, adapt, or plan actions. Our
search used more flexible inclusion criteria to analyze a variety
of articles, even if they address only some of the issues or their
ontologies are not publicly available. We have adopted this wide
perspective to draw a general picture of different approaches that
build the most important capabilities for dependable autonomous
robots.

4.2 Review scope

Our analysis focuses on exploring the role of ontologies in
advancing the autonomy of robotic systems. For this purpose,
we delve into research articles that address ontologies created
or extended to select, adapt, or plan actions autonomously. We
excluded studies that solely encode simulations or utilize ontologies
for non-action-related tasks, aiming to concentrate on contributions
directly impacting robot action. Furthermore, our scope excludes
non-ontology-based approaches, even if they are important for
dependability or autonomy, such as all the developments in safe-
critical systems.

An ontology is a shared conceptualization that structures
objects into classes, which can be seen as categories within the
domain of discourse. While interaction with the world involves
specific objects, referred to as individuals or instances, much
reasoning occurs at the class level. Classes can possess properties
that characterize the collection of objects they represent or are
related to other classes. Additionally, they are organized through
inheritance, expressed by the subclass relation. Figure 2 represents
a simple ontology with partial information about zones in a
manufacturing plant.

Consider the assertion of the class ProductionZone with
the property robot_accessible. According to this assertion,
every instance of ProductionZone, such as the specific area
production_01, is considered robot_accessible. In
this hierarchy, Assembly is a subclass of ProductionZone.
Given this hierarchy, we can deduce that every instance of
AssemblyZone inherits the properties of its superclass. Every
individual of it, such as assembly_01, inherits the robot_

accessible property. Zones without the property, such as
Office or Control Room, are considered restricted.

This kind of reasoning based on classification and consistency
can be used to derive new assertions about elements in the robot
environment and the robot itself. In this example, the robot can use
this information to traverse only the accessible areas when selecting
a route to traverse the plant. Therefore, the use of knowledge-
driven policies facilitates the fulfillment of safety regulations and
compliance standards and can enhance human understanding of the
decisions the robot is making.

If the ontology represented components, capabilities, and goals,
these conclusions could be used to adapt the system. Figure 3
represents a robotic ontology based on components, capabilities,
goals, and values to determinewhich design alternatives are available

FIGURE 2
Simple example of manufacturing zones ontology. Classes in light
blue, properties in dark blue, and individuals in gray.

for the robot. Following the approach of TOMASys Hernández et al.
(2018), we are working on a system that selects the most suitable
reconfiguration action for the robot. For example, if a component
fails, the ontology can find another component that provides an
equivalent capability so the robot can use it to complete the
mission. This KB is also useful for determining which interfaces
the system requires in that case, which metrics would be affected,
and which stakeholders should be advised of the change. More
information on the fundamental aspects of this ontology can be
found in Aguado et al. (2024).

The analysis developed here does not address different
approaches to solving a specific problem; rather, it focuses
on examining, for each framework, the capabilities explicitly
represented in ontologies or those that leverage the ontology at
runtime to enhance the operation of the robot.

The survey is centered on action-related conceptualizations,
with the objective of finding the theoretical foundations and relevant
applications of ontological frameworks within the field of robotics.
For this reason, and especially given that most of the articles do not
provide source files for the ontology, we focus on the concepts, and
discussions regarding scalability, computational cost, and efficiency
are not within the scope of our study.

4.3 Review audience

This survey is directed towards a specific audience that is
not seeking introductory knowledge about ontologies or their
basic usage. That content can be found in resources such as
Staab and Studer (2009). For an introduction from the robotics
perspective, refer to Chapter 10 in Russell and Norvig (2021).
Our target audience consists of people interested in understanding
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FIGURE 3
Example of an ontology to formalize robotics system models and their runtime deployment to select the most appropriate reconfiguration strategy in
response to unexpected circumstances. This ontology represents the robot components, capabilities, and mission goals. The objective of the ontology
is to find adaptation solutions that are not predefined or ad hoc; rather, they are computed during operation based on explicit engineering knowledge
from the design phase.

the practical application of concepts related to robot autonomy
during robot task execution. We aim to cater to researchers,
practitioners, and academics who already possess a foundational
understanding of ontologies and are now seeking to explore how
these concepts intersect with and enhance the execution of tasks in
robotic systems.

5 A survey of applications using
ontologies for robot autonomy

The following sections review and compare some projects to
find their specific contributions to the field of robotic ontologies.
We have organized the analysis of the projects under review based
on the application domain—manipulation, navigation, social, and
industrial—in which they have been deployed. However, most of the
workhas a broader perspective andmaybe applied to other domains.
Each analyzed work includes a brief description and a discussion
of the above elements. Finally, each domain provides a comparative
table with the most relevant aspects of each capability.

5.1 Manipulation domain

In the domain of robotics, manipulation refers to the
control and coordination of robotic arms, grippers, and other
mechanical systems to interact with objects in the physical
world. This includes a wide range of applications, from industrial
automation to tasks in unstructured environments, such as
household chores or healthcare assistance. In this section, most
of the work under analysis focuses on domestic applications
for manipulation.

5.1.1 KnowRob and KnowRob-based approaches
KnowRob13 is a framework that provides a KB and a processing

system to perform complex manipulation tasks (Tenorth and Beetz,
2009; Tenorth and Beetz, 2013). KnowRob214 (Beetz et al., 2018)
represents the second generation of the framework and serves as a
bridge between vague instructions and specific motion commands
required for task execution.

KnowRob2’s primary objective is to determine the appropriate
action parametrization based on the required motion and identify
the physical effects that must be achieved or avoided. For example, if
the robot is asked to pick up a cup and pour out its contents, the KB
retrieves the necessary action of pouring, which includes a sub-task
to grasp the source container. Subsequently, the framework queries
for pre-grasp and grasp poses, along with grasp force, to establish
the required motion parameters.

KnowRob ontology includes a spectrum of concepts related to
robots, including information about their body parts, connections,
sensing and action capabilities, tasks, actions, and behavior. Objects
are represented with their parts, functionalities, and configuration,
while context and environment are also taken into account.
Additionally, the ontology incorporates temporal predicates based
on event logic and time-dependent relations.

While KnowRob’s initial ontology was based on Cyc (Lenat,
1995), which was designed to understand how the world works
by representing implicit knowledge and performing human-like
reasoning, Cyc has remained proprietary. OpenCyc, a public
initiative related to Cyc, is no longer available. The KnowRob
framework later transitioned to DUL, which was chosen for its

13 http://KnowRob.org

14 https://github.com/KnowRob/KnowRob
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compatibility with concepts for autonomous robots. KnowRob uses
Prolog as a query and assert interface, but all perception, navigation,
and manipulation actions are encoded in plans rather than Prolog
queries or rules.

One of the main expansions of KnowRob is RoboEarth, a
worldwide open-source platform that allows any robot with a
network connection to generate, share, and reuse data (Waibel et al.,
2011). It uses the principle of linked data connections through web
and cloud services to speed up robot learning and adaptation in
complex tasks.

RoboEarth uses an ontology to encode concepts and relations
in maps and objects and a SLAM map that provides the geometry
of the scene and the locations of objects with respect to the robot
(Riazuelo et al., 2015). Each robot has a self-model that describes its
kinematic structure and a semantic model to provide meaning to
robot parts, such as a set of joints that form a gripper. This model
also includes actions, their parameters, and software components,
such as object recognition systems (Tenorth et al., 2012).

Another example of a KnowRob-based application
is Crespo et al. (2018). In this case, the focus is on using
semantic concepts to annotate a SLAM map with additional
conceptualizations. This application diverges somewhat from
KnowRob’s initial emphasis on robot manipulators. The work
models the environment utilizing semantic concepts but specifically
captures the relationships between rooms, objects, object
interactions, and the utility of objects.

The detailed analysis of comparison criteria follows:

• Perception and categorization: KnowRob and RoboEarth
incorporate inference mechanisms to abstract sensing
information, particularly in the context of object recognition
(Beetz et al., 2018; Crespo et al., 2018). As highlighted in
Tenorth and Beetz (2013), inference processes information
perceived from the external environment and abstracts it to
the most appropriate level while retaining the connection
to the original percepts. These ontologies serve as shared
conceptualizations that accommodate various data types
and support various forms of reasoning: effectively handling
uncertainties arising from sensor noise, limited observability,
hallucinated object detection, incomplete knowledge, and
unreliable or inaccurate actions (Tenorth and Beetz, 2009).
• Decision making and planning: KnowRob places a strong
emphasis on determining action parametrizations for
successful manipulation, using hybrid reasoning with the goal
of reasoning with eyes and hands (Beetz et al., 2018).

This approach equips KnowRob with the ability to reason
about specific physical effects that can be achieved or avoided
through its motion capabilities. Although KnowRob’s KB might
exhibit redundancy or inconsistency, the reasoning engine computes
multiple hypotheses, subjecting them to plausibility and consistency
checks and ultimately selecting themost promising parametrization.
The planning component of KnowRob2 is tailored for motion
planning and solving inverse kinematics problems. Tasks are
dynamically assembled on the basis of the robot’s situation.

• Prediction and monitoring: KnowRob uses its ontology to
represent the evolution of the state, facilitating the retrieval

of semantic information and reasoning (Beetz et al., 2018).
Through these heterogeneous processes, the framework can
predict the most appropriate parameters for a given situation.
However, themonitoring capabilities within this framework are
limited to objects in the environment. Unsuccessful experiences
are labeled and stored in the robot’s memory, contributing to
the selection of action parameters in subsequent scenarios.
The framework introduces NEEMs, allowing queries about
the robot’s actions, their timing, execution details, success
outcomes, the robot’s observations, and beliefs during each
action. This knowledge is used primarily during the learning
process.
• Reasoning: KnowRob2 incorporates a hybrid reasoning kernel
comprising four KBs with their corresponding reasoning
engines (Beetz et al., 2018):
• Inner World KB: Contains CAD and mesh models of objects
positioned with accurate 6D poses, enhanced with a physics
simulation.
• Virtual KB: Computed on demand from the data structures of
the control system.
• Logic KB: Comprises abstracted symbolic sensor and action
data enriched with logical axioms and inference mechanisms.
This type of reasoning is the focus of our discussion in this
article.
• Episodic Memories KB: Stores experiences of the robotic agent.
• Execution: KnowRob execution is driven by competency
questions to bridge the gap between undetermined instructions
and action. The framework incorporates the Cognitive Robot
Abstract Machine (CRAM), where one of its key functionalities
is the execution of the plan. The framework provides a plan
language to articulate flexible, reliable, and sensor-guided robot
behavior. The executor then updates the KB with information
about perception and action results, facilitating the inference
of new data to make real-time control decisions (Beetz et al.,
2010).

RoboEarth and earlier versions of KnowRob rely on action
recipes for execution. Before executing an action recipe, the system
verifies the availability of the skills necessary for the task and orders
each action to satisfy the constraints. In cases where the robot
encounters difficulties in executing a recipe, it downloads additional
information to enhance its capabilities (Tenorth et al., 2012). Once
the plan is established, the system links robot perceptions with
the abstract task description given by the action recipe. RoboEarth
ensures the execution of reliable actions by actively monitoring the
link between robot perceptions and actions (Waibel et al., 2011).

