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1 Introduction

Worldwide, a significant number of individuals depend on assistive robotic
technologies, such as sophisticated lower-limb prostheses and comprehensive exoskeletons
to address challenges related to gait and mobility (Laschowski et al., 2020; Hu et al., 2018).
These innovative devices significantly improve the quality of life for people with various
disabilities, enabling them to navigate real-world environments more effectively and with
greater independence. Despite significant advancements in recent decades, these systems
often struggle with prompt and accurate responses to changes in the local environment
Hu et al. (2018). Typically, users either control these systems directly or use semi-
autonomous modes, frequently needing to manually switch locomotion modes to adapt to
different terrains (Laschowski et al., 2022).This requirement imposes an additional cognitive
burden, potentially leading to distraction or injury. Recent research highlights the potential
for substantial enhancements in exoskeleton control systems by transitioning away from
user-initiated to automated locomotionmode changes (such as shifting fromwalking on flat
surfaces to climbing stairs) to more autonomous control systems. A critical aspect of such
systems is their ability to precisely classify the local environment Laschowski et al. (2020)).

Conventionally, the study and diagnosis of gait conditions is conducted in laboratory
settings, where clinicians can control numerous variables and observe patients on a known
walking surface.While this ensures accuracy, it limits the evaluation of gait patterns in varied
natural environments and walking terrains Adamczyk et al. (2023).

Emerging studies, (e.g., Dixon et al., 2018) have demonstrated that gait is materially
affected by the walking surface. Specifically, walking surfaces have been shown to impact
lower-extremity muscle activity (Voloshina and Ferris, 2015), joint kinematics (Dixon et al.,
2021), inter-joint coordination and variability (Ippersiel et al., 2021; Ippersiel et al., 2022),
and joint kinetics (Lay et al., 2006). Freeing researchers from the constraints imposed by the
laboratory requires moving away from measurement systems designed to operate in a fixed
environment, towards more portable hardware solutions that can function in ecological
contexts. One issue that remains, however, is the ability of portable systems to accurately
classify walking surfaces.

Portable gait analysis systems with multiple participant-mounted inertial measurement
units (IMUs) can themselves be used to classify walking terrain. Shah et al. (2022)
used six sensors to distinguish nine surface types in a group of 30 young healthy
adults using a machine learning algorithm. It remains unclear however if terrain
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classification accuracy from IMU data would be affected by patient
pathology. That is, algorithms based on IMU data alone may
incorrectly assess patient pathology or severity of impairment due
to particularities of terrain on which walking is performed.The data
IMUs produce is valuable, but data collection outside of the lab could
cause them to suffer from exactly the problem they are trying to
solve; namely, the lack of a known, controlledwalking surface.While
these mobile systems capture patient gait characteristics, they must
also leverage additional sensor capabilities to simultaneously deliver
an accurate, ground-truth classification of the local walking terrain.

Advancements in Deep Learning, particularly in Convolutional
Neural Network (CNN) architectures, have shown remarkable
success in image classification Krizhevsky et al. (2012). Various
studies (Laschowski et al., 2022; Diaz et al., 2018; Diaz et al.,
2018) have successfully used deep learning and visual data
for accurate terrain identification, but these techniques require
expansive data sets for their training. Combining multiple data
modalities, such as depth sensors (Zhang et al., 2011; Zhang et al.,
2019) and IMUs (Shah et al., 2022) show promise, though more
comprehensive studies (e.g., Zhang et al., 2011), and publicly
available datasets remain scarce. While databases hosting visual
images or depth data are available, few if any exist in this
domain that provide both modalities of data captured of a
single scene (Laschowski et al., 2020). Further, none could be
found that combine these modalities of data with simultaneous
measurement of the device orientation sensors.

The proliferation of interpreted (stereo camera) or directly
measured (LiDAR) depth data into a modern smartphone’s sensor
capabilities presents a new opportunity for terrain classification.
Gyroscopes, magnetometer (compass), and accelerometer
sensors are now included in even modest smartphones and
allow capture of device orientation and inertia at the same
instant as image and depth data. This synergy of visual, depth,
and orientation data can potentially enhance environmental
recognition accuracy.

This paper presents a method to capture a high-resolution,
multi-modal dataset in real-time without expensive, professional
grade equipment, and an novel dataset that can be used in
the aforementioned domains. We expect that providing access
to a dataset that hosts multiple modalities of simultaneously
captured data will prove invaluable to many groups, from
engineers developing high level control systems for exoskeletons,
to researchers studying gait. Whether using visual, depth,
or other modalities of data, terrain classification systems
based on deep learning techniques require voluminous
training data to produce models that are accurate and
generalize well.

