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Introduction: Flow state, the optimal experience resulting from the equilibrium
between perceived challenge and skill level, has been extensively studied in
various domains. However, its occurrence in industrial settings has remained
relatively unexplored. Notably, the literature predominantly focuses on Flow
within mentally demanding tasks, which differ significantly from industrial tasks.
Consequently, our understanding of emotional and physiological responses
to varying challenge levels, specifically in the context of industry-like tasks,
remains limited.

Methods: To bridge this gap, we investigate how facial emotion estimation
(valence, arousal) and Heart Rate Variability (HRV) features vary with the
perceived challenge levels during industrial assembly tasks. Our study involves
an assembly scenario that simulates an industrial human-robot collaboration
task with three distinct challenge levels. As part of our study, we collected
video, electrocardiogram (ECG), and NASA-TLX questionnaire data from 37
participants.

Results: Our results demonstrate a significant difference in mean arousal and
heart rate between the low-challenge (Boredom) condition and the other
conditions. We also found a noticeable trend-level difference in mean heart rate
between the adaptive (Flow) and high-challenge (Anxiety) conditions. Similar
differences were also observed in a few other temporal HRV features like Mean
NN and Triangular index. Considering the characteristics of typical industrial
assembly tasks, we aim to facilitate Flow by detecting and balancing the
perceived challenge levels. Leveraging our analysis results, we developed an
HRV-based machine learning model for discerning perceived challenge levels,
distinguishing between low and higher-challenge conditions.

Discussion: This work deepens our understanding of emotional and
physiological responses to perceived challenge levels in industrial contexts
and provides valuable insights for the design of adaptive work environments.

KEYWORDS

human-robot interaction, flow, heart rate variability, emotion estimation, collaboration,
industry 5.0, task load, machine learning
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1 Introduction

Flow or Effortless attention is often described as a state
of optimal experience. It is characterized by high levels of
engagement, a sense of control, and complete immersion
in an activity (Csikszentmihalyi, 2000; Nakamura and
Csikszentmihalyi, 2002; Csikszentmihalhi, 2020).This state emerges
when the challenges presented by the task match the individual’s
skills and abilities. Flow is associated with a feeling of intrinsic
motivation, enjoyment, and focused attention, leading to improved
performance and a positive experience.

While extensive research (Nah et al., 2014; Stamatelopoulou et al.,
2018; dos Santos et al., 2018; Pearce, 2005) has been conducted
on the concept of Flow across various domains, such as sports,
education, and gaming, its application in industrial settings remains
relatively unexplored. Moreover, the tasks studied in the literature
on Flow experience are mentally demanding, which is not typical
in an industrial task. Considering the significance of Flow in
optimizing performance and wellbeing at work (Csikszentmihalyi
and LeFevre, 1989; Csikszentmihalhi, 2020), it is imperative to
bridge this research gap and explore the Flow experience in
industrial environment (Fullagar et al., 2018; Beyrodt et al., 2023).

To address this gap, we designed an assembly task within a
laboratory work cell, closely resembling an industrial setting. This
task involved collaboration between a participant and a collaborative
robot (cobot) to assemble gearboxes. By adjusting the production
rate of the cobot, we created three distinct levels of challenge that
correspond to the three commonly studied states in Flow research
(Boredom, Flow, and Anxiety). This enables us to analyze the
emotional and physiological responses to different challenge levels
during an industry-like human-robot collaboration (HRC) task.

The assembly tasks in industrial settings typically involve
repetitive and fixed procedures. As a result, workers gradually
acquire the necessary skills to proficiently perform the task, leading
to minimal variations in their individual skill levels over time. In
such cases, the primary factor that influences the experience of
Flow becomes the perceived level of challenge presented by the
tasks. This unique aspect of industrial tasks has led us to specifically
investigate how different perceived challenge levels evoke distinct
responses. Recognizing that Flow emerges when there is a balance
between perceived challenge and skill, our goal is to adapt the task by
adjusting the challenge level to facilitate flow among cobot workers.

Recent studies (Lee, 2020; Rissler et al., 2020; Di Lascio et al.,
2021) have explored the automatic detection of flow at work through
physiological signals. They detect either the presence of Flow (Flow
vs. No Flow) or classify the intensity of Flow (low vs. high). However,
considering the specific characteristics of industrial assembly tasks,
we have taken a different approach—detecting the level of perceived
challenge. This approach aligns logically with our objective of
adapting the task’s challenge level. Moreover, manipulating the
perceived challenge of a task is typically easier than manipulating
the flow experience itself. This is partly because while achieving a
balance between challenge and skill is necessary for flow, it is not
adequate by itself.

In summary, our contributions involve investigating facial
emotion estimation (valence and arousal) and heart rate variability
as indicators of perceived challenge levels within the context of
industrial assembly tasks. Through our analysis, we have trained

a model to predict perceived challenge levels. Our findings hold
the potential to inform the design of adaptive work environments,
dynamically adjusting challenge levels based on real-time feedback,
thus fostering optimal worker experiences.