• Communication and coordination: RoboEarth (Tenorth et al.,
2012) uses a communication module to facilitate the exchange
of information with the web.This involvesmaking web requests
to upload and download data, allowing the construction and
updating of the KB.
• Learning: KnowRob includes learning as part of its framework.
It focuses on acquiring generalized models that capture how
the physical effects of actions vary depending on the motion
parametrization (Beetz et al., 2018). The learning process
involves abstracting action models from the data, either by
identifying a class structure among a set of entities or by
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grouping the observed manipulation instances according to
a specific property (Tenorth and Beetz, 2009). KnowRob2
extends its capabilities with the Open-EASE knowledge service
(Beetz et al., 2015), offering a platform to upload, access, and
analyze NEEMs of robots involved in manipulation tasks.
NEEMs use descriptions of events, objects, time, and low-
level control data to establish correlations between various
executions, facilitating the learning-from-experience process.

5.1.2 Perception and Manipulation Knowledge
The Perception and Manipulation Knowledge (PMK)15

framework is designed for autonomous robots, with a specific focus
on complex manipulation tasks that provide semantic information
about objects, types, geometrical constraints, and functionalities. In
concrete terms, this framework uses knowledge to support task and
motion planning (TAMP) capabilities in the manipulation domain
(Diab et al., 2019).

PMK ontology is grounded in IEEE Standard 1872.2 (IEEE SA,
2022) for knowledge representation in the robotic domain,
extending it to the manipulation domain by incorporating sensor-
related knowledge. This extension facilitates the link between low-
level perception data and high-level knowledge for comprehensive
situation analysis in planning tasks. The ontological structure
of PMK comprises a meta-ontology for representing generic
information, an ontology schema for domain-specific knowledge,
and an ontology instance to store information about objects.
These layers are organized into seven classes: feature, workspace,
object, actor, sensor, context reasoning, and actions. This structure is
inspired by OUR-K (Lim et al., 2011), which is further described
in Section 5.3).

The detailed analysis of comparison criteria follows:

• Perception and categorization: The PMK ontology incorporates
RFID sensors and 2D cameras to facilitate object localization,
explicitly grouping sensors to define equivalent sensing
strategies. This design enables the system to dynamically select
the most appropriate sensor based on the current situation.
PMK establishes relationships between classes such as feature,
sensor, and action. For example, it stores poses, colors, and IDs
of objects obtained from images.
• Decision making and planning: PMK augments TAMP
parameters with data from its KB.The KB contains information
on action feasibility considering object features, robot
capabilities, and object states. The TAMP module utilizes
this information, combining a fast-forward task planner
with physics-based motion planning to determine a feasible
sequence of actions. This helps determine where the robot
should place an object and the associated constraints.
• Reasoning: PMK reasoning targets potential manipulation
actions employing description logic’s inference for real-
time information, such as object positions through spatial
reasoning and relationships between entities in different
classes. Inference mechanisms assess robot capabilities, action
constraints, feasibility, and manipulation behaviors, facilitating
the integration of TAMP with the perception module. This

15 https://github.com/MohammedDiab1/PMK

process yields information about constraints such as interaction
parameters (e.g., friction, slip, maximum force), spatial
relationships (e.g., inside, right, left), feasibility of actions (e.g.,
arm reachability, collisions), and action constraints related to
object interactions (e.g., graspable from the handle, pushable
from the body).
• Interaction and design: PMK represents interaction as
manipulation constraints, specifying, for example, which part
of an object is interactable, such as a handle. It also considers
interaction parameters such as friction coefficient, slip, or
maximum force.

5.1.3 Failure Interpretation and Recovery in
Planning and Execution

Failure Interpretation and Recovery in Planning and Execution
(FailRecOnt)16 is an ontology-based framework featuring
contingency-based task and motion planning. This innovative
system empowers robots to handle uncertainty, recover from
failures, and engage in effective human–robot interactions.
Grounded in the DUL ontology, it addresses failures and recovery
strategies, but it also takes some concepts from CORA and SUMO
for robotics and ontological foundations, respectively.

The framework identifies failures through the non-realized
situation concept and proposes corresponding recovery strategies
for actions. To improve the understanding of failure, the ontology
models terms such as causalmechanism, location, time, and functional
considerations, which facilitates a reasoning-based repair plan
(Diab et al., 2020; Diab et al., 2021).

Failure ontology requires a system knowledge model in terms
of tasks, roles, and object concepts. Lastly, FailRecOnt has some
similarities with KnowRob; both target manipulation tasks are
at least partially based on DUL and share some of the authors.
Moreover, they propose using PMK as a model of the system
(Diab et al., 2021).

The detailed analysis of comparison criteria follows:

• Perception and categorization: Perception in FailRecOnt is
limited to action detection to detect abnormal events. For
geometric information and environment categorization, the
framework leverages PMK to abstract perceptual information
related to the environment.
• Decision making and planning: FailRecOnt is structured into
three layers: planning and execution, knowledge, and an
assistant low-level layer. The planning and execution layer
provides task planning and a task manager module. The
assistant layer manages perception and action execution for the
specific robot, determining how to sense an action and checking
whether a configuration is collision-free. The framework has
been evaluated for a task that involves storing an object in
a given tray according to its color; it can handle situations
such as facing a closed or flipped box and continuing the plan
(Diab et al., 2021).
• Prediction and monitoring: Monitoring is a crucial aspect of
the FailRecOnt framework. It continuously monitors executed
actions and signals a failure to the recovery module if an error

16 https://github.com/ease-crc/failrecont
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occurs. The reasoning component interprets potential failures
and, if possible, triggers a recovery action to repair the plan.
• Reasoning: FailRecOnt ontology describes how the perception
of actions should be formalized. Reasoning selects an
appropriate recovery strategy depending on the kind of failure,
why it happened, and if other activities are affected, etc.
• Execution: FailRecOnt relies on planning for execution. The
task planner generates a sequence of symbolic-level actions
without geometric considerations. Geometric reasoning comes
into play to establish a feasible path. During action execution,
the framework monitors each manipulation action for possible
failures by sensing. Reasoning is then applied to interpret
potential failures, identify causes, and determine recovery
strategies.
• Communication and coordination: FailRecOnt incorporates the
reasoning for communication failure from Diab et al. (2020) to
address failures in scenarios where multiple agents exchange
information.

5.1.4 Probabilistic Logic Module
Probabilistic Logic Module (PLM) offers a framework that

integrates semantic and geometric reasoning for robotic grasping
(Antanas et al., 2019). Specific details about the KB, such as the
source files, are not publicly available, so the information provided
here is derived from articles about the framework.

The primary focus of this work is on an ontology that
generalizes similar object parts to semantically reason about the
most probable part of an object to grasp, considering object
properties and task constraints. This information is used to
reduce the search space for possible final gripper poses. This
acquired knowledge can also be transferred to objects within the
same category.

The object ontology comprises specific objects such as cup or
hammer, along with supercategories based on functionality, such as
kitchen container or tool. The task ontology encodes grasping tasks
with objects, such as pick and place right or pour in. Additionally, a
third ontology conceptualizes object-task affordances, considering
the manipulation capabilities of a two-finger gripper and the
associated probability of success.

In using the ontology, high-level knowledge is combined with
low-level learning based on visual shape features to enhance
object categorization. Subsequently, high-level knowledge utilizes
probabilistic logic to translate low-level visual perception into a
more promising grasp planning strategy.

The detailed analysis of comparison criteria follows:

• Perception and categorization: This approach is based on visual
perception, employing vision to identify the most suitable part
of an object for grasping. The framework utilizes a low-level
perception module to label visual data with semantic object
parts, such as detecting the top, middle, and bottom areas of
a cup and its handle. The probabilistic logic module combines
this information with the affordances model.
• Decision making and planning: PLM uses ontologies to support
grasp planning. It integrates ontological knowledge with
probabilistic logic to translate low-level visual perception
into an effective grasp planning strategy. Once an object is
categorized and its affordances are inferred, the task ontology

determines the most likely object part to be grasped, thereby
reducing the search space for possible final gripper poses.
Subsequently, a low-level shape-based planner generates a
trajectory for the end effector.
• Prediction and monitoring: Although this framework does not
specifically predict or monitor robot actions, it uses task
prediction to select among alternative tasks based on their
probability of success but does not actively monitor them.
• Reasoning: PLM uses semantic reasoning to grasp. It selects
the best grasping task based on object affordances, addressing
the uncertainty of visual perception through a probabilistic
approach.
• Learning: Learning techniques are used to identify the visual
characteristics of the shape, which are then categorized. The
robot utilizes the acquired knowledge for grasp planning.

Table 1 provides a concise comparison of the four frameworks
analyzed. Although all of them address perception and
categorization, decision making and planning, and reasoning, the
specific aspects involved depend on the perspective. Only half of
the frameworks explicitly utilize their KB for execution, prediction
andmonitoring, communication and coordination, and learning. In
particular, integration and design are addressed exclusively by the
PMK framework.

5.2 Navigation domain

The navigation domain describes the challenges and
techniques involved in enabling robots to autonomously
move around their environment. This involves the processes
of guidance, navigation, and control (GNC), incorporating
elements such as computer vision and sensor fusion for
perception and localization, as well as control systems and
artificial intelligence for mapping, path planning, or obstacle
avoidance.

5.2.1 Teleological and Ontological Model for
Autonomous Systems

Teleological and Ontological Model for Autonomous Systems
(TOMASys)17 is a metamodel designed to consider the functional
knowledge of autonomous systems, incorporating both teleological
and ontological dimensions. The teleological aspect includes
engineering knowledge, which represents the intentions and
purposes of systemdesigners.Theontological dimension categorizes
the structure and behavior of the system.

TOMASys serves as a metamodel to ensure robust operation,
focusing on mission-level resilience (Hernández et al., 2018). This
metamodel relies on a functional ontology derived from the
Ontology forAutonomous Systems (OASys) (Bermejo-Alonso et al.,
2010), establishing connections between the robot’s architecture
and its mission. The core concepts in TOMASys include functions,
objectives, components, and configurations. However, it operates as
a metamodel and intentionally avoids representing specific features
of the operational environment, such as objects, maps, etc.

17 https://github.com/meta-control/mc_mdl_tomasys
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TABLE 1 Use of ontologies in the manipulation domain for perception and categorization (P/C), decision making and planning (DM/P), prediction and
monitoring (P/M), reasoning (R), execution (E), communication and coordination (C/C), interaction and design (I/D) and learning (L).