We therefore present L-AVATeD: the Lidar And Visual wAlking
Terrain Dataset, a novel, open-source database of visual and LiDAR
image pairs of human walking terrain with simultaneously captured
device orientations.

In this data report, we provide a detailed description of
the dataset, our hardware and methods for collecting the data,
and post-processing steps taken to improve the utility and
accessibility of the data. We conclude with suggestions for
how other researchers may use this dataset. Analyses of the
database for walking terrain classification will be presented in
future work.

2 Methods

2.1 Selection and definition of terrain types

To accurately reflect surfaces common in the built environment
inside and surrounding typical North-American academic and
healthcare institutions, nine terrain classes were chosen for this
investigation: banked-left, banked-right, irregular, flat-even, grass,
sloped-up, sloped-down, stairs-up and stairs-down.

While the class names were designed to be as descriptive as
possible, some explanation is warranted.

The banked-[left, right] labels were applied in cases where
the terrain declined significantly, perpendicular to the direction of
motion. In cases where another class might also apply (e.g., grass,
irregular), these labels were given precedence.

The flat-even class was a base-case; indicating any terrain that
was generally smooth and solid, and neither sloped, banked nor
grassy. Samples may include any material (e.g., concrete, tile) or
color (there are many examples exhibiting bright colours and
patterns).

Irregular surfaces were defined as those that had no slope
up/down or left/right and had enough irregularity that they might
be expected to materially affect gait. Examples include cobblestone,
gravel, and rough mud.

Surfaces were labelled as grass if they were generally flat, similar
to irregular in that they should be neither sloped nor banked, and
consisted primarily of short grasses found on typical found in North
American lawns.

sloped-[up,down] were defined as any surface (including grassy
ones) which had a significant incline or decline in the immediate
direction of motion.

stairs-[up,down] were the easiest to label, and consisted of stairs
of any material, indoors or out.

Examples of visual and LiDAR image from each class can
be seen in Figure 1.

2.2 Data-collection hardware

Apple’s (Apple Inc., Cupertino, USA) iPhone (iOS) was chosen
as the platform for collecting our walking terrain dataset due to
their built-in LiDAR sensor as well as extensive, well-documented
APIs for capturing andmanipulating depth data. Data were captured
on three physical devices (1 iPhone 12 Pro and two iPhone 14
Pros). While it is possible to extract depth data frommobile devices
which interpret depth data using stereoscopic methods Wang et al.
(2019), we chose devices which contain a built-in LiDAR scanner,
for accuracy and consistency.

Visual (RGB) images were captured in landscape orientation
using the front-facing cameras of each of the iPhone 12 and 14. Data
were captured at the native resolution of the sensor: 4,032× 3,024
pixels, RGB, 8-bit per channel and were stored using the Apple High
Efficiency Image File Format (HEIF).

The specifications for the LiDAR scanner are not available
directly from the manufacturer, but Luetzenburg et al. (2021)
performed and in-depth analysis of the iPhone 12/14 LiDAR
hardware (the devices share the same sensor) for applications in
geosciences. Their conclusions coincide with the output LiDAR
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FIGURE 1
(A) Data collection harness with iPhone sensor rig. (B) Approximate data capture field. (C) Example dataset image pairs by class. RGB (top), LiDAR
(bottom) from left: banked-left, banked-right, flat-even, irregular, grass, sloped-down, sloped-up, stairs-down, stairs-up.

depth map dimensions we recorded, at 768 × 576 pixels. In this
dataset, each LiDAR “pixel” uses a full 32-bits to store depth data.

It should be noted that while differing device models were used
to collect samples, both the visual and LiDAR data were identical in
spatial and depth resolution.

2.3 Data collection

Data were collected over 6 months during the spring and
summer of 2023, by three young healthy adult members of our
research lab. Participants were fitted with a chest-mounted mobile-
phone harness. The harness allowed for hands free data capture
and provided some consistency in data capture across participants.
iPhones were clipped to the harness horizontally (i.e., in “landscape
orientation”) using the built-in mount, with an initial angle between
30–50° downward from the horizon. This orientation provided a
wide view of the local walking surface within about a meter in
front of the participant and up to roughly 5 m away, depending on
the local terrain. The variation in mounting angle was similar in
magnitude to the small up anddownvariation of camera field of view
introduced by simple act of walking.This small amount of noise acts,
in effect, as a natural regularizer for the dataset, and will help, e.g., a
Convolutional Neural Network trained on it to better generalize on
unseen data.