2 Background and related work

2.1 Concept of flow

Flow is a state of optimal experience that is conducive to
improving performance and positive experiences. Studies have
identified many characteristics of Flow including intense focus,
immersion, and a sense of control (Nakamura andCsikszentmihalyi,
2002; Csikszentmihalhi, 2020; Lee, 2020). One of the necessary
conditions for Flow is the balance between Challenge and Skill,
i.e., the individual’s skill level matches the level of challenge of the
task. As illustrated in Figure 1, the imbalance between challenge and
skill can lead to negative experiences of Boredom and Anxiety. On
one hand, when the task challenge is higher than the skill level of
the individual, it leads to Anxiety. On the other hand, when the
challenge is much lower than the individual’s skill level, it leads
to feelings of Boredom. Although studies have identified other
experiences in the challenge-skill model, we consider the simple
three-channel Flowmodel (Csikszentmihalyi, 2000; Pearce, 2005) in
this study.

Some studies have confirmed the correlations between
physiological arousal and the states in the challenge-skill model
(Peifer et al., 2014; Tozman et al., 2015). Specifically, Peifer et al.
proposed amodel where arousal increases fromBoredom toAnxiety
(see Figure 1). In other words, Boredom is a low arousal state, Flow
can be viewed as a moderate arousal state and Anxiety is a high
arousal state. Some studies (Nacke and Lindley, 2008; Mauri et al.,
2011) also showed Flow to be a positive valence, high arousal state.
Furthermore, studies such as Gilroy et al. (2009) and Beyrodt et al.
(2023) characterize Flow as a positive dominance and positive
valence emotional state, distinguishing it from Boredom and
Anxiety, which are associated with negative dominance and negative
valence. This motivated our exploration of emotion estimation
values for distinguishing Boredom, Anxiety, and Flow states.

2.2 Flow and heart rate variability

Many studies have investigated the relationship between Flow
and various physiological signals like cardiovascular function,
Electromyography (EMG), respiration, etc. (Kivikangas et al., 2006;
De Manzano et al., 2010; Peifer, 2012; Gaggioli et al., 2013). Among
the physiological signals, the most promising and well-researched
signal is Heart Rate Variability (HRV). HRV is computed from
the variation in time intervals (typically measured in milliseconds)
between successive heartbeats. HRV can be computed from
Electrocardiogram (ECG) signals obtained via chest-worn devices
or from Photoplethysmography (PPG) or Blood Volume Pulse
(BVP) measurements captured using hand-worn devices.

EDA (Electrodermal activity) is another physiological signal
typically employed in real-time flow detection models. However,
in the context of Flow detection, HRV has a higher distinguishing
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FIGURE 1
(A) An illustration of Boredom, Flow, and Anxiety states in terms of Challenge and Skill, commonly known as Csikszentmihalyi’s three-channel Flow
model. (B) A mapping of Boredom, Flow, and Anxiety on emotional dimensions of Valence, Arousal, and Dominance based on the literature.

capability than EDA (Knierim et al., 2018). Moreover, as seen in the
next section (Section 2.3), incorporating EDA does not necessarily
improve the Flow detection performance. Hence, in this work, we
primarily focus on the relationship between Flow and HRV.

The previous research mentioned below has linked Flow to
the activation of the autonomic nervous system (ANS). Both
sympathetic activation (resulting in arousal) and parasympathetic
activation (resulting in relaxation) of the ANS have been associated
with the various states of the Flow model (Knierim et al., 2018).
Specifically, sympathetic activation is associated with increased
heart rate (HR), while parasympathetic activation is correlated with
decreased heart rate (Pham et al., 2021). HRV features are known
indicators of both types of activation, making them well-suited for
analyzing experiences within the Flow model. Flow state is often
associated with an increase in HR and a reduction in inter-beat
intervals or mean HRV (Tian et al., 2017). Although many studies
have investigated the low-frequency (LF) and high-frequency (HF)
components of HRV, there is no clear consensus on how these
features vary with flow.

De Manzano et al. (2010) were one of the first to investigate
physiological responses in Flow states. They studied HRV, facial
EMG, and respiration of professional pianists in their experiment.
They investigated mean and power spectrum (LF/HF, total power)
features of HRV and found significant correlations between
all three measures and Flow. Building on the work by De
Manzano et al., Jha et al. (2022) studied pianists’ HRV (low and high
frequencies) derived from ECG collected before, during, and after
a performance. They also found a trend-level positive correlation
between LF/HF and Flow.

Keller et al. (2011) studied how HRV features varied between
Boredom, Anxiety, and Flow conditions of a knowledge task
(computerized quiz game). They experimentally demonstrated the
relationship between mean HRV and mental task load. Boredom
led to highest mean HRV, and the other two conditions showed

a decrease in HRV. They also collected cortisol measurements to
determine whether the decreased HRV in the Flow condition was
due to engagement or mental strain. They found that the cortisol
measurements were similar to the Anxiety condition, suggesting a
stress response.

Building on the observations of Keller et al., Peifer et al. (2014)
demonstrated the relationship between Flow and physiological
arousal using HRV features. They utilized a game which the
participants played after experiencing a stressful situation. They
found that the flow experience under stress involves both moderate
arousal (low-frequency) and increased relaxation (high-frequency)
in HRV, indicating both sympathetic and parasympathetic
activations in Flow state.

Expanding on previous research, several studies employed
games with varying challenge levels (Boredom, Anxiety, and
Flow) to investigate participants’ physiological responses. The
findings corresponding to their HRV analyses are summarized
here. While Harmat et al. (2015) suggested a link between Flow
and reduced LF, their findings lacked statistical significance.
In contrast, other studies such as Bian et al. (2016), Tian et al.
(2017), and de Sampaio Barros et al. (2018) reported a linear
relationship between task difficulty and heart rate (lowest during
Boredom, highest during Anxiety) and mean HRV (highest during
Boredom, lowest during Anxiety). Additionally, Bian et al. observed
an inverted U-shaped relationship between Flow and both LF and
HF components of HRV.