KnowRob (Tenorth and
Beetz, 2009; Beetz et al.,
2018; Tenorth and Beetz,
2013; Waibel et al., 2011;

Tenorth et al., 2012;
Crespo et al., 2018;
Riazuelo et al., 2015)

PMK (Diab et al., 2019) FailRecOnt (Diab et al.,
2021; Diab et al., 2020)

PLM (Antanas et al.,
2019)

P/C Integrate data types and object
recognition

Dynamically select the most
appropriate sensor

Action sensing to detect abnormal
events

Identify the most suitable part of an
object for grasping

DM/P Action parametrization for
successful manipulation

Task and motion planning feasibility How to sense an action and check if a
configuration is collision-free

Translate low-level visual perception
into effective grasp planning

P/M Predict the most appropriate
parameters. Monitoring objects in

the environment

- Failure detection and identification
of failed recovery attempts

Task prediction to select among
alternatives

R Hybrid, symbolic reasoning for
sensor and action data

Integration of task and motion
planning with the perception module

How the perception of actions
should be formalized

Select the best grasping task based on
object affordances

E Match undetermined instructions
and actions

- Symbolic-level actions without
geometric considerations

-

C/C Web exchange of information - Communication failures between
multiple agents

-

I/D - Information about which part of an
object is interactable, constraints

- -

L Use previous descriptions of events,
objects, time, and low-level control

data

- - Categorize visual shape features

At the core of the TOMASys framework is the metacontroller.
While a conventional controller closes a loop to maintain a
system component’s output close to a set point, the metacontroller
closes a control loop on top of a system’s functionality. This
metacontroller triggers reconfiguration when the system deviates
from the functional reference, allowing the robot to adapt and
maintain desired behavior in the presence of failures. Explicit
knowledge of mission requirements is leveraged for reconfiguration
using the system’s functional specifications captured in the ontology.

In practice, TOMASys has been applied to various robots
and environments, particularly for navigation tasks. Examples
include its application to an underwater mine explorer robot
(Aguado et al., 2021) and a mobile robot patrolling a university
campus (Bozhinoski et al., 2022).

The detailed analysis of comparison criteria follows:

• Decision making and planning: In TOMASys, the metacontrol
system manages decision making by adjusting parameters
and configurations to address contingencies and mission
deviations. It assumes the presence of a nominal controller
responsible for standard decisions. In the case of failure
detection or unmet mission requirements, the metacontroller
selects an appropriate configuration. The planning process
is integrated into the metacontrol subsystem, where
reconfiguration decisions can impact the overall system plan,

potentially altering parameters, components, functionalities,
or even relaxing mission objectives to ensure task
accomplishment.
• Prediction and monitoring: Monitoring is a critical aspect of
TOMASys, providing failure models to detect contingencies
or faulty components. Reconfiguration is triggered not
only in the event of failure but also when mission
objectives are not satisfactorily achieved. Observer modules
are used to monitor reconfigurable components of
the system.
• Reasoning: TOMASys uses a DL reasoner for real-time system
diagnosis. It propagates component failures to the system level,
identifying affected functionalities and available alternatives.
This reasoning process helps to select the most promising
alternative to fulfill mission objectives.
• Execution: The execution in TOMASys follows the monitor-
analyze-plan-execute (MAPE-K) loop (IBM Corporation,
2005). It evaluates the mission and system state through
monitoring observers, uses ontological reasoners for assessing
mission objectives and propagating component failures, decides
reconfigurations based on engineering and runtime knowledge,
and executes the selected adaptations.
• Communication and coordination: TOMASys uses its
hierarchical structure to coordinate components working
toward a common goal. Components utilize roles that specify
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parameters for specific functions, and bindings facilitate
communication by connecting component roles with function
specifications during execution. Bindings are crucial for
detecting component failures or errors. In cases where the
metacontroller cannot handle errors, a function design
log informs the user.
• Interaction and design: TOMASys provides a metamodel that
leverages engineering models from design time to runtime.
This approach aims to bridge the gap between design and
operation, relying on functional and component modeling
to map mission requirements to the engineering structure.
The explicit dependencies between components, roles, and
functions, along with specifications of required component
types based on functionality, support the system’s adaptability
at runtime.

5.2.2 Ontology-based multi-layered robot
knowledge framework

The Ontology-based Multi-layered Robot Knowledge
Framework (OMRKF) aims to integrate high-level knowledge
with perception data to enhance the intelligence of a robot in its
environment (Suh et al., 2007). Specific details about the KB, such
as the source files, are not publicly available, so the information
provided here is derived from articles about the framework.

The framework is organized into knowledge boards, each
representing four knowledge classes: perception, activity, model,
and context. These classes are divided into three knowledge levels
(high, middle, and low). Perception knowledge involves visual
concepts, visual features, and numerical descriptions. Similarly,
activity knowledge is classified into service, task, and behavior, while
model knowledge includes space, objects, and their features. The
context class is organized into high-level context, temporal context,
and spatial context.

At each knowledge level, OMRKF employs three ontology layers:
(a) a meta-ontology for generic knowledge, (b) an ontology schema
for domain-specific knowledge, and (c) an ontology instance to
ground concepts with application-specific data.The framework uses
rules to define relationships between ontology layers, knowledge
levels, and knowledge classes.

OMRKF facilitates the execution of sequenced behaviors by
allowing the specification of high-level services and guiding the
robot in recognizing objects even with incomplete knowledge.
This capability enables robust object recognition, successful
navigation, and inference of localization-related knowledge.
Additionally, the framework provides a querying-asking
interface through Prolog, enhancing the robot’s interaction
capabilities.

The detailed analysis of comparison criteria follows:

• Perception and categorization: OMRKF includes perception
as one of its knowledge classes, specifically addressing the
numerical descriptor class in the lower-level layer. Examples
of these numerical descriptors are generated by robot sensors
and image processing algorithms such as Gabor filter or scale-
invariant feature transform (SIFT) (Suh et al., 2007).
• Decision making and planning: OMRKF uses an event calculus
planner to define the sequence to execute a requested service.
The framework relies on query-based reasoning to determine

how to achieve a goal. In cases of insufficient knowledge, the
goal is recursively subdivided into subgoals, breaking down the
task into atomic functions such as go to, turn, and extract feature.
Once the calculus planner generates an output, the robot follows
a sequence to complete a task, such as the steps involved in a
delivery mission.
• Reasoning: OMRKF employs axioms, such as the inverse
relation of left and right or on and under, to infer useful facts
using the ontology. The framework uses Horn rules to identify
concepts and relations, enhancing its reasoning capabilities.

5.2.3 Smart and Networked Underwater Robots
in Cooperation Meshes ontology

The Smart and Networked Underwater Robots in Cooperation
Meshes (SWARMs) ontology addresses information heterogeneity
and facilitates a shared understanding among robots in the context
of maritime or underwater missions (Li et al., 2017). Specific details
about the KB, such as the source files, are not publicly available,
so the information provided here is derived from articles about the
ontology.

SWARMs leverages the probabilistic ontology PR-OWL18 to
annotate the uncertainty of the context based on the multi-entity
Bayesian network (MEBN) theory (Laskey, 2008). This allows
SWARMs to perform hybrid reasoning on (i) the information
exchanged between robots and (ii) environmental uncertainty.

SWARMs establishes a core ontology to interrelate several
domain-specific ontologies. The core ontology manages entities,
objects, and infrastructures. These ontologies include:

– Mission and Planning Ontology: Provides a general
representation of the entire mission and the associated
planning procedures.

– Robotic Vehicle Ontology: Captures information on underwater
or surface vehicles and robots.

– EnvironmentOntology: Characterizes the environment through
recognition and sensing.

– Communication and Networking Ontology: Describes the
communication links available in SWARMs to interconnect
different agents involved in the mission, enabling
communication between the underwater segment and the
surface.

– Application Ontology: Provides information on scenarios and
their requirements. PR-OWL is included in this layer to handle
uncertainty.

Li et al. (2017) present an example using SWARMa to monitor
chemical pollution based on a probability distribution. SWARMs
incorporates thismodel into the ontology and usesMEBN to deduce
the emergency level of the polluted sea region.

The detailed analysis of comparison criteria follows:

• Perception and categorization: The SWARMs ontology provides
a shared framework to represent the underwater environment.
For this reason, it contains classes on sensors and the main
concepts of the environment to understand it through its
properties, such as water salinity, conductivity, temperature,

18 https://www.pr-owl.org
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and currents. Uncertainty reasoning is critical for the
categorization of sensor information, especially in harsh
maritime and underwater environments.
• Decision making and planning: SWARMs uses two levels of
abstraction. High-level planning allows the user to describe
different tasks related to operations without specifying the
exact actions that each robotic vehicle must perform. Low-level
planning is performed on each robot to generate waypoints,
actions, and other similar low-level tasks.
• Reasoning: SWARMs uses a hybrid context reasoner that
combines ontological rule-based reasoning with MEBN for
probabilistic annotations.
• Communication and coordination: Amain concern in SWARMs
is cooperation; robots share tasks, operations, and actions.
The ontology provides transparent information sharing to
support the heterogeneity of the data. It also provides an
abstraction for communication and networking, describing the
communication links available from command control stations
to vehicles and from vehicles to command control stations.

5.2.4 Robot Task Planning Ontology
The Robot Task Planning Ontology (RTPO) Sun et al. (2019b)

is an effective knowledge representation framework for robot task
planning. Specific details about the KB, such as the source files, are
not publicly available, so the information provided here is derived
from articles about the ontology.

Designed to accommodate temporal, spatial, continuous,
and discrete information, RTPO prioritizes scalability and
responsiveness to ensure practicality in task planning. The ontology
comprises three main components: robot, environment, and task.

– Robot Ontology: Comprises hardware and software details,
location information, dynamic data, and more. Sensors are
explicitly modeled as a subclass of hardware, specifying the
measurable aspects of the environment. In an experimental
context, the robot’s perception is limited to obstacles.

– Environment Ontology: Focuses on location and recognition of
humans and objects, the environment map, and information
collected from other robots.

– Task Ontology: Aims to understand how to decompose high-
level tasks into atomic actions and adapt plans when the
environment changes.

This multi-ontology approach allows RTPO to capture the
details of robot task planning by representing both the robot’s
internal state and its interactions with the environment.

The detailed analysis of comparison criteria follows:

• Perception and categorization: The robot ontology in RTPO
considerssensorsasasubclassofhardware, specifyingmeasurable
aspects of the environment. In the experiment discussed, the
robot’s perception is limited to detecting obstacles.
• Decision making and planning: Task planning is performed
using a domain and a problem file, as in the Planning
DomainDefinition Language (PDDL).The algorithmdescribed
by Sun et al. (2019b) generates and uses these files.

The task planning process is realized by matching the execution
preconditions of atomic actions and their effects on the environment

from the initial state to the goal state. With this approach, the
task planning module can also be executed by changing the input
tasks while considering the present action resources. The plans
generated by the task planning algorithm are added to the ontology
to improve the efficiency of task planning if the same task needs to be
planned again.

• Reasoning: The reasoning process in RTPO involves updating
and storing the knowledge within the ontology. The scalability
of robot knowledge aims to enhance the efficiency of
reasoning. Experimental scenarios involving the addition of
elements to the indoor environment and corresponding KB
instances demonstrate changes in consumed time, particularly
affecting knowledge query speed. The authors show real-time
performance in an application that involves 52,000 individuals,
although the impact on the planning process is not explicitly
detailed.
• Communication and coordination: This process is not explicitly
explained by (Sun et al. 2019b). However, a scenario with
three robots and two humans is described. Communication
among the three robots is highlighted, emphasizing knowledge
sharing. The relationships between these entities can be
defined by users or developers based on their requirements.
In situations with various robots mapping different rooms
and using various sensors, the ontology facilitates linking and
adding knowledge to constraints to maintain coherence.
• Learning: RTPO incorporates learning by updating and adding
the plans generated by the task planning algorithm into the
ontology. This iterative process aims to improve the efficiency
of future task planning, especially when the same task is
encountered again.

