
TYPE Original Research
PUBLISHED 26 July 2024
DOI 10.3389/frobt.2024.1401677

OPEN ACCESS

EDITED BY

Fakhreddine Zayer,
Khalifa University, United Arab Emirates

REVIEWED BY

Fangwen Yu,
Tsinghua University, China
Thi-Thu-Huong Le,
Pusan National University, Republic of Korea

*CORRESPONDENCE

Rachmad Vidya Wicaksana Putra,
rachmad.putra@nyu.edu

RECEIVED 15 March 2024
ACCEPTED 14 June 2024
PUBLISHED 26 July 2024

CITATION

Putra RVW, Marchisio A and Shafique M
(2024), SNN4Agents: a framework for
developing energy-efficient embodied spiking
neural networks for autonomous agents.
Front. Robot. AI 11:1401677.
doi: 10.3389/frobt.2024.1401677

COPYRIGHT

© 2024 Putra, Marchisio and Shafique. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

SNN4Agents: a framework for
developing energy-efficient
embodied spiking neural
networks for autonomous agents

Rachmad Vidya Wicaksana Putra*, Alberto Marchisio and
Muhammad Shafique

eBrain Lab, Division of Engineering, New York University (NYU) Abu Dhabi, Abu Dhabi, United Arab
Emirates

Recent trends have shown that autonomous agents, such as Autonomous
Ground Vehicles (AGVs), Unmanned Aerial Vehicles (UAVs), and mobile robots,
effectively improve human productivity in solving diverse tasks. However, since
these agents are typically powered by portable batteries, they require extremely
low power/energy consumption to operate in a long lifespan. To solve this
challenge, neuromorphic computing has emerged as a promising solution,
where bio-inspired SpikingNeural Networks (SNNs) use spikes fromevent-based
cameras or data conversion pre-processing to perform sparse computations
efficiently. However, the studies of SNN deployments for autonomous agents
are still at an early stage. Hence, the optimization stages for enabling
efficient embodied SNN deployments for autonomous agents have not been
defined systematically. Toward this, we propose a novel framework called
SNN4Agents that consists of a set of optimization techniques for designing
energy-efficient embodied SNNs targeting autonomous agent applications. Our
SNN4Agents employs weight quantization, timestep reduction, and attention
window reduction to jointly improve the energy efficiency, reduce the memory
footprint, optimize the processing latency, while maintaining high accuracy.
In the evaluation, we investigate use cases of event-based car recognition,
and explore the trade-offs among accuracy, latency, memory, and energy
consumption. The experimental results show that our proposed framework can
maintain high accuracy (i.e., 84.12% accuracy) with 68.75% memory saving,
3.58x speed-up, and 4.03x energy efficiency improvement as compared to the
state-of-the-art work for the NCARS dataset. In this manner, our SNN4Agents
framework paves the way toward enabling energy-efficient embodied SNN
deployments for autonomous agents.

KEYWORDS

neuromorphic computing, spiking neural networks, autonomous agents, automotive
data, neuromorphic processor, energy efficiency

1 Introduction

In recent years, the interest in implementing neuromorphic artificial intelligence
based on Spiking Neural Networks (SNNs) for autonomous agents (so-called SNN-
based autonomous agents) has rapidly increased (Bartolozzi et al., 2022; Putra et al., 2024).
The reason is that, SNNs can offer high accuracy due to effective learning mechanism

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2024.1401677
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2024.1401677&domain=pdf&date_stamp=2024-07-22
mailto:rachmad.putra@nyu.edu
mailto:rachmad.putra@nyu.edu
https://doi.org/10.3389/frobt.2024.1401677
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2024.1401677/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1401677/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1401677/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1401677/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Putra et al. 10.3389/frobt.2024.1401677