Similar to gaming scenarios, Tozman et al. (2015) investigated
how the low- and high-frequency components of HRV varied
during Boredom, Anxiety, and Flow conditions. They utilized a
virtual driving simulator to induce the three conditions.They found
that both LF and HF components decreased with increasing task
difficulty.

Moving away from laboratory situations, Gaggioli et al. (2013)
investigated Flow-experience during daily activities of university
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students. They found correlations between Flow and certain HRV
features (heart rate and LF/HF ratio). However, they did not analyze
the type of activities or the challenge (mental, physical, etc.).

In their study, Knierim et al. (2019) explored the experience of
flow in arithmetic (boredom, flow, overload) and scientific writing
tasks. They analyzed RMSSD (lower values imply higher stress) and
HF features of HRV. Results showed higher RMSSD in the flow
condition compared to overload in arithmetic tasks, indicating lower
stress. Moreover, they observed a trend-level decrease in HF with
increasing challenge, consistent with previous findings. However,
these features remained consistent throughout the writing task, but
were lower compared to arithmetic tasks, suggesting a higher arousal
state. This study underscores the variability in flow experience even
within similar tasks.

The focus ofmost of theseworks is the relationship betweenFlow
and HRV features involving mentally demanding tasks. However,
assembly line tasks in an industrial setting seldom involve a high
mental load. Thus, it is yet to be investigated whether similar
HRV variations can be observed during varying challenges of
assembly tasks.

2.3 Detecting flow at work

Some studies have proposed automatic Flow detection models
using physiological signals in the context of games (Chanel et al.,
2008; Chatterjee et al., 2016; Maier et al., 2019). They typically
induce varying difficulty/challenge levels in the game and classify the
corresponding physiological data. Recently, a few studies described
below have proposed Flow detectionmodels for activities that occur
in the workplace.

Müller and Fritz (2015) proposed prediction of progress (Stuck
vs. in Flow) during software programming tasks. They used various
physiological signals including HRV (from BVP), pupil features,
and EDA, and obtained an accuracy of 67.7%. Lee (2020) studied
the classifications of Flow using signals similar to Müller and Fritz
in a lab study involving researchers and graduate students doing
knowledge tasks (editing spreadsheets, reading and summarizing,
answering patent questions, etc.).

Rissler et al. (2020) proposedmachine learningmodels to detect
low-flow vs. high-flow using ECG-based HRV features during work
scenarios. They conducted two experiments - one in the lab and
the other in-the-wild. For the lab experiment, they recreated an
invoice-matching task where participants had to match invoices
with corresponding payments. They induced challenges by varying
levels of arithmetic calculations. For the in-the-wild study, they
recruited software developers doing their regular work activities.
They achieved an accuracy of 68.5% in the lab setting and 70.6% for
the in-the-wild study.

Inspired by Rissler et al., Di Lascio et al. (2021) investigated
the use of physiological signals (BVP, EDA) along with context
information to predict low and high Flow instances. They studied
the daily activities of university employees (professors, researchers,
PhDs). Considering the individualmodalities, they obtained the best
accuracy of 67.46% using HRV features. Their best model (accuracy
of 70.93%) was a fusion of raw BVP, EDA, and context information.
Notably, their accuracy is on par with Rissler et al., who used only
HRV features to detect Flow.

All the above-mentioned studies focus on mentally demanding
tasks and often involve specific groups like researchers or software
developers. Neither the tasks nor the participant groups are similar
to the industrial scenario that we target in our study. Additionally,
we note that the models proposed attempt to detect Flow (Flow
vs. No-Flow, Low-Flow vs. High-Flow), plausibly because of low
control over the challenge levels in the study scenarios. However,
the scenario we consider is more similar to the games mentioned
previously, where the cobot behavior and the corresponding
challenge levels can be better controlled. Hence, we adopt an
approach of classifying perceived challenge levels rather than
detecting Flow.

2.4 Research questions

Based on the gaps identified in the literature, we formulate
two research questions. The first question addresses the need
for analyzing the emotional and physiological responses to
varying levels of challenge during an industry-like human-robot
collaboration scenario. It is not clear whether responses would
be similar to the tasks where the challenges depend mainly on
mental load.

RQ 1a. Are there differences in the emotional responses
(valence and arousal) of participants during different levels of
challenge?

RQ 1b. Are there differences in the physiological responses
(heart rate variability features) of participants during different levels
of challenge?

The second question addresses the feasibility of developing
a model to predict the perceived challenge level based on the
emotional and physiological data. Such a model could be employed
to adapt the cobot behavior to provide an optimal challenge that
matches the skill level of the operator and thus supports the
occurrence of Flow state.

RQ 2. Can we train a model with accuracy comparable to
the state-of-the-art Flow detection models to predict the perceived
challenge level using the emotional and physiological data?