5.2.5 Guidance, navigation, and control for
planetary rovers

Burroughes and Gao (2016) present an architectural solution
to address limitations in autonomous software and GNC structures
designed for extraterrestrial planetary exploration rovers. Specific
details about the KB, such as the source files, are not publicly
available, so the information provided here is derived from articles
about the framework.

This framework uses an ontology to facilitate the autonomous
reconfiguration of mission goals, software architecture, software
components, and the control of hardware components during
runtime. To manage complexity, the self-reconfiguration ontology
is organized into modules. The base ontology serves as an upper
ontology, including modules that delineate logic, numeric aspects,
temporality, fuzziness, confidences, processes, and block diagrams.
Additional modules describe the functions of software, hardware,
and the environment.

The primary focus of this framework is reconfiguration. Once
the ontologymanager detects an undesired state change through the
monitoring process, it activates a safety mode. In this safety mode,
the system can execute either a reactive plan or create a new plan
based on inferences drawn from the new situation.

Following the replanning process, new mission goals are
established, allowing the robot to exit safety mode and resume
normal operation. The framework specifically aims to minimize
odometry errors and ensure safety during travel. To achieve
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this objective, the connective architecture and processes, such as
navigation, localization, control, mapping, as well as sensors and
the locomotion system, can be fine-tuned and optimized according
to the environment and faulty hardware conditions. For example,
certain methods may prioritize tolerance to sensor noise over
absolute accuracy in localization.

The detailed analysis of comparison criteria follows:

• Decision making and planning: Burroughes and Gao (2016)
integrate a reactive approach with a deliberative layer for
quick responses. Precalculated responses are prepared for likely
changes, but in the absence of options, the rational agent
resorts to deliberative techniques. Ontologies and the PDDL are
used for knowledge representation and planning, respectively.
Actions correspond to specific configurations of services, with
plans defined using the initial state of the world, the goal state,
the resources of the system, the safety criteria, and the rules.
The approach employs a pruning algorithm to reduce possible
actions and planning space.
• Prediction and monitoring:The focus is on replanning, requiring
monitoring to trigger the process. Generic inspectors perform
network, resource, and state checks, and specific inspectors
manage tasks like checking camera performance, monitoring,
and updating the ontology on the current state of the
world. The system can decide the depth of monitoring
for each subsystem, balancing computational resources and
self-protection.
• Reasoning:Reasoning is used to configure the software elements
of the rover, update the state of the world, and decide
whether the system should re-plan to adapt to changes or
use pre-established reactive responses. The ontology checks for
knowledge incoherence when adding new information.
• Execution: The MAPE-K loop is used for self-reconfiguration.
When the monitor detects a change, the ontology provides
the knowledge to select how the system should evolve.
The configuration of the components is established through
planning or reactivity. Navigation and operation components
are organized into modular services with self-contained
functionality to allow reconfiguration.
• Communication and coordination: Communication
requirements, such as publication rate, conditions, and effects,
are used to establish appropriate communication links between
modules, treating communication as a reconfigurable service
within the framework.
• Interaction and design: While not explicitly detailing the design
or requirements, the system reasons in terms of service
capacities, considering measures such as accuracy or suitability
for sensor noise in sensor processing algorithms. It also
incorporates safety criteria to select system changes, providing
design and engineering knowledge to select alternative designs
based on runtime situations.

5.2.6 Collaborative context awareness in search
and rescue missions

Chandra and Rocha (2016) present a framework for
collaborative context awareness using an ontology that comprises
high-level aspects of urban search and rescue (USAR) missions.
Specific details about the KB, such as the source files, are not publicly

available, so the information provided here is derived from articles
about the framework.

The framework serves as an efficient knowledge-sharing
platform to represent and correlate various mission concepts,
including those related to agents and their capabilities, scenarios,
and teams. The ontology facilitates the sharing of homogeneous
knowledge among all robots and supports human–robot
collaboration by reasoning based on rules provided by humans.

The detailed analysis of comparison criteria follows:

• Perception and categorization: The system employs perceived
and pre-processed information gathered from its own sensors,
as well as from other agents, such as humans and robots,
to continually update its KB. Specifically, it focuses on
entities within context classes and their relationships, including
information about smoke levels, visibility, location, and
temperature.
• Decisionmaking and planning:Theframework offers an efficient
knowledge-sharing strategy that improves decision-making
processes. For example, it facilitates the management of a
global map with shared events and real-time tracking of agent
locations.
• Reasoning: In this framework, reasoning plays a crucial role
in storing and disseminating information between agents. The
KB retains essential details such as location, temperature,
visibility, battery status, tasks, and detection of victims or
fires. Furthermore, reasoning contributes to resilience against
communication failures by storing information for future
sharing. This process supports coordination, including the
incorporation of new teammembers or the temporary removal
and subsequent reintegration of teammates.
• Communication and coordination: Building on a foundation of
multirobot cooperation, Chandra and Rocha (2016) structure
the framework to represent the team and mission within an
ontology. This enables the creation of a global map and the
selection of suitable candidates for various tasks. Examples
of coordination include telepresence and compensating for a
teammate’s immobility. Furthermore, the framework ensures
resilience in the face of communication failures. For example,
all events detected by a robot are logged in the local KB
and shared across the team to synchronize knowledge. In
situations of communication loss or isolation from teammates,
a list of unattended events is maintained and shared after
communication is restored.

5.2.7 Autonomous vehicle situation assessment
and decision making

Huang et al. (2019) use ontologies for situation assessment and
decision making in the context of autonomous vehicles navigating
urban environments. Specific details about the KB, such as the
source files, are not publicly available, so the information provided
here is derived from articles about the ontologies.

The KB integrates vehicle information, storing details of the
permissible directions a vehicle can take. Furthermore, the KB
includes representations of both static and dynamic obstacles,
as well as relevant information on the characteristics of roads,
distinguishing between highways and urban roads. The ontology
incorporates specific scenarios that the autonomous vehicle could
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encounter on the road, such as proximity to an intersection,
traversing a bridge, or executing a U-turn. The autonomous driving
system leverages this KB to assess the current driving scenario,
facilitating well-informed decisions on whether to maintain its
current trajectory or initiate a lane change.

The detailed analysis of comparison criteria follows:

• Decision making and planning: The decision-making process is
tied to situation assessment, employing a methodology that
evaluates the safety of the surroundings of the vehicle. This
involves characterizing the regions around the car and assigning
a binary safety value based on the presence of obstacles.

If a region is considered safe, the vehicle continues in its current
lane; otherwise, a lane change is initiated. This decision-making
step incorporates statistical indicators that account for velocity.
Moreover, the model considers legitimacy by adhering to traffic
rules during lane changes and reasonableness by querying the global
planning path to identify the next road segment or lane, particularly
when approaching intersections. This strategic approach prevents
the system from optimizing locally at the expense of compromising
the overarching global plan.

• Reasoning: The reasoner is used to generate behavioral
decisions. It employs rules derived from traffic regulations and
driving experiences, taking into account various factors that
influence the road, such as speed limits, traffic lights, and the
presence of surrounding obstacles.
• Interaction and design: Although the framework does not
explicitly include concepts as design decisions, it addresses
requirements such as legality by incorporating traffic rules
and reasonableness. This ensures that the behavior of the lane
change aligns with the main goal of global planning, avoiding
changes to local optimization thatmay compromise the broader
strategic plan.

5.2.8 Search and rescue scenario
Sun et al. (2019a) introduce an ontology tailored for search

and rescue (SAR), enhancing the decision-making capabilities of
robots in complex and unpredictable scenarios. Specific details
about the KB, such as the source files, are not publicly available,
so the information provided here is derived from articles about
the ontology. The SAR ontology comprises three interlinked
subontologies: an entity ontology, an environment ontology, and a
task ontology.

– The entity ontology includes various types of robots, including
ground, underwater, and air robots. It delineates their
constituent parts and specifications in terms of hardware and
software aspects.

– The environment ontology extends the scope to store most
of the elements present in SAR scenarios, including the
environment map and objects that shall be recognized.
Updated knowledge from the environment can be shared
among other robots, although the specific mechanisms are not
detailed in the presented use case.

– The task ontology encapsulates the task-related knowledge
that is necessary for informed decision making. This involves

task decomposition and allocation facilitated by a hierarchical
structure. The ontology defines four typical tasks: charge,
search, rescue, and recognize. Additionally, atomic actions are
articulated by their effects on the state of the environment.
The framework proposes a task planning algorithm that
aligns the preconditions of execution with the effects on the
environment, utilizing the SAR ontology as a foundational
framework.

The detailed analysis of comparison criteria follows:

• Perception and categorization: The SAR framework focuses
on SLAM and autonomous navigation. The authors use a
semanticmap, which facilitates the recognition and localization
of objects. The acquired information dynamically updates
the environment ontology, establishing connections between
the SLAM map and the semantic details. Bayesian reasoning
enhances the precision of victim positioning, while QR code
scanning streamlines the acquisition of semantic information,
such as vital signs (e.g., heart rate and blood pressure), in
disaster rescue scenarios.
• Decision making and planning: decision making in this
framework is based on structured queries. It begins by defining
tasks and identifying the requisite actions, followed by a
comprehensive examination of the action properties, including
time constraints, preconditions, and postconditions, to achieve
the desired state. The planner then specifies a sequenced set
of atomic actions. The program can adopt specific search
algorithms for planning or reusing previously established plans.
• Reasoning: Before planning, the robot conducts a preliminary
assessment to determine the suitability of the task for the
current state. If considered appropriate, the planning phase
starts, identifying the tasks the robot should execute under the
given circumstances.
• Execution: The robot systematically executes the sequence
of atomic actions. When faced with a previously planned
task, the robot can query the task definition, retrieving the
corresponding atomic action sequence.

Tables 2 and 3 summarize studies in the navigation domain.
All frameworks address decision making, planning, and reasoning,
mainly to organize tasks. Most of the works focus on perceiving
and categorizing measurable aspects of the environment, along
with communication and coordination among different elements
and systems. TOMASys, the planetary rover scenario, and the SAR
scenario explicitly handle prediction, monitoring, and execution.
The use of engineering knowledge—interaction and design—is
explicitly addressed in TOMASys, the planetary rover scenario, and
the autonomous vehicle scenario. Learning is applied only in RTPO
to improve the plan generation process.

5.3 Social domain

Social robots usually refer to the interaction between robots
and humans in a variety of contexts, such as homes, healthcare,
education, entertainment, and public spaces. The goal is to create
robots that are not only technically capable but also socially aware
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TABLE 2 Part 1: Use of ontologies in the navigation domain for perception and categorization (P/C), decision making and planning (DM/P), prediction
and monitoring (P/M), reasoning (R), execution (E), communication and coordination (C/C), interaction and design (I/D) and learning (L).