(Putra and Shafique, 2021b; Putra and Shafique, 2024; Rathi et al.,
2023), low computation latency due to efficient neural/spike
coding (Guo et al., 2021), and ultra low power/energy consumption
due to sparse spike-based operations (Putra and Shafique, 2020;
Schuman et al., 2022). To realize such systems in real life, capabilities
of solving machine learning (ML) tasks like image classification
(Putra et al., 2021b; 2022a; 2023), object detection (Viale et al., 2021;
Cordone et al., 2022), or object segmentation (Li et al., 2022) from
images/videos are required. Besides such functionalities, SNN-based
autonomous agents also require (1) small memory footprint as they
typically employ resource-constrained hardware platforms, (2) low
power/energy consumption to preserve the battery lifespan as they
are typically powered by portable batteries, and (3) real-time output
with high accuracy to provide quick decision (Bonnevie et al., 2021;
Putra and Shafique, 2022; 2023b). To maximize the benefits of
SNN sparse operations, event-based data can be employed as it
directly provides a compatible data format for SNN processing
and minimizes the pre-processing stage, such as the data-to-spike
conversion (e.g., pixel data to spike train) and the spike coding.
Therefore, the developments of SNN-based autonomous agents also
need to consider event-based data, such as the NCARS dataset
(Sironi et al., 2018; Bano et al., 2024).

Motivated by the above-mentioned potentials of SNN-based
autonomous agents, the targeted research problem is how to
systematically develop energy-efficient SNN-based autonomous agents
considering event-based data workload. An efficient solution to this
problem will enable SNN-based autonomous agents to achieve high
accuracy with small memory footprint, low processing latency, and
low energy consumption.

1.1 State-of-the-art works and their
limitations

The study for developing SNN-based autonomous agents is still
at an early stage. The state-of-the-art works are summarized in
Table 1. Here, we observe that most of the existing works focus
on proposing frameworks and/or techniques for achieving high
accuracy (Putra and Shafique, 2022; 2023a; b). However, these works
have not considered event-based dataworkloads, therefore requiring
a relatively complex pre-processing stage, including data-to-spike
conversion and spike coding. Some other works explore techniques
for achieving high accuracy considering event-based automotive
data (Viale et al., 2021; 2022; Cordone et al., 2022). However, these
works have not considered optimizing the model size to fit into the
resource-constrained autonomous agents. All the above-discussed
limitations of the state-of-the-art expose that, the optimization stages
for enabling efficient SNN deployments for autonomous agents have
not been defined systematically.

1.2 Motivational case study

To highlight the potentials of further optimizing SNNs for
autonomous agents from the current state-of-the-art, we perform
an experimental case study that considers applying different levels
of weight quantization (i.e., precision) to an SNN model from
the work of Viale et al. (2021) with event-based NCARS dataset.

TABLE 1 State-of-the-art for SNN-based autonomous agents.

Work Key attributes

Mantis (Putra and Shafique,
2023a)

+ It presents a set of techniques for
optimizing SNNs for autonomous agents

− It considers conventional non-event
data, thus its efficiency is sub-optimal

lpSpikeCon (Putra and Shafique,
2022)

+ It enables low-precision SNNs under
unsupervised continual learning settings

− It considers conventional non-event
data, thus its efficiency is sub-optimal

TopSpark (Putra and Shafique,
2023b)

+ It optimizes the computation time for
both training and inference

− It considers conventional non-event
data, thus its efficiency is sub-optimal

CarSNN (Viale et al., 2021) + It employs the STBP (Wu et al.,2018) for
learning event-based car data

− It does not consider optimization for
resource-constrained autonomous
agents

LaneSNN (Viale et al., 2022) + It employs the STBP (Wu et al., 2018) for
learning event-based road lane data.

− It does not consider optimization for
resource-constrained autonomous
agents.

Object Detection SNN
(Cordone et al., 2022)

+ It employs voxel cube and surrogate
gradient for learning event-based data

− It does not consider optimization for
resource-constrained autonomous
agents

SNN4Agents (ours) + It presents a set of techniques for
optimizing SNNs for autonomous agents

+ It considers event-based data to enable
efficient input activation

Details of the experimental setup will be discussed further in
Section 4. The experimental results shown in Figure 1 show several
key observations as discussed in the following.

Ⓐ Quantization with 12-bit precision level achieves comparable
accuracy to the original 32-bit precision level (without
quantization) across training epochs, while offering 2.7x
memory saving.
Ⓑ Quantization settings with 8-bit and 4-bit precision

levels suffer from significant accuracy degradation as
they roughly have 50% accuracy across training epochs.
Considering that the NCARS dataset has two classes
(i.e., “car” or “background”), these results indicate that
the network performs random guessing as it is not
properly trained.