3 Materials and methods

3.1 Experimental setup

The study is carried out in a lab-based environment set up to
emulate an industrial collaborative robotic workcell. Figure 2 shows
a participant working in direct contact with a Fanuc CRX-10iA/L
cobot (an industrial robotic arm) mounted in the corner of an L-
shaped table arrangement. The table in the front is used by the
participant for his/her part of the assembly, while the table on the
side is equipped with a matrix of pre-assembled components (sub-
assemblies) ready to be picked up by the cobot. The product to be
collaboratively assembled is the planetary gearbox (Redaelli et al.,
2021) represented in Figure 3. Half of the components are put
together manually by the participant, while the other half is pre-
assembled on the cobot’s table as if produced by an additional part of
the production line that has not been reproduced in this laboratory
setup. We decided to undertake this approach in order to have
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FIGURE 2
An overview of the experimental setup where the participant is assembling one product in collaboration with a cobot. The frontal webcam is used to
record a video of the participant’s face during the interaction. The participant is also wearing a chest band (not visible) under the t-shirt that
records ECG.

FIGURE 3
A picture of one finished planetary gearbox assembled collaboratively
by both the participant and the cobot.

more flexibility in the production rate of the cobot for the tested
experimental conditions, as explained in detail in Section 3.2.

During each production cycle, the cobot’s task is to bring a
pre-assembled part to the participant and hold it in a convenient
position for the final joint activity of the production cycle (gears
meshing), as represented in Figure 2. The cobot is equipped with a
detection camera (Pickit3D camera) and a gripper (Robotiq Hand-
e parallel gripper) mounted on its wrist enabling it to pick up one
of the pre-assembled sub-assemblies and bring it to the participant.
There were no locating errors because the matrix positions were

pre-determined and known to the cobot. During the joint activity,
the cobot stayed in the joint meshing position until the participant
pressed a foot switch to trigger the release ofmeshed sub-assemblies.
The cobot performed a scanning motion over the sub-assembly
matrix during idle periods (i.e., when it was not performing actions
for the joint meshing).

We collected three types of data to evaluate how the participants
responded to the experimental conditions—face video, ECG data,
and NASA-TLX (Hart and Staveland, 1988) questionnaire. A
Logitech C920 Pro HD webcam is placed in front of the participant
(around 1.5 m away) and used to record their face videos in 1920 ×
1080 at 25 frames per second. The participants wore a Polar H10
chest band that captured their ECG signals at 130 Hz. The chest
band was paired with an Android phone to receive and store the
raw signals.

3.2 Experimental conditions

While previous works (Kulić and Croft, 2007; Arai et al., 2010;
Koppenborg et al., 2017; Kühnlenz et al., 2018; Gervasi et al., 2022;
Zakeri et al., 2023) in HRC investigated a robot’s movement speed
and proximity as factors that induce stress and anxiety, these factors
have not been shown to induce boredom or flow. Based on our
previous exploratory study (Mondellini et al., 2023), we identified
production rate as a factor influencing boredom and flow, in
addition to anxiety. We observed three distinct scenarios based on
the production rate of the participant and the cobot—participant
waiting for the cobot, cobot waiting for the participant, and
synchronized assembly. We translated these scenarios into three
distinct challenge levels of the assembly task to elicit the states in the
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simplified Flow model. The cobot behavior was modified to achieve
these three challenge levels, as described below.

1. Slow condition: The cobot performs a scanning motion over
all the sub-assemblies using the camera on its wrist before
picking one of them up and bringing it to the user. Overall,
it takes around 55 s from the start of each production cycle for
the cobot to get to the participant for the joint activity.

2. Fast condition: The cobot does not perform any scanning
motion, it moves straight to the next sub-assembly to pick up
and bring it to the participant. Overall, it takes around 15 s
from the start of each production cycle for the robot to get to
the participant for the joint activity.

3. Adaptive condition: The cobot performs the previously
mentioned scanning motion until the researcher, acting as a
Wizard of Oz, triggers it to bring one sub-assembly to the
participant. There is no fixed timing for the cobot in this case,
i.e., the wizard triggers the cobot whenever the participant is
close to finishing his/her part of the assembly.

The Slow condition represents a low level of challenge for the
participants since they have plenty of time to finish their part of the
assembly before the cobot comes for the joint activity. This leads
to the participant waiting for the cobot and plausible experience
of Boredom. The Fast condition is expected to be perceived by the
participants as a high level of challenge since they do not have
enough time to assemble before the arrival of the cobot. This leads
to the cobot waiting for the participant and could elicit Anxiety
in the participants. The Adaptive condition is designed to be the
optimal level of challenge since the production rate of the cobot is
tuned according to the participant’s performance. The experimental
conditions and the associated emotional states were validated in
another study (Beyrodt et al., 2023).

3.3 Experimental protocol

The experiment started with a preparation phase where the
participants were introduced to the setup and the task. They were
briefed about the data that would be collected and subsequently were
administered the informed consent form. They were also informed
that they could withdraw their participation at any point during
the experiment. After signing the consent form, we collected their
demographic information. They were also requested to wear the
chest band for collecting ECG data. In this phase, the participants
were encouraged to practice the assembly task until they were
familiar with the task. A researcher was present in the room
throughout the experiment to fix any technical errors that may
occur during the sessions. He was also the Wizard in the Adaptive
condition. He was fluent in both Italian and English. Depending
on the participant’s preference, the instructions and questionnaire
were provided in Italian or English. He avoided any superfluous
interactionwith the participants and the participants were requested
to defer any comments about the experimental sessions till the end
of the experiment.