TOMASys (Hernández et
al., 2018;Bozhinoski et
al., 2022; Aguado et al.,

2021)

OMRKF (Suh et al., 2007) SWARMs (Li et al., 2017) RTPO (Sun et al., 2019b)

P/C - Lower-lever perception features such
as numerical descriptors

Represent underwater environment
properties and sensors

Specification of measurable aspects
of the environment

DM/P Adjust parameters and
configurations to address mission

contingencies

Calculus planner to accomplish goals
and subgoals

Task-level planning and low-level
planning to generate waypoints,

actions, etc.

Generate and use domains and
problem files to generate plans

P/M Failure models to detect faulty
components and goals not achieved

- - -

R Propagate failures to system level,
identify affected functionalities and

available alternatives

Geometrical relationships between
objects

Hybrid context reasoner: rule-based
reasoning and probabilistic

annotations

Evaluation of real-time performance
in reasoning with 52,000 elements of

indoor environments

E MAPE-K loop to evaluate mission
status

- - -

C/C Component coordination - Robots share tasks, operations, and
actions

Knowledge sharing between three
robots and two humans

I/D Use of metamodels to bridge the gap
between design and operation

- - -

L - - - Update and add plans generated by
the task planning algorithm back

into the ontology

and able to interact with humans in a manner that is natural,
intuitive, and socially acceptable.

5.3.1 Ontology-based unified robot knowledge
The Ontology-based Unified Robot Knowledge (OUR-K)

framework for service robots (Lim et al., 2011) consists of five
knowledge classes: features, objects, spaces, contexts, and actions. It
takes OMRKF, the concept of layer division, from its predecessor.
Although OMRKF was originally evaluated in navigation domains,
OUR-K extends its application to social robots operating within
domestic environments. Specific details about the KB, such as the
source files, are not publicly available, so the information provided
here is derived from articles about the framework.

A notable feature of OUR-K is its ability to perform
tasks even when provided with incomplete information. The
framework incorporates a knowledge description of both the
robot and its environment, employing algorithms for knowledge
association. This involves logic, Bayesian inference, and heuristics;
however, logical inference in OUR-K is specifically limited to
performing associations between classes and ontological levels,
with no indication of alternative inference mechanisms in
the literature.

OUR-K includes mechanisms for object recognition, context
modeling, task planning, space representation, and navigation.
Regarding action representation, its descriptions are simpler and do
not contemplate processes as did its predecessor, OMRKF.

Diab et al. (2018) extend OUR-K with a physics-based
manipulation ontology to address the challenges that a motion
planner might encounter. An actor class is introduced within the
knowledge classes to describe the working constraints of the robot,
enhancing the planner’s capability to handle interaction dynamics.
In addition, the authors propose a prediction mechanism for
the entire OUR-K framework. Instead of relying on inferences,
a semantic map is generated for categorizing and assigning
manipulation constraints, using reasoning based on logical axioms.
This approach is evaluated in the context of a specific manipulation
task, where a robot serves a liquid drink contained in a can.

The detailed analysis of comparison criteria follows:

• Perception and categorization: OUR-K follows the same
approach as OMRKF. Perception is abstracted and stored in the
feature, space, and object classes. The feature class defines the
same knowledge level as the OMRKF. The space class defines a
topological map in the middle level and a semantic map in the
higher one. The object class middle level includes the object
name and function, whereas the top layer defines generic
information and relationships among objects; for example, a
cup is a type of container.
• Decision making and planning: The OMRKF successor, OUR-
K (Lim et al., 2011), uses the same structure based on the
abductive event calculus planner to reach a hierarchical
abstraction of space elements and behaviors. High-level tasks,
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TABLE 3 Part 2: Use of ontologies in the navigation domain for perception and categorization (P/C), decision making and planning (DM/P), prediction
and monitoring (P/M), reasoning (R), execution (E), communication and coordination (C/C), interaction and design (I/D) and learning (L).

Planetary rover scenario
(Burroughes and Gao,

2016)

USAR scenario (Chandra
and Rocha, 2016)

Autonomous vehicle
scenario (Huang et al.,

2019)

SAR scenario (Sun et al.,
2019a)

P/C - Pre-processed information from
sensors and other intelligent agents

- Semantic map for recognizing and
localizing objects

DM/P Precalculated solutions for likely
changes, combined with deliberative

techniques

Management of a global map with
shared events and real-time tracking

of agent locations

Evaluate the safety of the vehicle’s
surroundings with statistical

indicators

Definition of tasks and identification
of requisite actions and their

properties

P/M Monitor resources and state checks
to trigger replanning

- - -

R Configure SW elements, update
world state, and decide on replanning

Store and distribute information
among agents

Apply rules derived from traffic
regulations and driving experiences

Evaluate the suitability of the task for
the current state

E MAPE-K loop for reconfiguration - - Query task definition to retrieve the
corresponding atomic action

sequence

C/C Communication requirements
between modules

Multirobot cooperation, global map,
and selection of suitable candidates

for each task

- -

I/D Explicit service capacities - Addresses requirements such as
legality by incorporating traffic rules

and reasonableness

-

L - - - -

such as delivery, are decomposed into mid-level sub-tasks, such
as go to goal space, find object, or generate context. These sub-
tasks are further planned as sequences of primitive behaviors,
such as go to or recognize object.Theapproach used inDiab et al.
(2018) based on OUR-K also integrates the three levels of the
action class for planning. The planner consults the topological
map to determinewhich object (or robot) occupieswhich space,
and then the semantic map is used to extract object and robot
constraints concerning the action. This results in a sequence of
actions that may consider contextual information, particularly
at the temporal level.
• Prediction and monitoring:OUR-K includes rules for navigation
monitoring and missing object recognition tasks. However,
monitoring is not treated as a distinct process in this framework;
instead, it is represented as rules that use several knowledge
classes.
• Reasoning: Like OMRKF, OUR-K relies on logical inference
to associate classes and ontological levels. The bidirectional
links between low-level data and high-level knowledge enable
both frameworks to fill in missing information, contributing to
mission accomplishment.
• Execution: OUR-K execution is plan based, where the robot
follows the plan and executes a sequence of actions. However,
action knowledge is coupled with all other concepts to
represent world environments using features such as sensory-
motor coordination, object action complex, and affordances.
This approach allows robots to perform actions without

explicit planning, potentially enabling reactive behavior when
necessary (Lim et al., 2011).
• Interaction and design: The OUR-K extension presented
by Diab et al. (2018) introduces dynamic interaction, focusing
on how robotic controllers should adapt to runtime situations.
This extension provides information on how a motion planner
should handle dynamic forces when manipulating objects,
enhancing the framework’s capability to deal with real-time
interactions.

5.3.2 OpenRobots Common Sense Ontology
The OpenRobots Common Sense Ontology (ORO)

(Lemaignan et al., 2010) establishes a knowledge processing
framework and a common sense ontology tailored for facilitating
semantic-rich human–robot interaction environments19. This
approach focuses on conceptualization but offers flexibility for
implementing other cognitive functions simultaneously, such as
object recognition, task planning, or reasoning. Cooperation is a
crucial aspect in ORO, as it targets human–robot interactions.

ORO ontology is based on OpenCyc. The authors specify in
the project Wiki20 that it shares most of its concepts with the first
version of the KnowRob ontology. It includes categories, such as
spatial thing or action, and more concrete concepts, such as event or

19 http://kb.openrobots.org/

20 https://www.openrobots.org/wiki/oro-ontology
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book.The authors evaluated their approach by showing robot objects
and asking humans about their properties.

The detailed analysis of comparison criteria follows:

• Perception and categorization: The authors use several
algorithms, such as common ancestors or calculating the best
discriminant to categorize perceptions. Discrimination is an
important element in human–robot collaboration. For example,
if a user asks the robot to bring the bottle and two bottles are
available, it can use its ability to discriminate to select the best
option.
• Reasoning: ORO provides ontological reasoning, as well as
external modules that trigger when an event occurs. External
modules are used to provide reactive responses. For example,
when a human asks the robot to bring an object, the robot
creates an instance of this desire. Statements are stored in
different memory profiles, such as long-term and short-term
memory. Each profile is characterized by a lifetime that is
assigned to the stored facts; when a lifetime ends, the ontology
removes the fact.
• Execution:The framework integrates CRAM (Beetz et al., 2010)
to automatically update the ORO server when an object enters
or exits the field of view. Execution is query-based, involving
combinations of patterns like is the bottle on the table? or filters
such as weight < 150.
• Communication and coordination: ORO is designed as an
intelligent blackboard that allows various modules to push
or pull knowledge to and from a central repository. This
facilitates knowledge sharing among agents. Examples
of heterogeneity with shared information include event
registration, categorization capabilities, and the existence of
different memory profiles.

Each agent has an alternative cognitive model for the other
agents with whom it has interacted. When ORO identifies a new
agent, it automatically creates a new separate model that can be
shared with others.This feature enables the storage and reasoning of
different and potentially globally inconsistent models of the world.

5.3.3 Ontology for Collaborative Robotics and
Adaptation

Ontology for Collaborative Robotics andAdaptation (OCRA)21,
as described by Olivares-Alarcos et al. (2022), is a specialized
ontology designed to represent relevant knowledge in collaborative
scenarios, facilitating plan adaptation. Based on KnowRob (Tenorth
and Beetz, 2009; Beetz et al., 2018) and its upper ontology, DUL,
OCRA shares the support of its predecessor for the temporal history
of the KB through episodic memories.

This work primarily employs FOL definitions to establish
a foundation for reliable, collaborative robots, with the aim of
enhancing the interoperability and reusability of terminology
within this domain. The ontology serves as a tool for the
robot to address competency questions, such as identifying
ongoing collaborations, understanding current plans and goals,

21 https://github.com/albertoOA/know_cra

determining the agents involved, and assessing plans before and
after adaptation.

This ontology has been qualitatively validated for human–robot
cooperation, sharing the task of filling the compartments of a
tray. The main asset of OCRA, from our perspective, is its
explicit representation of collaboration requirements, including
safety considerations and a measure of risks, with the objective of
effective plan adaptation.

The detailed analysis of comparison criteria follows:

• Decision making and planning: OCRA uses ontological
knowledge for dynamic plan adaptation during runtime. For
example, if the robot had a plan to fill a certain compartment
and it is not empty, it adapts to fill another empty compartment.
The ontology also stores the adaptation triggers.
• Reasoning: As stated above, this work focuses on answering
competency questions related to agents involved in
collaboration, their plans, goals, and the adaptation of plans
when required.
• Communication and coordination: OCRA focuses on
collaboration with humans, providing a mechanism to explain
its plan adaptation through the ontology. This collaboration is
enabled through coordination in terms of the plan to solve
the task. Specifically, the robot changes its plan according
to variations in the environment, such as an already-filled
compartment.
• Learning:While not explicitly implemented in the current work,
OCRAmentions future plans to incorporate episodicmemories
for learning tasks. Examples include modeling the preferences
of different users or learning the structure of tasks to generalize
to new ones.