These observations show that there is an opportunity to optimize
further the SNN models to make them fit into the resource-
constrained autonomous agents. However, simply performing
aggressive quantization on the given network may significantly
degrade the accuracy. Therefore, the research challenge is how
to effectively perform different optimization techniques without
significantly degrading the accuracy.

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2024.1401677
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Putra et al. 10.3389/frobt.2024.1401677

FIGURE 1
Experimental results for observing the impact of different weight precision levels (i.e., 32, 12, 8, and 4 bits) on: (A) the accuracy of an SNN model across
the training epochs; and (B) the accuracy after 200 training epoch and the corresponding memory footprints.

FIGURE 2
The overview of our novel contributions, shown in green boxes.

1.3 Our novel contributions

To address the targeted research problem and the related
challenges, we propose a novel framework called SNN4Agents for
developing energy-efficient embodied SNNs for autonomous agents.
The overview of our SNN4Agents framework is shown in Figure 2
and its key steps are briefly described in the following.

• Weight Quantization (Section 3.2): It aims to find the
appropriate quantization settings that meet the memory
constraint, we perform design space exploration for different
precision levels while observing their impact on the accuracy.
• Timestep Reduction (Section 3.3): It aims to find the

appropriate processing timesteps that meet the latency
constraint, we perform design space exploration for different
timestep values while observing their impact on the accuracy.
• Attention Window Reduction (Section 3.4): It aims to

reduce the compute requirements and hence the processing
power/energy, we explore different attention window sizes
from the input samples and observe their impact on
the accuracy.
• Joint Optimization Strategy (Section 3.5): It aims to

maximize the benefits from the previous individual
optimization steps, we perform a joint optimization
strategy by leveraging design space exploration that

considers the appropriate settings from individual
optimization steps.

2 Preliminaries

2.1 Spiking neural networks (SNNs)

2.1.1 Overview
Spiking Neural Networks (SNNs) are considered the third

generation neural networks (Maass, 1997). An overview of the
SNNs’ functionality is shown in Figure 3. The input spike trains
are processed by the spiking neurons and the information is
propagated to the neurons in the following layers. Among the most
popular spiking neuron models, the Leaky-Integrate-and-Fire (LIF)
(Izhikevich, 2004; Wang et al., 2014) emerges as an efficient trade-
off between complexity and plausibility. The operational time of a
neuron to process a spike train from a single input data (e.g., an
image pixel) is defined as timestep (Putra and Shafique, 2023b). At
each timestep, the membrane potential Vm of the neuron increases
for each incoming input spike. When Vm overcomes the voltage
threshold Vth, the neuron emits an output spike (Roy et al., 2019;
Putra et al., 2021a; 2022b). In this way, the spikes propagate from
input to output and multiple layers of spiking neurons in a network.

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2024.1401677
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Putra et al. 10.3389/frobt.2024.1401677

FIGURE 3
Overview of the functionality of a Spiking Neural Network.

While SNNs follow the wave of success of traditional (non-
spiking) Deep Neural Networks (DNNs), they offer the following
advantages.

• Biological Plausibility: The SNNs’ functionality is inspired
by the behavior of the biological brain, where spikes are
propagated across neurons for conveying information. This
may open possibilities of cognition and robustness for solving
diverse machine learning tasks.
• Ultra-Low Power/Energy Consumption: The dynamic power

in SNNs is consumed only in the presence of spikes, hence
offering ultra low processing power/energy in a long time
operational period.
• Efficient Interface with Event-based Sensors: The event

sequences captured by event-based sensors can directly be
utilized as the input of SNNs without complex pre-processing
(e.g., data-to-spike conversion).

Besides these advantages, it is actually challenging to efficiently
train SNNs due to the non-differentiability of the spiking loss
function (Rückauer et al., 2019). Hence, to overcome this challenge,
two possible techniques have been proposed in the literature. (1)
The DNN-to-SNN conversion approach (Bu et al., 2022; Hao et al.,
2023) trains a DNN and then converts the model into the
equivalent spiking counterpart. (2) The direct SNN training
approach (Neftci et al., 2019) employs a surrogate gradient function
to approximate the spiking loss function, in such a way that it
can be differentiated and incorporated into the backpropagation
flow. Since approach-(1) requires DNN training, it cannot be
directly used when dealing with event-based data (Massa et al.,
2020). Moreover, it typically requires a larger number of timesteps
than approach-(2) (Chowdhury et al., 2021). Therefore, in this
work, we consider employing direct SNN training, i.e., Spatio-
Temporal Back-Propagation (STBP) learning rule, which leverages
both spatial and temporal information within the streaming spikes
(Wu et al., 2018; Viale et al., 2021).