As illustrated in Figure 4, we follow a within-subjects design.
Every participant is administered all three experimental conditions
with 5 min of break between consecutive sessions. Each condition
lasts 15 min during which the participant keeps assembling

gearboxes one after the other. The order in which the three
conditions are administered is chosen randomly, in order to average
out any side effect that may be caused by the sequence. During the
break, the participants fill out the NASA-TLX questionnaire about
the task load and experience pertaining to the completed session.
After the three sessions, the participants are debriefed about the
experiment.

3.4 Participants and ethics

A total of 37 adult volunteers (8 females and 29 males) aged
18–48 years (mean = 29.03, SD = 7.08) were recruited for the study.
The participants were students and staff from the National Research
Council—Lecco campus and were mostly Italians (Italians—33,
non-Europeans—4). All the participants were recruited through
word-of-mouth and advertising in public areas.Note that none of the
participants had prior experience working with an industrial cobot.

The study has been conducted according to the guidelines
of the Declaration of Helsinki and approved by the institute’s
ethics committee (protocol 0085720/2022). All the participants were
briefed about the study and the details of data treatment before
signing an informed consent form.

3.5 NASA-TLX questionnaire

The NASA-TLX questionnaire comprises six sub-scales that
represent the factors relating to workload:Mental Demand, Physical
Demand, Temporal Demand, Frustration, Effort, and Performance.
Each sub-scale is rated from 1 (very low) to 20 (very high). We
chose to use this questionnaire as it indicates what type of task load
is experienced by the participants. As discussed in Section 2, the
studies in the literature focus on mentally demanding tasks. In our
case, the higher production rate of the cobot would lead to a higher
number of completed assemblies. Hence, we anticipate the task load
to be attributed to physical and temporal demand.

3.6 Emotion estimation model

For our analysis, we employed a Social Signal Interpretation
(SSI) pipeline (Wagner et al., 2013) to capture, process, and
estimate emotions from the facial expressions of the participants.
To detect the face region, we utilized MediaPipe’s Blaze face
detectionmodel (Bazarevsky et al., 2019). Subsequently, we cropped
the images within the detected face regions. The cropped face
images served as input to a deep-learning model trained to predict
emotions. The model classified images into seven discrete emotion
classes: Neutral, Happy, Sad, Surprise, Fear, Disgust, and Anger.
Additionally, the model provided two continuous values (in the
range [−1, 1]) for each image: Valence and Arousal.

The model was trained on the AffectNet dataset
(Mollahosseini et al., 2019) following pre-processing as Toisoul et al.
(2021), resulting in 218, 827 images split into 7 emotion classes (85%
training, 15% validation). Ourmodel consisted of a VGG16 network
connected to a fully connected layer, followed by three prediction
layers for 7 emotion classes (Softmax activation), valence (Tanh
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FIGURE 4
An overview of the experimental protocol consisting of three conditions (Slow, Fast, Adaptive). To mitigate any ordering effect, the condition sequences
were counterbalanced among participants.

activation), and arousal (Tanh activation). All input images were
scaled to 224× 224 pixels and augmented with techniques such
as width shift, height shift, zoom, and horizontal flip. The SGD
optimizer with an initial learning rate of 0.001, reduced by a factor
of 0.1 after 70,000 steps, was employed. The neural network and
training approach was adapted from Prajod et al. (2021, 2022) as
it has been validated to learn facial action units, a key aspect of
emotion recognition. For discrete emotion classification, the focal
loss function (Lin et al., 2017) was used, and for valence and arousal
prediction, the shake-shake loss function (Toisoul et al., 2021) was
utilized. Early stopping (patience = 5) was employed to prevent
over-fitting by halting training when validation loss stagnated for 5
consecutive epochs. As demonstrated by Nunnari et al. (2023), this
model achieved performance comparable to the state-of-the-art.

We applied the model to the videos obtained from the three
experimental conditions. This yielded a sequence of frame-wise
emotion estimations, providing a characterization of each session.
To ensure the reliability of the estimations, frames in which no
face was detected were excluded from further analysis. Additionally,
emotions experienced during the initial periodmaynot be indicative
of the participants’ overall experience of the session, as it takes some
time for them to fully engage and respond to the robot’s behavior.
Therefore, we exclude the estimations from the first 5 min.

3.7 HRV features

We extract HRV features from the ECG data collected from
the participants. The ECG signals go through a series of cleaning
steps before we extract the HRV features. We apply a second-
order Butterworth band-pass filter (8–20 Hz) to remove noises
in the signal (Elgendi et al., 2010; Prajod and André, 2022). We
segment the ECG signals into 1-minute-long segments using a
sliding window with shifts of 1 s. We detect the heartbeats using
the method proposed by Elgendi et al. (2010). We discard an ECG
segment if there is a missing beat or false detections (too many
beats). A segment is deemed to have missed a beat if the time
between any two consecutive beats is more than 1200 milliseconds
(leading to a heart rate < 50 beats per minute). Similarly, if any two
consecutive beats occur less than 333.33 milliseconds apart (heart
rate > 180 beats per minute), then we consider the segment to
have points that are wrongly detected as beats. Using NeuroKit2
(Makowski et al., 2021) python library, we compute 22HRV features
from the time domain, frequency domain, and poincaré plots
(Prajod and André, 2022; Heimerl et al., 2023).

Similar to emotion estimation (see Section 3.6), we exclude the
data from the initial 5 min of each session. Additionally, we also

TABLE 1 The average responses to the NASA-TLX questionnaires (on a
20-point scale) after each condition.