5.3.4 Intelligent Service Robot Ontology
Intelligent Service Robot Ontology (ISRO) (Chang et al., 2020)

introduces an ontology-based model tailored for human–robot
interaction. The practical application of this approach is
demonstrated through the implementation of a social robot that
functions as a medical receptionist in a hospital setting. Specific
details about the KB, such as the source files, are not publicly
available, so the information provided here is derived from articles
about the ontology.

ISRO serves as an abstract knowledge management system
designed to comprehend information about agents, encompassing
both users and robots, as well as their environment. The ontology
establishes connections between user knowledge and the robot’s
actions and behaviors, incorporating considerations for the spatial
and temporal environment. This integration is facilitated through
the Artificial Robot Brain Intelligence (ARBI) framework, which
includes a task planner, a context reasoner, and a knowledge
manager.

ISRO is not limited to a specific domain because it provides
a high-level scheme for dynamic generation and management of
information. The ontology is divided into four sub-models:

– User ontology to store profile information.
– Robot ontology to define the robot type, components, and

capabilities.

Frontiers in Robotics and AI 21 frontiersin.org

https://doi.org/10.3389/frobt.2024.1377897
https://github.com/albertoOA/know_cra
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Aguado et al. 10.3389/frobt.2024.1377897

– Perception and environment to define objects and their
attributes, maps, places, temporal events, and relations such as
before, after, etc.

– Action ontology to define the actions required to perform a task
and the expected events in such situations.

The detailed analysis of comparison criteria follows:

• Perception and categorization: The framework uses sensor
information to recognize the user involved, their face, gender,
and age, and recognize their state, that is, the user’s expression,
in its application. It also senses the robot’s pose to guide the user
to the medical department. Additionally, the framework is also
prepared to handle information related to spaces and objects
that was not defined in the experiment.
• Decision making and planning: The ARBI framework uses path
planning to move the robot, specifically, to guide patients to the
correct medical department. It is based on JAM architecture
(Huber, 1999), which defines goals and plans using the belief,
desire, and intention (BDI) agent (Chang et al., 2020). The
path is produced using semantic spatial knowledge, defining
the spaces the robot shall traverse and relationships between
spaces such as connected to. The semantic path is translated
into topological waypoints using knowledge about objects and
a map.This path is stored in the KB and shared between robots.
• Reasoning: The knowledge manager infers spatial and
temporal information, such as the relationships of currently
recognized objects and the time intervals between events.
It also characterizes users. It uses Prolog to recognize
dynamically generated information.However, only information
considered important or critical is stored in the KB as static
information.

5.3.5 Service robot scenario
Ji et al. (2012) provide a flexible framework for service robots

using the automatic planner Stanford Research Institute Problem
Solver (STRIPS). Specific details about the KB, such as the source
files, are not publicly available, so the information provided here is
derived from articles about the framework.

The ontology represents two main types of information,
environmental description and primitive robot actions, which
handle spatial uncertainties of particular objects and the primitive
actions that the robot can perform. Actions include four main
attributes to comply with STRIPS: precondition, postcondition,
input, and result.Theplanning process is optimized using a recursive
back-trace search method and knowledge information to limit the
search space. The framework is applied to the Care-O-Bot agent in
a scenario in which it shall get a milk box.

The detailed analysis of comparison criteria follows:

• Perception and categorization: Symbol grounding is crucial
for Ji et al. (2012), as it bridges the gap between abstract planning
and actual robot sensing and actuation. For example, a task of
moving a table involves moving the robot near the table. The
symbol grounding specifies exactly where “near the table” is.
• Decision making and planning: This framework uses
recursive backtracing search for action planning in dynamic
environments. The use of semantic maps can improve the

search for an object by limiting the search space using semantic
inference.
• Reasoning: Ji et al. (2012) use reasoning to retrieve information
about spatial objects, such as the location of the table where
milk is stored. Specific actions, such as workspace of, are
defined to support reasoning and enable the retrieval of spatial
information about an object. For example, a milk box could
provide a result of above the table or in the refrigerator, as it is a
perishable product. This framework also provides a likelihood
estimation of possible locations of objects.
• Execution: Execution uses a central controller to propagate the
action to the task planner, the user interface, and the low-
level robot modules. Each action is represented as a state
machine that is executed in real time. After the action is
finished, it updates themodels based on the result and the action
postcondition.

Table 4 depicts the main aspects of each capability in the social
applications reviewed. All capabilities incorporate reasoning using
knowledge from the ontology, with the majority also utilizing it
for perception and categorization, decision making and planning,
and execution. Communication and coordination are only present
in two of the five analyzed works. Prediction and monitoring,
interaction and design, and learning are the least addressed
capabilities across these applications.

5.4 Industrial domain

Robots in industrial domains aim to increase efficiency
and precision in a variety of tasks. These are often
related to manufacturing, production, and other industrial
processes. Ontologies in this domain aim to increase
flexibility, reduce maintenance, or enhance control and
inspection processes.

5.4.1 Robot control for Skilled Execution of Tasks
Robot control for Skilled Execution of Tasks (ROSETTA)

constitutes an ontology for robots performing manufacturing
tasks22. Its origins can be traced to the European projects SIARAS,
RoSta, and ROSETTA (Stenmark and Malec, 2015). The core of
the ontology is mostly focused on robot devices and their skills. It
relies on a component called the knowledge integration framework
(KIF) to provide services for robotic ontologies and data repositories
(Stenmark and Malec, 2015). Note that this should not be confused
with the knowledge interchange format, which is a syntax for FOL.
KIF acts as an interface to users. They can specify the task by
partially ordering the subgoals in an assembly tree; the framework
then establishes the action planning and its schedule with limited
resources. KIF also provides an execution structure that generates
state machines from skill descriptions and their constraints.

Hoebert et al. (2021) use ROSETTA ontology to control
the assembly process of a variety of electronic devices. This
work focuses on a world model that represents robotic
devices and the skills of ROSETTA. It also relies on the

22 https://github.com/jacekmalec/Rosetta_ontology
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TABLE 4 Use of ontologies in the social domain for perception and categorization (P/C), decision making and planning (DM/P), prediction and
monitoring (P/M), reasoning (R), execution (E), communication and coordination (C/C), interaction and design (I/D) and learning (L).

OUR-K (Lim et al.,
2011, Diab et al.,

2018)

ORO
(Lemaignan et al.,

2010)

OCRA (Olivares-
Alarcos et al.,

2022)

ISRO (Chang et al.,
2020)

Service robot
scenario (Ji et al.,

2012)

P/C Same approach as OMRKF Use common ancestors or
the best discriminant to

categorize

- Sensor information to
recognize the user involved

Abstract planning
information

DM/P Abductive event calculus
planner for hierarchical

abstraction

- Dynamic plan adaptation
during runtime

Path planning, semantic
maps

Recursive back-trace
searching

P/M Navigation monitoring and
missing object recognition

tasks

- - - -

R Bidirectional links between
low and high levels to fill in

missing information

Ontological reasoning
combined with external

modules triggered when an
event occurs

Answering competency
questions for collaboration,
plans, goals, and adaptations

Infer spatial and temporal
information and user

characterization

Information about spatial
objects

E Action knowledge is coupled
with all other concepts of the
knowledge of models and

features

Query-based integrated
CRAM to automatically
update the ontology

- - Central controller to
propagate the action to

planner, user interface, and
lower levels

C/C - Intelligent blackboard for
knowledge sharing among

agents

Collaboration with humans,
explainability

- -

I/D Dynamic interaction,
runtime controller

adaptation

- - - -

L - - Envisioned as future work - -

boundary representation (BREP) ontology (Perzylo et al., 2015) to
semantically encode geometric entities.This work uses the ontology
to conceptualize objects and their properties in the environment.
It defines a product as a hierarchy of sub-assemblies and parts.
Requirements are also included to determine the correct automated
manufacturing.

Merdan et al. (2019) also employ the ROSETTA ontology to
control an industrial assembly process, in particular, a pallet
transport system and the control of an industrial robot. In this case,
it uses the ROSETTA and BREP ontologies to conceptualize the
robotic system (e.g., skills, properties, constraints, etc.), the product
model (e.g., parts, geometries, assembly orientation, etc.), and the
manufacturing infrastructure (e.g., product, storage, sensors, etc.).
Rosetta has been defined in OWL.

The detailed analysis of comparison criteria follows:
Perception and categorization: The ROSETTA application

by Hoebert et al. (2021) provides an object recognition module
that links perception data with geometric features represented in
the KB.

Decision making and planning: The KIF executor of the
ROSETTA ontology serves as the planning mechanism. It
transforms an assembly graph into a sequence of operations with
preconditions and postconditions, subsequently translated into a
task state machine. Both Merdan et al. (2019) and Hoebert et al.

(2021) approach decision making as a plan generator, utilizing
PDDL. Hoebert et al. (2021) provide a generator that extracts
information from the ontology to produce the required PDDL files
for planning.Merdan et al. (2019) also translate the semanticmodel,
that is, states and actions, into domain and problem files through
templates.

Reasoning: ROSETTA reasoning is enabled by the KIF server
(Stenmark and Malec, 2015). It allows the user to download and
upload libraries with object descriptions, task specifications, and
skills. The KIF reasoner assists robot programming by retrieving
information about tools, sensors, objects, object properties,
etc. Hoebert et al. (2021) take advantage of the ROSETTA ontology
to select the individual actions and the equipment required to
manufacture a product part.

Execution: KIF uses state machines to execute the skills defined
in the ROSETTA ontology (Stenmark and Malec, 2015). However,
Hoebert et al. (2021) and Merdan et al. (2019) use the execution
of atomic actions through PDDL commands. With this approach,
as discussed by Hoebert et al. (2021), the missing standardization
of the meta-level concepts can cause difficulties when integrating
existing ontologies and reduce the scalability of the approach.
A comparison of the performance using several PDDL planners
is discussed in this article. In terms of scalability, Merdan et al.
(2019) use a central database server to support a high-performance
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integration of multiple homogeneous data sources to integrate the
ontology with other knowledge sources.

Communication and coordination: The ROSETTA-based
framework by Merdan et al. (2019) aims to communicate between
robots and entities in the external production environment.
Additionally, being a component-based approach, it provides
infrastructure for intercomponent communication.

Interaction and design: ROSETTA provides an engineering
specification of workspace objects, skills, and tasks from
libraries (Stenmark and Malec, 2015). It acts as a database
for all the information present in the object and in
the environment. Hoebert et al. (2021) use these design
models to establish and verify the manufacturing process,
tailoring the requirements to parameters such as assembly
operation type, manufacturing constraints, material used, and
piece dimensions.

5.4.2 Industrial robotic scenario
Bernardo et al. (2018) define an ontology-based approach for an

industrial robotic application focused on inserting up to 56 small
pins (sealants) into a harness box terminal specifically tailored for
the automotive industry. Specific details about the KB, such as the
source files, are not publicly available, so the information provided
here is derived from articles about the approach.

The KB is built upon CORA (Prestes et al., 2013) and provides
specifications for the robot, themachine vision system, and the tasks
required for seamless operation. Task sequences are used to execute
the plan, but the machine vision system also uses them to inspect
whether the sealants were correctly inserted into the connecting
boxes. If not, the system prioritizes applying the sealant in the faulty
position(s) in the connecting box.