2.2 Quantization

Quantization is a prominent optimization technique which
can effectively compress SNN models with relatively low
overhead, since it only needs to reduce the data precision

(Gupta et al., 2015; Micikevicius et al., 2018). Implementation
of quantization requires a specific setting that encompasses
quantization scheme and rounding scheme as discussed in the
following.

Quantization Schemes: There are two widely used quantization
schemes for SNNs: Post-Training Quantization (PTQ), and
Quantization-Aware Training (QAT) (Putra and Shafique, 2021a);
see the illustration of PTQandQATflows in Figure 4. PTQ typically
trains the given networkwith a floating-point precision, such as 32-
bit floating point (FP32), and then the quantization is applied to
the trained SNN model with the given precision level, resulting
in a quantized SNN model for the inference phase. Meanwhile,
QAT typically performs quantization to the given network with
the given precision level during the training phase, resulting in a
trainedandquantizedSNNmodelwhich canbedirectlyused for the
inference phase. PTQprocess is typically simpler andmore efficient
than QAT as it performs quantization once after the training phase
is finished.

Rounding Schemes: The implementation of quantization
typically requires a specific rounding scheme for determining
how the value will be curtailed. From the literature, there are
three widely used rounding schemes for SNN models: Truncation
(TR), Rounding-to-the-Nearest (RN), and Stochastic Rounding (SR)
(Putra and Shafique, 2021a). Illustration of these rounding
schemes is shown in Figure 5 Among these rounding schemes,
TR has the simplest operation since it simply keeps the defined
number of the most significant bits and discards the other
remaining bits.

In this work, we employ PTQ scheme with TR rounding since
their combination can quickly provide representative results for
different quantization settings, thereby enabling fast design space
exploration (DSE), which is important for our studies.

2.3 Event-based automotive data

Prophesee NCARS Dataset (Sironi et al., 2018): This event-
based dataset contains a collection of 24K samples that have a
duration of 100 ms each, recorded with the Asynchronous Time-
based Image Sensor (ATIS) camera (Posch et al., 2011). Each
sample, labeled as either “car” or “background,” is encoded as a
sequence of events that contains the following information.

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2024.1401677
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Putra et al. 10.3389/frobt.2024.1401677

FIGURE 4
The flow of (A) PTQ, Post-Training Quantization, and (B) QAT, Quantization-Aware Training.

FIGURE 5
Illustration of different rounding schemes: Truncation (TR), Rounding-to-the-Nearest (RN), and Stochastic Rounding (SR); based on studies in (Putra
and Shafique, 2021a).

• the timestamp t of when the event occurred;
• the spatial coordinates x and y of the pixel;
• the polarity p of the brightness variation, which can either be

positive or negative.

The data is split into 15,422 training and 8,607 testing samples.
Each sample has variable sizes and can be cropped. Based on the
distribution of events, we can identify an attention window, i.e., a
region in which the events are more concentrated. Typical sizes of
the attention windows used in state-of-the-art works (Viale et al.,
2021) can scale down to 100× 100 or 50× 50 and significantly reduce
the computational and memory requirements of the SNN, without
compromising the accuracy much.

2.4 SNN architecture

SNN architectures are composed of a sequence of layers of
spiking neurons. Their structure and connections define the type
of layers. In this work, we employ the CarSNN architectures
(Viale et al., 2021) that efficiently execute car recognitionwith STBP-
based learning rule. We implement two SNN architectures built
with different sizes of attention window. Both models are composed
of an interleaved sequence of two convolutional layers and three
average pooling layers, followed by two fully-connected layers. The
first SNNarchitecture, described inTable 2, has a 100× 100 attention
window, while the second SNN architecture, described in Table 3,
has a 50× 50 attentionwindow.Note that different attentionwindow
sizes affect the feature map sizes of each SNN layer. Hence, these
architectures have different numbers of input and output channels
in the fully-connected layers than the latter.