A custom iOS application was written to simplify simultaneous
capture and labelling of visual, LiDAR, and device orientation
data at 1 Hz. This capture frequency provided a balance between
volume of data recorded while preventing too many captures of the
same visual scene (i.e., walking terrain). In an individual capture
session, participants would select the terrain type (based on their
visual interpretation upcoming terrain and the definitions above)
in the capture application, tap begin data capture, and terminate
capture before the terrain class changed. The data would then be

automatically labelled and stored on the device. Data were imported
from each device into a central repository and individually reviewed
(by D.W.) for labelling errors. All members who participated in data
collection were briefed on use of the system prior to data collection.

Data were labelled in sequence, with a numeric prefix indicating
the order of capture [000-999], and a unique suffix in the form of a
universally unique identifier (UUID). Every image pair has the same
file name, apart from an additional suffix “_depth” on the LiDAR
disparity map and differing file extension. The gravity vector data
was captured into individual comma-separated-values files, each
with the matching UUID suffix.

7,968 RGB/LiDAR image pairs were captured along with
the device orientation gravity vector, but due to availability of
suitable terrain, class data is imbalanced (Table 1). Class imbalance,
while not ideal, can be easily handled using any number of
techniques when actually making use of the data. While training
a Convolutional Neural Network, for example, oversampling of the
minority class, adding class weights to the loss function, or using
ensemble methods such as bagging and boosting are some common
solutions.

2.4 Post-processing

With the goal of making the dataset more manageable (the raw
dataset is almost 45GBs in size), RGB images were pre-processed
by reducing their size from 4032 × 3024 pixels to 512 × 384 pixels.
Resizing usedApple’s Scriptable ImageProcessing System (SIPS) and
simultaneously converted images to a more standard JPEG format
from their native HEIF format.

Processing the LiDARdata required special care, as it is captured
in a format not readily consumed by typical image libraries.
LiDAR data were captured and stored natively as 32-bit disparity
maps (disparity = 1/distance) and saved to TIFF files. These files
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TABLE 1 Per-class characteristics of the Lidar And Visual wAlking Terrain Dataset.

Class Images Proportion Min. Pitch Max. Pitch Min. Roll Max. Roll

Banked-left 466 5.8% 43.2° 70.2° −11.4° 26.6°

Banked-right 459 5.8% 43.1° 70.7° −23.3° 11.5°

Flat-level 2,339 29.4% 16.4° 78.9° −18.9° 18.2°

Irregular 920 11.5% 20.5° 73.1° −15.2° 16.1°

Grass 1,217 15.3% 17.6° 72.0° −15.6° 17.0°

Sloped-down 510 6.4% 25.6° 73.0° −19.4° 19.7°

Sloped-up 428 5.4% 27.7° 68.4° −14.8° 12.4°

Stairs-down 792 9.9% 22.3° 74.9° −28.8° 21.6°

Stairs-up 837 10.5% 17.6° 86.7° −34.3° 19.6°

were down sampled and normalized using OpenCV Itseez (2015),
converted to 8-bit grayscale, and exported to JPEG. At 768 × 576
pixels, the spatial resolution of the built-in LiDAR scanner is much
lower than the visual camera, and so these images were not pre-
scaled.

A device orientation vector was also recorded at the instant
both the visual and LiDAR data were captured. This orientation
vector is recorded relative to gravity and the iPhone device axes. It is
normalized in each direction in units of the accepted acceleration
due to gravity at Earth’s surface, i.e., 9.8m/s2. These vectors are
difficult to use in their raw (x,y,z) vector format, andwere translated
to more understandable pitch and roll (Equations 1, 2 respectively)
values using the two-element arc-tangent function:

pitch = atan2 (z,x) (1)

and,

roll = atan2 (z,y) (2)

where pitch is defined as the angle down from the horizon, and
roll as deviation either clockwise or anti-clockwise from the horizon
line itself.

3 Discussion

A comprehensive understanding of the local walking context
is crucial both for human gait analysis and the advanced control
systems of robotic prostheses. Relying solely on laboratory analysis
limits researchers’ capacity to accurately evaluate clinical gait in
patients and hinders the optimal functioning of robotic prostheses
in varied ecological contexts. Consequently, conducting studies
across a spectrum of walking terrains is essential to address these
limitations. A ground-truth understanding of walking terrain is
traditionally identified using simple visual data and Deep Neural
Networks, in particular Convolutional Neural Networks (CNNs).
While CNNs are ideal for this classification task, they require
extensive training data which may not be readily available.