The detailed analysis of comparison criteria follows:

• Perception and categorization: This approach uses vision to
inspect robot operations, specifically to verify the correct
insertion of sealants in connecting boxes. Image processing
is applied for this inspection, although the information is
not categorized in the ontology. The framework also utilizes
proximity, position, and fiber optic sensors to facilitate robot
operation.
• Decision making and planning: The framework incorporates
visual inspection to validate the precision of the insertion of
sealants into the connecting boxes. Additionally, it features a
re-planning process that modifies production orders when an
error calculus task detects errors. Ontological knowledge is
used to establish a sequence of tasks, and in the event of an error,
a priority task is immediately added to determine the position
of the sealant that requires attention. Once this high-priority
task is completed successfully, the robotic system resumes
the original production order. The authors define adding this
priority task as a re-plan, but we think it corresponds to a
planned repair as it returns to the original plan afterward.
• Reasoning: This framework uses DL reasoning to acquire
valuable data for production and maintenance at the factory
level. This reasoning includes information about sensors and
actuators and their purposes in various tasks. The knowledge
obtained is then utilized to plan and respond to queries,
improving the overall decision-making process.

5.4.3 Adaptive agents for manufacturing domains
Borgo et al. (2019) extend the DOLCE ontology from a broad

perspective. They validated their approach using a real pilot plant, a
reconfigurable manufacturing system designed for recycling printed
circuit boards (PCBs). Specific details about the KB, such as the
source files, are not publicly available, so the information provided
here is derived from articles about the ontology. The ontological
framework aims to store knowledge about fundamental assumptions
and identify the current scenario, including the presence and
location of objects, executed actions, responsible agents, changes
occurring, etc.

The KB created by this approach seeks to integrate various
perspectives within the enterprise, covering intelligent agents,
engineering activities, and management activities. The framework
is structured in a deliberative layer to synthesize the actions needed
to achieve a goal, an executive and monitoring layer to verify the
actions, and a mechatronic system that determines the capabilities
of the agent.

• Decision making and planning: The updated KB uses an
abstraction of the device to be controlled, the environment
parameters, and the execution constraints to generate a
timeline-based planning model. This model provides the
atomic operations that a transportation module can perform,
depending on its components and the available collaborators.
The timeline incorporates temporal flexibility, allowing for
relaxed start and end times. The resulting plan represents the
potential evolution of the relevant feature. The framework also
supports replanning in case of plan execution failure, generating
a newplan based on the current state of themechatronic system.
• Prediction and monitoring: Execution is monitored by
comparing action outcomeswith respect to the expected state of
the system and the environment. The monitor process receives
signals about the (either positive or negative) outcome of the
execution, for example, from the transportation module, and
checks whether the actual status of the mechatronic system
complies with the plan.
• Reasoning: Two types of reasoning are used in this approach.
Low-level reasoning infers information about the internal
and local contexts of transport modules, identifying system
components and available collaborating agents. High-level
reasoning utilizes low-level inferences to extract knowledge
about the transportation machine’s functional capabilities,
deducing specific internal and local contexts. This knowledge
is then used to generate the plan and its control model.
• Execution: The execution is based on a knowledge-based
control loop (KBCL) presented in Borgo et al. (2019).This loop
facilitates monitoring by dynamically representing the robot’s
capabilities, internal status, and environmental situation to
infer the available functionalities. A reconfiguration phase is
activated in case of failure or when new capabilities are added,
updating the KB and initiating a new iteration of the overall
loop. The executor receives sensor signals and feedback from
the transportation module, issuing action commands based on
the plan.
• Communication and coordination: The framework includes
the exchange of information through ontologies, employing
commands for sending and receiving interactions with other
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TABLE 5 Use of ontologies in the industrial domain for perception and categorization (P/C), decision making and planning (DM/P), prediction and
monitoring (P/M), reasoning (R), execution (E), communication and coordination (C/C), interaction and design (I/D) and learning (L).

ROSETTA (Stenmark and Malec,
2015; Hoebert et al., 2021;

Merdan et al., 2019)

Industrial robotic scenario
(Bernardo et al., 2018)

Adaptive agent for manufacturing
domains (Borgo et al., 2019)

P/C Object recognition linking perception data with
geometric features

Vision to inspect robot operations and proximity,
position, and fiber optic sensors

-

DM/P Transform an assembly graph into a sequence of
operations with preconditions and postconditions

to create a task-state machine

Replanning process that modifies production
orders when an error calculus task detects them

Generate a timeline-based planning model with
atomic operations

P/M - - Compare action outcomes with respect to the
expected status of the system and the environment

R Retrieve information about tools, sensors, objects,
object properties, etc.

Reasoning to acquire valuable data for production
and maintenance at the factory level

Low-level reasoning for local context and
high-level reasoning for the transportation

machine’s functional capabilities

E State machines to execute skills - Reconfiguration phase is activated in case of failure
or when new capabilities are added

C/C Communication between robot and external
production environment entities and

infrastructure for intercomponent communication

- Commands for sending and receiving interactions
with other entities

I/D Design models to establish and verify the
manufacturing process, tailoring requirements to

parameters

- Model engineering and management activities

L - - -

entities. The concept of collaborators represents relationships
between the agent (transport module) and any connected
entities, such as other transport modules or machines.
• Interaction and design: The ontology also models engineering
and management activities. The authors use engineering
approaches to identify high-level functions to be executed
to reach a given goal, explore the difference between the
actual state and the desired state, and isolate the changes
to be made. They include information on operand integrity,
operand qualities, quality relationships, etc. These concepts
make explicit engineering facts that are usually not included
in robotic approaches that complement knowledge about robot
capacities and contexts.

Table 5 provides a summary of three frameworks applied
to industrial scenarios. ROSETTA encompasses all capabilities
except prediction, monitoring, and learning. Similarly, the adaptive
agent for manufacturing domains includes all capabilities except
perception, categorization, and learning. Lastly, the remaining
industrial scenario only covers decision making, planning, and
reasoning, which were required to be included in the review, and
perception and categorization.

5.5 Discussion

In this section, we summarize the most relevant results on the
reviewed projects as a whole, independent of the discipline in which

they were evaluated, as most aim to be generally applicable to any
domain. We also discuss other relevant information on the work
reviewed, such as the use of temporal information, the encoding
language, or the main application and domain.

As far as perception and categorization are concerned, most of
the projects focus on situation assessment, providing information
about the environment to handle the situation and make decisions
accordingly. This part is directly related to reasoning because
frameworks such asKnowRob (Tenorth andBeetz, 2009; Beetz et al.,
2018), SWARMs (Li et al., 2017), or PLM (Antanas et al., 2019) use
probability reasoning to generate knowledge about the environment
and its affordances.

All works except ORO (Lemaignan et al., 2010) and OCRA
(Olivares-Alarcos et al., 2022) use explicit knowledge for decision
making and planning. These two focus on answering competency
questions related to actions or planning for actions in future
developments. Geometric and grasp planning are widely used along
with task planners to establish a sequence of atomic actions. PDDL
is the most widely used task planner. Replanning is also important
for some of these articles: TOMASys (Hernández et al., 2018),
RTPO (Sun et al., 2019b), FailRecOnt (Diab et al., 2021), industrial
application (Bernardo et al., 2018), adaptive manufacturing
application (Borgo et al., 2019), and the planetary rover case
(Burroughes and Gao, 2016). In these projects, the objective is to
maintain the operation in the presence of faults. Lastly, some works
also use ontologies to plan in combination with reactive behaviors,
such as OUR-K (Lim et al., 2011), ORO (Lemaignan et al., 2010),
and the planetary rover application (Burroughes and Gao, 2016).
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Prediction and monitoring are less present in the reviewed
articles. This activity requires a fully operational KB used
during runtime and a deeper understanding of the situation
and the autonomous robot. Most of the works monitor only
the environment, such as KnowRob (Tenorth and Beetz, 2009;
Beetz et al., 2018) and OUR-K (Lim et al., 2011). Others only
assess the robot state, such as FailRecOnt (Diab et al., 2021), the
manipulation application (Borgo et al., 2019), and the planetary
rover application (Burroughes and Gao, 2016). Lastly, TOMASys
(Hernández et al., 2018) assesses the robot's state andmission status.

Reasoning is addressed in all the works. All use ontologies to at
least answer queries and verify ontological consistency, as this was
an inclusion requirement for the review. Ontological information
is used at runtime to recover from failure in some frameworks
such as FailRecOnt (Diab et al., 2021), TOMASys (Hernández et al.,
2018), and the planetary rover application (Burroughes and Gao,
2016). Reasoners can download additional required information,
such as RoboEarth (Tenorth et al., 2012), which uses web and cloud
services, or ROSETTA (Stenmark and Malec, 2015), which uses the
KIF server to download and upload libraries.

SWARMs (Li et al., 2017) uses a hybrid context reasoner,
combining ontological rule-based reasoning with MEBN theory
(Laskey, 2008) for probabilistic annotations. PLM (Antanas et al.,
2019) uses a probabilistic logicmodule for grasping,which combines
semantic reasoningwith object affordances. KnowRob2 (Beetz et al.,
2018) takes a further step and provides a hybrid reasoning
kernel that enables physics-based reasoning, flexible data structure
reasoning, and a detailed robotic agent experience.However, this use
comes at a higher cost, as its computation may yield inconsistencies
or inefficient reasoning. For this reason, RTPO (Sun et al., 2019b)
targets knowledge scalability and efficient reasoning by conducting
a study on the performance of real-time reasoning with 52,000
individuals. However, the authors do not describe how this approach
affects the planning process.

Not all frameworks use explicit knowledge during execution;
some of them only perform the action sequence defined in the plan.
Others drive its execution to answer competency questions, such
as OCRA (Olivares-Alarcos et al., 2022) and KnowRob (Tenorth
and Beetz, 2009; Beetz et al., 2018). KnowRob also uses the CRAM
(Beetz et al., 2010) executor to update the KB with information
about perception and action results, inferring new data to make
control decisions at runtime.ORO (Lemaignan et al., 2010) also uses
CRAM to update the server when new objects are detected.

Other approaches use state machines, such as ROSETTA
(Stenmark and Malec, 2015), or the MAPE-K loop
(IBM Corporation, 2005), such as TOMASys (Hernández et al.,
2018) and the planetary rover application (Burroughes and Gao,
2016). Similarly, the manufacturing application of Borgo et al.
(2019) presents a knowledge-based control loop to combine
execution with monitoring.

Other important processes for autonomous systems are
communication and coordination. All ontological systems can be
used easily to answer queries from a human operator. However, this
is not sufficient for reliable autonomy; the ontology can provide
transparent information to complete the knowledge. SWARMs
(Li et al., 2017) enables an abstraction for communication,
networking, and information sharing of heterogeneous data. For
this, ORO (Lemaignan et al., 2010) uses an intelligent blackboard

that allows other modules to push or pull knowledge to a central
repository. RoboEarth (Riazuelo et al., 2015) and ROSETTA
(Stenmark and Malec, 2015) obtain knowledge from other sources.
RoboEarth defines a communication module for uploading and
downloading information from the web, and ROSETTA uses the
KIF server to download and upload libraries.