3 Our SNN4Agents framework

3.1 Overview

Our SNN4Agents framework employs a set of optimization
techniques targeting different design aspects, including model
compression through weight quantization, latency optimization
through timestep reduction, input data optimization through
attention window reduction; and then performs joint optimization
strategy to maximize benefits from the individual optimization
techniques. The flow of our SNN4Agents framework is illustrated
in Figure 6 and the detailed discussion for its steps are provided in
Section 3.2—Section 3.5.

3.2 Model compression through
quantization

To effectively compress the model size, we perform weight
quantization through PTQwith TR rounding scheme. To do this, we
first train the given network without quantization, while employing
baseline settings for time step, attention window, and training
epoch. For this scenario, we employ 32-bit precision, 20 time step,
100× 100 attention window, and 200 training epoch. Once the
training phase is finished, we perform quantization process to the
trained network. Afterward, we performDSE under different weight
precision levels (i.e., 32, 16, 12, 10, 8, 6, and 4 bit) to evaluate
their impact on the accuracy; see the parameter settings for DSE
in Table 4.

Experimental results of DSE are shown in Figure 7, from which
we draw the following key observations.

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2024.1401677
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Putra et al. 10.3389/frobt.2024.1401677

TABLE 2 SNN architecture with 100× 100 attention window, based on the work of Viale et al. (2021).

Layer type Input channel Output channel Kernel size Padding Stride

Average Pooling 2 2 4 – –

Convolution 2 32 3 1 1

Average Pooling 32 32 2 – –

Convolution 32 32 3 1 1

Average Pooling 32 32 2 – –

Fully-Connected 1152 512 - – –

Fully-Connected 512 2 - – –

TABLE 3 SNN architecture with 50×50 attention window, based on the work of Viale et al. (2021).

Layer type Input channel Output channel Kernel size Padding Stride

Average Pooling 2 2 4 – –

Convolution 2 32 3 1 1

Average Pooling 32 32 2 – –

Convolution 32 32 3 1 1

Average Pooling 32 32 2 – –

Fully-Connected 288 144 – – –

Fully-Connected 144 2 – – –

FIGURE 6
The flow of our SNN4Agents framework, with the technical contributions highlighted in green.

• In the early of training phase (e.g., ≤60 training epoch), the
network is still learning new information, hence the accuracy
curve is increasing for 16-, 12-, and 10-bit precision levels,
as shown by①.
• Employing 16-, 12-, and 10-bit precision levels for SNNweights

lead to comparable accuracy to the original SNN model with

32-bit precision (no quantization) after running at least 80
training epoch, as shown by②.
• Employing 8-, 6-, and 4-bit precision levels for SNN weights

lead to significant accuracy degradation, as they can only reach
about 50% accuracy across training epochs, as shown by ③.
These results indicate that the network is not properly trained.

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2024.1401677
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Putra et al. 10.3389/frobt.2024.1401677

TABLE 4 Parameter settings for exploring the impact of different
precision levels.

Precision
(bit)

Timestep Attention
window

Training
epoch

32, 16, 12, 10, 8,
6, and 4

20 100× 100 0–200

These observations expose several key design guides that
we should consider when applying quantization. First, selecting
the precision level should be performed carefully, so that it
does not lead to a significant accuracy degradation which
diminishes the benefits of quantization. Second, a 10-bit
precision level offers a good trade-off between accuracy and
memory footprint as it can achieve comparable accuracy to
that of the larger precision levels after running at least 80
training epoch.

3.3 Latency optimization through timestep
reduction

To effectively reduce the processing time, we perform
timestep reduction. To do this, we shorten the timestep of
SNN processing from the baseline settings, thereby curtailing
the time window for presenting the spike trains. Here, we
consider different timestep settings (i.e., 20, 15, 10, and
5) for exploring their impact on the accuracy. Once we
reduce the timestep, the network is trained under baseline
settings of precision level (no quantization), attention window,
and training epoch. For this scenario, we employ 32-bit
precision, 100× 100 attention window, and 200 training
epoch. If we do not see notable differences from the
baseline accuracy, then we may employ a smaller precision
level, such as 16- and 4-bit weights, to trigger accuracy
variation. The parameter settings for DSE are provided
in Table 5.

Experimental results of DSE are shown in Figure 8, from which
we draw the following key observations.

