AUTHOR=Kargar Eshagh , Kyrki Ville TITLE=MACRPO: Multi-agent cooperative recurrent policy optimization JOURNAL=Frontiers in Robotics and AI VOLUME=Volume 11 - 2024 YEAR=2024 URL=https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2024.1394209 DOI=10.3389/frobt.2024.1394209 ISSN=2296-9144 ABSTRACT=This work considers the problem of learning cooperative policies in multi-agent settings with partially observable and non-stationary environments without a communication channel. We focus on improving information sharing between agents and propose a new multi-agent actor-critic method called Multi-Agent Cooperative Recurrent Proximal Policy Optimization (MACRPO). We propose two novel ways of integrating information across agents and time in MACRPO: First, we use a recurrent layer in the critic’s network architecture and propose a new framework to use the proposed meta-trajectory to train the recurrent layer. This allows the network to learn the cooperation and dynamics of interactions between agents, and also handle partial observability. Second, we propose a new advantage function that incorporates other agents’ rewards and value functions by controlling the level of cooperation between agents using a parameter. The use of this control parameter is suitable for environments in which the agents are unable to fully cooperate with each other. We evaluate our algorithm on three challenging multi-agent environments with continuous and discrete action spaces, Deepdrive-Zero, Multi-Walker, and Particle environment. We compare the results with several ablations and state-of-the-art multi-agent algorithms such as MAGIC, IC3Net, CommNet, GA-Comm, QMIX, MADDPG, and RMAPPO, and also single-agent methods with shared parameters between agents such as IMPALA and APEX. The results show superior performance against other algorithms. The code is available online at https://github.com/kargarisaac/macrpo.