Category Slow Fast Adaptive

Mental demand 4.81 6.35 4.95

Physical demand 4.59 6.84 5.05

Temporal demand 4.73 10.54 6.08

Effort 5.16 7.76 5.65

Performance 7.30 6.81 6.81

Frustration 5.35 5.35 4.27

The bold values indicate the highest average score between the three conditions for
each category.

exclude nine participants who do not have at least 5 min of clean
ECG data in each of the sessions.

4 Analysis and results

4.1 Task load analysis

We first analyze the responses of the participants to the NASA-
TLX questionnaire.Themean response values for each condition are
reported in Table 1.

The Fast condition resulted in the highest Effort, Mental,
Physical, and Temporal demands. The Slow condition scored lowest
in these categories. As mentioned in Section 3.5, such a difference
was expected in Temporal and Physical demands, but it is interesting
to see that the cobot’s production rate affected other categories
of task load. However, from the magnitude of the differences, the
primary source of task load is the Temporal demand.

Although the number of assemblies was the highest in the
Fast condition and lowest in the Slow condition, the perceived
Performance was highest for the Slow condition. Another notable
observation is that the participants experienced lower frustration in
the Adaptive condition.

4.2 Emotion estimation analysis

Our emotion analysis primarily focused on the valence and
arousal values, as continuous values provide a more dynamic
estimation of emotions. To examine the overall emotional
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estimations per session, we computed the mean valence and arousal
values for each participant. Averaging over all participants, the
mean valence levels (Slow: −0.025, Fast: −0.018, Adaptive: −0.023)
are lowest for the Slow condition and highest for the Fast condition.
The mean arousal values (Slow: 0.053, Fast: 0.074, Adaptive: 0.071)
also follow a similar trend.

To evaluate the statistical significance of the differences in mean
valence and arousal values across the experimental conditions,
we conducted a repeated measures ANOVA. The assumptions of
homogeneity of variance (Levene test) and normality (Shapiro-Wilk
test) were met by the samples, validating the application of the
test. There was a statistically significant difference in mean arousal
between at least two conditions (F= 8.23, p < 0.001).However, there
was no significant difference in mean valence between conditions.

To identify specific conditions that exhibited significant
variations in mean arousal, we performed post hoc pairwise t-
tests between every pair of conditions. To account for multiple
comparisons, we utilized the Holm correction method for the post
hoc tests. Post hoc tests indicated that the Slow condition differed
significantly in arousal from both the Fast (p = 0.012) and the
Adaptive (p = 0.015) conditions. We found no evidence that there is
a significant difference in mean arousal levels between the Fast and
the Adaptive conditions (p = 0.884).

Although we found a significant difference in arousal levels
between Slow and higher-challenge conditions, the mean arousal
values in all three conditions are in the range [0, 0.1]. These values
are typically associated with a neutral emotional state. So, the facial
expressions of the participants are not a good indicator of the
perceived challenge level (RQ 1a).

4.3 Heart rate variability analysis

One of the commonly used ECG features in Flow detection is
the heart rate (HR) (Rissler et al., 2020), which is measured in terms
of beats per minute. In this section, we use HR as an example to
describe the analysis process.The same analysis is repeated for all 22
HRV features.

To mitigate the effects of individual differences, we applied
MinMax normalization to HR and other HRV features of every
participant. We plotted the normalized mean HR in the three
conditions as visualized in Figure 5A. Similar to emotion estimation,
the HR tends to be highest in the Fast condition (mean = 0.554),
followed by the Adaptive condition (mean = 0.485), and the lowest
in the Slow condition (mean = 0.402).

Similar to Section 4.2, we performed a repeated measure
ANOVA on the average normalized HR values. We confirmed that
the samples met the assumptions of homogeneity of variance and
normality. We obtained a statistically significant difference between
at least two conditions (F = 10.59, p < 0.01). Post hoc pairwise t-
tests with Holm correction revealed a significant difference between
the Slow condition and the other two conditions (Fast p < 0.001,
Adaptive p = 0.038).There was only a trend-level difference between
average heart rates of Fast and Adaptive conditions (p = 0.056).

Our mean HR and HRV analysis show trends similar to the
observations of studies in the literature (see Section 2), which
predominantly focused on mentally demanding tasks. As seen in
Figure 5, HR increases with challenge level and HRV decreases

with challenge level. The Adaptive condition resulted in a relatively
moderate HR and HRV, which is expected in a challenge-skill
balanced condition. We also plotted average LF and HF features as
they are often studied in the Flow literature. Both LF and HF show a
decreasing trend (see Figure 6), with the highest values in the Slow
condition and the lowest in the Fast condition.

Table 2 lists the outcomes of the statistical analysis for all the
HRV features that we extracted. The first 13 features are temporal
features, the next 5 belong to the frequency domain, and the last 4
are derived from the poincaré plots. Detailed descriptions of these
features can be found in Prajod and André (2022). The “∗” symbol
indicates that the result is deemed statistically significant (p <
0.05). Some of the HRV features, particularly from the temporal
domain, show significant differences in the ANOVA test even after
post hoc Holm p-value correction. Hence, HRV features could be
good indicators of perceived challenge levels during human-robot
collaboration tasks as well (RQ 1b).