• Employing 15, 10, and 5 timestep settings without quantization
lead to comparable accuracy to the baseline model (i.e.,
20 timestep without quantization) after 60 training epoch,
as shown by ④. Similarly, employing 20, 15, 10, and
5 timestep settings with 16-bit precision also lead to
comparable accuracy to the baseline after 60 training
epoch; see④.
• Employing 20, 15, 10 and 5 timestep settings with 4-bit

precision level lead to significant accuracy degradation, as
shown by⑤. It means that the 4-bit precision is relatively too
small for representing temporal and spatial features from the
NCARS dataset.

These observations show thatwe can apply a relatively aggressive
timestep reduction (e.g., 5 timestep) without losing significant
accuracy, as long as we also employ an appropriate precision level,
thereby accommodating the spatial and temporal information of the
given dataset (e.g., NCARS).

3.4 Attention window reduction for input
samples

We also aim at reducing the size of attentionwindow of the input
samples to optimize the computational requirements, and hence the
latency and energy consumption. To do this, we consider different
attentionwindow sizes (i.e., 100× 100 and 50× 50), while employing
baseline settings for precision level, timestep, and training epoch; see
the parameter settings for DSE in Table 6.

Experimental results of our DSE are presented in Figure 9.
From these results, we observe that accuracy obtained by a smaller
attention window (50× 50) can saturate faster than a larger one
(100 × 100) thus offering a faster training time; see⑥. Meanwhile,
a larger attention window offers better accuracy than a smaller one;
see⑦. The reason is that, a smaller attention window provides less
information, hence requiring a shorter time for training the network
yet limiting the accuracy that can be achieved. These observations
suggest that the reduction of attention window can be employed as
long as the targeted accuracy is met.

3.5 Joint optimization strategy

Each individual optimization step from previous sub-sections
has demonstrated the possibility to reduce memory footprint and
latency, while maintaining high accuracy. Therefore, to maximize
these optimization benefits, we propose a strategy to jointly
combine the individual optimization steps. Here, we leverage the
key observations and design guides from previous analysis in
Section 3.2 and Section 3.4 to devise the following strategy.

• We perform DSE for the following settings: (1) 10–32 bit
precision levels of quantization, (2) 5–20 timesteps, and (3)
50× 50 and 100× 100 attention window sizes.
• To find the solution candidates, we analyze the experimental

results for accuracy, memory footprint, latency, and energy
consumption, while considering the memory and latency
constraints.
• If there aremultiple solution candidates, we can select themost

suitable one for the given constraints by trading-off the design
metrics, including accuracy, memory footprint, and latency,
and energy consumption.

4 Evaluation methodology

To evaluate our SNN4Agents framework, we build and employ
the experimental setup shown in Figure 10, while considering the
same evaluation conditions as widely used in the SNN community
for autonomous agents (Viale et al., 2021; Putra and Shafique,
2023a). We use Python-based implementation and run it on Nvidia
RTX 6000 Ada GPU machines for evaluating different performance
metrics of our SNN4Agents, including accuracy, processing time,
and power consumption. Then, the processing time and power
consumption are leveraged to estimate the energy consumption.
Meanwhile, memory footprint is estimated by leveraging the
precision level and the number of weights in the corresponding
SNN architecture. For the case of 100× 100 attention window, we

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2024.1401677
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Putra et al. 10.3389/frobt.2024.1401677

FIGURE 7
Results of accuracy across different precision levels (i.e., 32, 16, 12, 10, 8, and 4 bit).

TABLE 5 Parameter settings for exploring the impact of different
timesteps.

Precision
(bit)

Timestep Attention
window

Training
epoch

32, 16, and 4 20, 15, 10, and 5 100× 100 0–200

consider the network architecture from Table 2; while for the case of
50× 50, we consider the network architecture from Table 3. For the
workload, we consider the NCARS dataset (Sironi et al., 2018). For
the DSE purpose, we consider parameter settings shown in Table 7,
as well as the state-of-the-art work CarSNN (Viale et al., 2021) as
the baseline.

Furthermore, we use several terms to represent the network
model for brevity, as the following.