Coordination between agents and components of the agent
is critical for autonomous operation. ROSETTA provides an
infrastructure for intercomponent communication. Component
coordination is explicitly addressed in TOMASys (Hernández et al.,
2018), the planetary rover from Burroughes and Gao (2016), and
the adaptive manufacturing from Borgo et al. (2019). The USAR
application from Chandra and Rocha (2016) targets multirobot
cooperation for both information sharing and task coordination
with other agents. OCRA (Olivares-Alarcos et al., 2022) also
handles task coordination and plan adaptation but only concerns
human–robot collaboration.

Interaction and designareoftennotexplicitlyhandledduringrobot
operation. However, awareness of interaction allows the robot to step
back from action execution and understand the sources of failure.
TOMASys(Hernández et al.,2018)providesametamodelthatbenefits
from the engineering models used during design time. ROSETTA
also uses the engineering specification of workspace objects, skills,
and tasks as part of the KB. The planetary rover (Burroughes and
Gao, 2016) does not explicitly include any information on design
or requirements; however, it reasons in terms of the capacity of the
services onboard, using some sort of operational requirement to select
among alternatives. Similarly, the autonomous vehicle framework
(Huang et al., 2019) handles requirements such as legality using traffic
rules or reasonableness to support decision making. The adaptive
manufacturing application from Borgo et al. (2019) takes a further
step in modeling engineering and management activities. Lastly,
with regard to dynamical interactions, the OUR-K extension from
Diab et al. (2018) includes this knowledge to support the adaptationof
robotic controllers. PMK (Diab et al., 2019) represents the interaction
as manipulation constraints.

Giventheavailabilityofgeneral learningmethods, all theprocesses
described above can improve their effectiveness through learning.
However, this process is less present in the review. Most articles
use a form of case-based learning when storing previous successful
plans or using episodic memories to recall past situations, such as
CORA (Olivares-Alarcos et al., 2022). Other frameworks, such as
PMK(Diab et al.,2019)andPLM(Antanas et al.,2019),use learningas
part of a situational assessment to categorize perceptual information.

KnowRob provides the most complete learning mechanics. It
learns class structures of entities and identifies manipulation places;
in addition, it generates generalized models of the physical effects of
actions.KnowRob2 (Beetz et al., 2018)makes the learned information
available through the Open-EASE knowledge service (Beetz et al.,
2015). This service enables any user to upload, access, and analyze
episodic memories of robots performing manipulation tasks.

5.5.1 Other aspects
Table 6 depicts other aspects of the frameworks studied, such as

the languages used, the use of temporal conceptualizations, and the
foundational ontologies.

Almost all works use OWL or a combination of OWL
and Prolog as the KB language. For planning, most of them
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TABLE 6 Summary of other aspects of the framework: concrete encoding languages used, incorporation of temporal conceptualizations, and whether
the framework is built upon other works or utilizes an upper-level ontology.

Framework Encoding Lang Temporal Upper-level Ont

KnowRob (Tenorth and Beetz, 2009; Beetz et al., 2018; Tenorth and Beetz, 2013; Waibel et al., 2011;
Tenorth et al., 2012; Crespo et al., 2018; Riazuelo et al., 2015)

OWL, Prolog Intervals DUL

PMK (Diab et al., 2019) OWL, Prolog - IEEE-1872.2 Std

FailRecOnt (Diab et al., 2021; Diab et al., 2020) OWL - DUL

PLM (Antanas et al., 2019) OWL - -

TOMASys (Hernández et al., 2018; Bozhinoski et al., 2022; Aguado et al., 2021) OWL - OASys

OMRKF (Suh et al., 2007) Prolog Context -

SWARMs (Li et al., 2017) OWL - PR-OWL

RTPO (Sun et al., 2019b) OWL, Prolog - -

Planetary Rovers Scenario (Burroughes and Gao, 2016) PDDL, OWL Time Concept -

USAR Scenario (Chandra and Rocha, 2016) OWL - -

Autonomous Vehicles Scenario (Huang et al., 2019) Prolog - -

SAR Scenario (Sun et al., 2019a) OWL - -

OUR-K (Lim et al., 2011; Diab et al., 2018) OWL Context OMRKF

ORO (Lemaignan et al., 2010) OWL - -

OCRA (Olivares-Alarcos et al., 2022) OWL Intervals DUL, KnowRob

ISRO (Chang et al., 2020) OWL, Prolog Time Concept OpenCyc

Service Robot Scenario (Ji et al., 2012) OWL, STRIPS - -

ROSETTA (Stenmark and Malec, 2015; Hoebert et al., 2021; Merdan et al., 2019) PDDL, OWL - -

Industrial Robotic Scenario (Bernardo et al., 2018) OWL - CORA

Adaptive Agents (Borgo et al., 2019) OWL Intervals DOLCE

use geometric planners, such as PLM (Antanas et al., 2019),
along with task planners. In some works, task planners are
custom made, such as the service robot from Ji et al. (2012).
However, in general, task planners are based on ontological
queries, such as the SAR scenario (Sun et al., 2019a), the
industrial application (Bernardo et al., 2018), and the adaptive
manufacturing of Borgo et al. (2019). The planetary rover
(Burroughes and Gao, 2016) and ROSETTA (Stenmark and
Malec, 2015) use PDDL directly, while RTPO (Sun et al.,
2019b) and SWARMs (Li et al., 2017) use a custom approach
similar to PDDL.

Some studies use temporal conceptualizations to address
planning dynamics. Most of them rely on an ordered sequence of
actions. However, KnowRob (Tenorth and Beetz, 2009; Beetz et al.,
2018), OCRA (Olivares-Alarcos et al., 2022), and the adaptive
manufacturing approach use time intervals to recall a time
frame in which the action is executed. OMRKF (Suh et al.,
2007) and OUR-K (Lim et al., 2011) include time as part of

the context ontology, and the planetary rover (Burroughes
and Gao, 2016) and ISRO (Chang et al., 2020) conceptualize
time in their KBs.

6 Research directions and conclusion

Considering the projects surveyed, we believe that ontologies
are a valuable asset that supports robot autonomy. The frameworks
discussed provide an advance towards mission-level dependability,
increasing robot reliability and availability. However, there are both
unsolved issues and valuable possibilities for further research in this
domain.

An unsolved issue is the limited dissemination and
convergence of the different ontological approaches. There is still
insufficient reuse of existing ontologies and interchangeability
or interoperability of the different realization frameworks. In
this direction, KnowRob (Tenorth and Beetz, 2009; Beetz et al.,
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2018) is the most documented and impactful project, as it proves
its influence on other projects such as ORO (Lemaignan et al.,
2010), FailRecOnt (Diab et al., 2021), and OCRA (Olivares-
Alarcos et al., 2022). Ontology convergence is always a challenge
that is exacerbated by the variety of ontologies, both vertical—the
levels of abstraction—and horizontal—the domains of application.
However, efforts must be made to ensure this harmonization,
given the fact that robots are not isolated entities but are always
part of systems-of-systems that share specific forms of knowledge
(Sanz et al., 2021).

We believe that future engineering-grade, knowledge-driven
autonomous robot software platforms should also be capable
of providing three characteristics: explainability, reusability, and
scalability. In the articles under review:

• Explainability is enabled in most cases—at least in a shallow
form—as most frameworks include query/answer interfaces
to provide information on robot operation. However, this
explainability is tightly bound to the capability of the human
user, who is often a robot operator, to fully grasp the
explanation. More broad-spectrum, human-aligned ontologies
are needed to support a wider spectrum of users.
• Reusability is intrinsically present, given the explicitness
of declarative knowledge and the sharing of common
backgrounds, some of which are built on previous works or
upper-layer ontologies. Efforts should made to harmonize
and integrate conceptualizations to effectively reuse
ontologies—especially in heterogeneous systems.
• Scalability and information handling are also partially
addressed in some of the realizations, such as reasoning in
RTPO (Sun et al., 2019b) and KnowRob (Tenorth and Beetz,
2009; Beetz et al., 2018). However, the problems of scalability
remain, such aswhendealingwith complex systems-of-systems,
when addressing geographical or temporal extensive missions,
or when knowledge-based collaboration is required, as is the
case of cognitive multirobot systems or human–robot teams.

Therefore, we propose a shared concern in future works in this
field to improve the capabilities of robots and contribute to the
community in these three aspects. There are already some initiatives,
such as CRAM from KnowRob authors, a software toolbox for the
design, implementation, and deployment of manipulation activities
(Beetz et al., 2010). This toolbox supports planning, beliefs, and
KnowRob reasoners and has been used in other frameworks such as
ORO (Lemaignan et al., 2010).The same authors provide the package
rosprolog, a bidirectional interface between SWI-Prolog and ROS, to
make this logic language accessible to the main robotics middleware.
However, these tools are tailored for KnowRob-based environments
and are sometimes not well documented or maintained.

The conclusions we extract from this survey are that most of the
work is focused on categorization, decision making, and planning.
However, monitoring and coordination are critical processes with
respect to robot control, especially for robust and reliable operation.
These kinds of processes are difficult to assess using reusable
implementations because of the enormous variability between
applications, context, and intervening agents. We propose the
use of explicit engineering models to facilitate these processes.
They are already partially included in TOMASys (Hernández et al.,

2018), ROSETTA (Stenmark and Malec, 2015), the planetary
rover scenario (Burroughes and Gao, 2016), and the adaptive
manufacturing application from Borgo et al. (2019). We believe that
the combination of runtime information with design knowledge can
be used during decision making and to drive adaptation to bridge
the differences between the expected results of robotic users and the
actual robot performance.

7 Conclusion

In this article, we have presented an overview of projects that
use ontologies to enable robot autonomy. We have systematically
searched for works that propose or extend an ontology and use that
knowledge to select, adapt, or plan robot actions.We have compared
approaches in terms of how the processes that support autonomous
operation use and update the supporting ontology. We also
briefly discussed applications, languages, and time representation in
those works.

Conceptualization provides robotswith a path to understanding,
which is a powerful tool for achieving robustness and resiliency.
We have found that most frameworks do not include explicit
engineering knowledge about the robot system itself. Information
about robot components and their interaction, design requirements,
and alternatives enables both explainability and self-adaptation.
Robots are far frommeeting user and owner expectations, especially
in terms of dependability, efficiency, and efficacy. We have found
that task and goal specifications usually lack explicit knowledge of
the user-expected performance. This is necessary information to
create robots that a user can trust because trust depends on the
reliable provision of some user-expected result. For example, this
information could include user phenomenological aspects, required
safety levels, or energy thresholds that make a task unprofitable.

In conclusion, we believe that explicit knowledge can support
autonomous robot operations in unstructured environments.
There are still open issues with respect to reliability, safety, and
explainability to meet the expectations of researchers and the
industry. However, the steps taken by these projects in a variety
of domains to enhance autonomy using ontologies have proven
how promising this approach is. A strong effort in convergence and
harmonization is needed, but this is maximally difficult because the
necessary concepts are situated in the realm of the always elusive
cognitive robot mind.
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