4.4 Challenge prediction

The significance test results of heart rate variability features are
promising. Hence, using HRV features, we trained simple feed-
forward neural networks to predict the challenge level experienced
by the participants. We consider two cases:

• two-class prediction—discerning between three conditions
(Slow vs. Fast vs. Adaptive)

• three-class prediction—discerning between two conditions
(Slow vs. Fast/Adaptive)

In the second case, we combine the data from the Fast and Adaptive
conditions.This casewas considered after the analyses fromprevious
sections (see Sections 4.2, 4.3), which revealed that, in the majority
of cases, there were no significant differences between the Fast and
Adaptive (C2 vs. C3) conditions.

We use a neural network architecture comprising an Input layer,
and two hidden layers (ReLU activation) with 12 and 6 nodes,
respectively. Tomitigate over-fitting, we added a Dropout layer (rate
= 10%) after the Input layer. Depending on the prediction case, the
Output layer (Softmax activation) had 2 or 3 nodes. The models
were trained in batches of 128 samples and using an SGD optimizer
with a learning rate of 0.01. For robust results on unseen data,
we used the leave-one-subject-out (LOSO) evaluation method. The
average performance results of the challenge prediction models are
reported in Table 3.

The two-class perceived challenge prediction achieves much
better performance than the three-class prediction. The heart rate
variability analysis in Section 4.3 indicated that this was a plausible
outcome. Although the accuracy of the two-class model may not be
notably high for a binary classifier, the model performs comparably
to the flow detection models in the literature (see Section 2.3). In
otherwords, this performance is comparable tomentally demanding
scenarios, indicating that the low accuracy of themodel is not due to
the physical or temporal demands of the task. Hence, we infer that
differentiating between low- and high-challenge conditions using
HRV features in a human-robot collaboration scenario is a feasible
goal (RQ 2).
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FIGURE 5
Box plots of the normalized mean HR (A) and normalized mean HRV (B) of participants in the three conditions. The dotted line on each box plot
represents the mean value of the distribution.

FIGURE 6
Box plots of the normalized mean LF (A) and normalized mean HF (B) of participants in the three conditions. The dotted line on each box plot
represents the mean value of the distribution.
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TABLE 2 Significance test results for the HRV features.

Feature ANOVA Post hoc C1 vs. C2 C1 vs. C3 C2 vs. C3

Time domain features

HR p < 0.001 ∗ p = 0.002 ∗ p < 0.001 ∗ p = 0.038 ∗ p = 0.056

Mean NN p < 0.001 ∗ p = 0.002 ∗ p < 0.001 ∗ p = 0.038 ∗ p = 0.054

SD NN p = 0.017 ∗ p = 0.231

CV NN p = 0.553 p = 0.553

Median NN p < 0.001 ∗ p < 0.001 ∗ p < 0.001 ∗ p = 0.018 ∗ p = 0.027 ∗

Mad NN p < 0.001 ∗ p = 0.018 ∗ p < 0.001 ∗ p = 0.046 ∗ p = 0.052

RMSSD p = 0.123 p = 0.862

SDSD p = 0.121 p > 0.99

IQR NN p = 0.005 ∗ p = 0.082

pNN50 p = 0.026 ∗ p = 0.255

pNN20 p < 0.001 ∗ p = 0.005 ∗ p < 0.001 ∗ p = 0.146 p = 0.012 ∗

TI NN p = 0.552 p > 0.99

TI p < 0.001 ∗ p = 0.002 ∗ p < 0.001 ∗ p = 0.002 ∗ p = 0.595

Frequency domain features

LF p = 0.017 ∗ p = 0.216

HF p = 0.020 ∗ p = 0.221

LF/HF p = 0.334 p > 0.99

LF/Total p = 0.411 p > 0.99

HF/Total p = 0.262 p > 0.99

Poincaré plot features

SD1 p = 0.121 p = 0.968

SD2 p = 0.012 ∗ p = 0.183

SD1/SD2 p = 0.285 p > 0.99

S (Area) p = 0.018 ∗ p = 0.217

TABLE 3 LOSO evaluation results of two-class and three-class perceived challenge prediction models.

Model Accuracy F1-score

Baseline Three-class (always predicting one class) 0.333 0.167

OurThree-class (low vs. med vs. high challenge) 0.493 0.459

Baseline Two-class (always predicting majority class) 0.667 0.533

Our Two-class (low vs. med + high challenge) 0.707 0.661
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In a previous study (Beyrodt et al., 2023), it was observed
that when the cobot was faster than the participant, they
tended to reappraise the situation and over time start working
at their own pace. This could be a plausible reason for the
lack of significant difference between the Fast and Adaptive
conditions in our study. On the contrary, when the cobot
operated at a slower pace, participants were prone to distraction
and, consequently, assembling mistakes. Hence, in an industrial
setting, it is more crucial to detect low-challenge situations and
adapt the cobot’s behavior accordingly. Our two-class perceived
challenge prediction model is a promising step toward achieving
this objective.

5 Discussion

We designed this experiment to study how people respond to
different challenge levels in a human-robot collaboration scenario.
As seen in Section 4.1, the participants’ responses to the NASA-
TLX questionnaire indicate that they experienced different task
loads in the three study conditions. Interestingly, the Adaptive
condition was perceived as less frustrating than the Slow and
Fast conditions. This could be because the Adaptive condition
leads to synchronized joint activity, whereas, both Slow and Fast
conditions result in one of the collaborating partners waiting
for the other.