Multiple studies ((Ophoff et al., 2019; Melotti et al., 2018;
AlDahoul et al., 2021)) have revealed that classifiers trained using
multi-modal data (and in particular a combination of depth and
visual data) can outperform simple visual classification in object-
detection and image classification (Schwarz et al., 2015). Previous
datasets in the context of walking terrain have provided only a
single modality of data (visual), or have been limited in their
terrain classes. A novel dataset providing walking terrain data,
simultaneously captured in both visual and depth modalities could
therefore provide huge advantages to researchers training visual
classifiers (in particular CNNs) for use in these domains. The L-
AVATeD dataset fills this gap, improving on existing datasets by
providing researchers and engineers a baseline set of multi-class,
multi-sensor, walking terrain data in multiple modalities.

L-AVATeD is notable for being the only open-source database
of its kind to provide not just two, but three modalities of data
captured simultaneously for a given scene of walking terrain.
While not as large as the largest available walking terrain datasets
reviewed by Laschowski et al. (2020), at almost 8,000 samples
L-AVATeD matches the median dataset size. Further, the spatial
resolution of the published RGB images in L-AVATeD (at 4032 ×
3024 pixels) is more than 9 times higher than the highest resolution
presented. Images at resolutions of this magnitude may prove
unwieldy for most neural networks, especially the low-resource-
optimized architectures available for use in mobile and edge-
computation hardware. It remains important however to preserve
as much signal as possible to not limit future research, and so
full-resolution images are provided.

Depth data, captured via LiDAR were in fact saved as
disparity maps (i.e., 1/distance). Notably, signal decreases
as distance increases. At 768 × 576 “pixels” of native
spatial resolution, these too are the most information-dense
depth measurements in any of the environment recognition
systems reviewed in Laschowski et al. (2020). To ensure
we did not introduce any algorithmic bias to the depth
data, the capture program was instructed to replace missing
signal (depth “pixels”) with a placeholder NaN value rather
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than automatically interpolating such points.This allows researchers
to handle the missing data however they see fit, for example,:
replacing with zeros, average depth, or an interpolation scheme.
The raw depth maps are available as TIFF files. To make the depth
data easily accessible, a copy is provided created using a very simple
algorithm of replacing missing data with zeros, normalizing, and
then compressing the depth dimension into 8 bits before saving the
file as a JPEG.This format provides a representation suitable for use
in most deep neural network software packages. It should be noted
however that this simple algorithm is effectively a lossy compression
of the data, and while useful, should not be considered as the most
information-rich representation. Examples of these lossy depth-data
representations can be seen in Figure 1 (bottom row).

Device orientation data were captured as a gravity vector. The
raw data are available as comma-separated values, indexed with
the sample UUID. This raw format is not easily interpreted by
humans, and so each was converted to a more easily understood
pitch (camera angle up and down relative to the horizon) and
roll (camera rotation clockwise and anti-clockwise relative to the
horizon). Per-class pitch and roll statistics are provided in Table 1.
Preliminary post hoc analyses of these statistics do not immediately
reveal significant signal, but used in combination with the RGB
and LiDAR data counterparts, in a deep learning context in
particular could prove fruitful. For example, researchers might
use this data to “de-rotate” an image using the inverse device
rotation angle before passing it into the classifier, potentially
improving classifications where horizon angle of the scene may be
important.

The number of samples in this dataset count almost
two orders of magnitude smaller than the largest datasets
available Laschowski et al. (2020). Its usefulness however
lies not in its number of samples, but in the diversity of
information in those samples. The fusion of multi-modal
sensor data has been shown to enhance task accuracy in
many domains El Madawi et al. (2019), AlDahoul et al. (2021),
Gao et al. (2018). This dataset in particular will be useful
in training accurate control systems for robotic prostheses
Diaz et al. (2018), locomotion modes for wearable robotics
Li et al. (2022), and mobile gait analysis systems. More
specifically, a deep neural network combining multiple CNNs
(for visual and depth data) modulated by device pitch and
roll values could be trained to accurately classify terrain
in real time Laschowski et al. (2022).

These data have been made available through IEEE DataPort,
and users of the L-AVATeD are requested to reference this report.
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