We anticipated that the Slow and Fast conditions would evoke
negative emotions, while the Adaptive condition would facilitate
positive emotions conducive to the flow state. Contrary to our
expectations, we did not observe significant differences in valence
levels among the three conditions. The average valence and arousal
levels across all conditions were close to 0, i.e., valence-arousal
values close to the neutral state. This suggests that the programmed
behavior of the collaborative robot, which closely resembles typical
industry scenarios, did not elicit strong negative emotions from the
participants.

Our heart rate variability analysis indicates a notable distinction
between the Slow condition and the other two conditions (Fast
and Adaptive). The Slow condition corresponds to a low-challenge
scenario, while the Fast and Adaptive conditions entail higher
levels of challenge. Our observations are in line with the results of
Keller et al. (2011), where they found a significant difference inmean
HRV during the low challenge (Boredom) and higher challenge
(Fit, Anxiety) conditions. Similar to our analysis, they found the
difference between Fit and Anxiety conditions to be a trend but not
significant (p < 0.1). Similarly, our plots of LF andHF align with the
findings of Tozman et al. (2015) that investigated the physiological
response of participants during three simulated driving conditions
- Boring, Adaptive, and Anxious. The HF components of HRV
are typically associated with parasympathetic activity (relaxation),
and hence the observed trend is reasonable. However, while some
studies associate LF with sympathetic activation (arousal), others
interpret it as a measure of both sympathetic and parasympathetic
activities (Electrophysiology, 1996). Using the latter interpretation,
we can say that the decreasing trend in LF is a reflection of
reduced relaxation with the increase in challenge. This shows that
the Adaptive condition led to relatively moderate relaxation and
moderate arousal.

Using the HRV features computed from the ECG data
of the participants, we trained simple neural networks to
predict the three challenge levels. Based on our analysis,
we also consider the low (Slow) vs. high (Fast, Adaptive)
challenge classification. This two-class prediction model yields
much better performance than the three-class model and is
on par with the state-of-the-art Flow detection (low vs. high
Flow) models (Müller and Fritz, 2015; Rissler et al., 2020;
Di Lascio et al., 2021).

In their study, Tozman et al. found that LF and HF
components of HRV can distinguish between the three challenge
levels. However, our models could not differentiate between
the higher task-demand conditions. One possible explanation
for this disparity is the difference in the methods used to
induce challenge. In their study, participants experienced social
evaluation as a stressor in the Anxious condition, which likely
contributed to heightened physiological responses. In contrast,
our study manipulated the challenge level solely through
the robot’s behavior, without incorporating external sources
of challenge.

The concept of Flow and the corresponding physiological
responses are typically studied using cognitive tasks such as quizzes,
puzzles, reading comprehension, etc. Our study shows that robot
behavior in human-robot collaboration tasks can influence the
level of challenge experienced by the participants, which leads to
differences in their physiological responses. We also showed that
physiological signals can be used to train models that detect the
level of challenge. Such models can be leveraged to adapt the robot’s
behavior to match the skill of the operator in order to support Flow
in industrial settings.

6 Conclusion

From the literature, we recognize the importance of the Flow
experience in optimizing worker performance and wellbeing.
Hence, we aim to bridge the gap in the study of Flow within
industrial settings, an area that has remained relatively unexplored.
Moreover, the typical tasks explored in the Flow experience
studies are often mentally demanding and diverge significantly
from the repetitive and standardized nature of industrial
assembly tasks.

To study the emotional and physiological responses in an
industrial task, we designed an assembly scenario where an operator
and a cobot collaboratively assembled gearboxes. We incorporated
three distinct levels of challenge bymodifying the cobot’s production
rate: low challenge (Boredom), adaptive challenge (Flow), and high
challenge (Anxiety). We collected video, ECG, and NASA-TLX
questionnaire data from 37 participants. As we anticipated, the
primary source of task load stemmed from temporal demand, as
opposed to mental demand.

Our investigation focused on how facial emotion estimation
(valence and arousal) and HRV features varied across the three
challenge conditions. Notably, we observed a significant distinction
in mean arousal and five temporal HRV features between the
low challenge condition and the other conditions. Additionally,
we identified a noteworthy trend-level difference between the
adaptive and high-challenge conditions. Importantly, despite the
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shift in the nature of the task load, our findings align with existing
literature.

Building on our analysis, we proceeded to develop HRV-
based models capable of predicting perceived challenge levels. The
implementation of such models carries the potential to facilitate
dynamic adjustments in challenge levels based on real-time feedback,
thereby fostering the Flow experience among cobot workers. Our
research contributes to the human-centered paradigm of Industry
5.0 and lays the foundation for adaptive work environments geared
towards enhancing worker experiences and wellbeing.

Looking ahead, it would be valuable to explore emotional and
physiological responses over extended timeframes, as we anticipate
that more pronounced distinctions may emerge. Additionally, it
would be interesting to delve into the operator’s experience when
interacting with a comprehensive system that dynamically adjusts
challenge levels in real time. This line of investigation could shed
light on the applicability and effectiveness of adaptive challenge
modulation. Moreover, while our current study successfully
recreated an industrial assembly task within a controlled laboratory
setting, a natural progression would be to evaluate worker
experiences in actual industrial environments. Such research holds
promise in shaping future workplace practices and promoting
optimal worker experiences.
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