• Bb_Tt: It represents a network with B bit-precision and T
timestep. In this case, the attention window will be explained
and discussed explicitly to clearly distinguish the network
model and its experimental results. This term will be used in
Section 5.1, Section 5.3, and Section 5.4.
• Bb_Ww: It represents a network with B bit-precision and
W×W attention window, which encompasses different
timestep settings. This term is used when discussing memory
footprint in Section 5.2, as networks with different timesteps
have the same weight memory footprint.
• Bb_Tt_Ww: It represents a network with B bit-precision, T

timestep, andW×W attentionwindow.This term is usedwhen
discussing the trade-off analysis in Section 5.5.
• Tt_Ww: It represents a network with T timestep and
W×W attention window. This term is used when discussing
the computational complexity in Section 5.6.

5 Experimental results and discussion

5.1 Maintaining high accuracy

Experimental results for accuracy are presented in Figure 11.
These results show that the baseline model (32b_20t) can achieve

85.95% accuracy, while our optimized SNN models with 100×
100 attention window achieve 84.12%–85.76% accuracy and our
optimized SNN models with 50× 50 attention window achieve
76.81%–78.56% accuracy. In the 100× 100 attention window
case, we observe that 10-bit precision levels generally lead
to lower learning quality (i.e., accuracy) across all training
epochs as compared to other precision levels; see ❶ and ❷.
These indicate that smaller precision levels have smaller value
representation capabilities than the larger ones, and hence they
require a longer training period to achieve comparable accuracy.
For instance, 10-bit precision levels can achieve close to 80%
accuracy in 40 training epoch, while other precision levels
can achieve it in 20 training epoch. Due to the same reason,
similar patterns are observed in the 50× 50 attention window
case; see ❸ and ❹. However, in this case, the accuracy scores
from different precision levels are not much different, as they
lay within 2% accuracy range; see B4. The reason is that, a
smaller attention window means less information to be conveyed
and processed by different precision levels, thereby limiting the
final accuracy.

5.2 Memory savings

Experimental results for memory footprint are presented
in Figure 12. These results show that, in general, our weight
quantization step effectively reduces the memory footprint up to
68.75% due to smaller precision levels for representing weight
values. For instance, in the 100× 100 attention window case, our
weight quantization leads to about 50% memory saving for 16b_
100w, 62.50% memory saving 12b_100w, and 68.75% memory
saving 10b_100w; see ❺. Meanwhile, in the 50× 50 attention
window case, our weight quantization leads to about 91.42%
memory saving for 32b_50w, 95.71% memory saving for 16b_
50w, 96.78% memory saving 12b_50w, and 97.32% memory saving
10b_50w; see ❻. The significant memory savings obtained in
the 50× 50 attention window case come from the quantization
as well as the reduction on the number of weights due to
architectural differences in the network as shown in Table 2
and Table 3.

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2024.1401677
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Putra et al. 10.3389/frobt.2024.1401677

FIGURE 8
Results of accuracy across different timestep settings (i.e., 20, 15, 10, and 5), while considering different precision levels (i.e., 32, 16, and 4 bit). Here,
Bb_Tt denotes B bit precision and T timestep.

TABLE 6 Parameter settings for exploring impact of different attention
window sizes.

Precision
(bit)

Timestep Attention
Window

Training
epoch

32 20 100× 100 and
50× 50

0–200

5.3 Processing time speed-up

Experimental results for processing latency are
presented in Figure 13. These results show that, in general, our
timestep reduction step effectively reduce the processing latency
as compared to the baseline model (32b_20t). For instance, in the
100× 100 attention window case, our timestep reduction leads to
speed-ups by 1.27x—1.31x for timestep = 15 (i.e., 32b_15t, 16b_15t,
12b_15t, and 10b_15t); by 1.86x—2.02x for timestep = 10 (i.e., 32b_
10t, 16b_10t, 12b_10t, and 10b_10t); as well as by 3.58x—3.69x for
timestep = 5 (i.e., 32b_5t, 16b_5t, 12b_5t, and 10b_5t); as shown by
❼. Meanwhile, in the 50× 50 attention window case, our timestep
reduction leads to speed-ups by 1.28x - 1.32x for timestep = 15
(i.e., 32b_15t, 16b_15t, 12b_15t, and 10b_15t); by 2.04x - 2.11x for
timestep = 10 (i.e., 32b_10t, 16b_10t, 12b_10t, and 10b_10t); as well
as by 3.85x—3.95x for timestep = 5 (i.e., 32b_5t, 16b_5t, 12b_5t, and
10b_5t); as shown by❽. These significant speed-ups come from the
reduced timesteps which curtail the processing time for spike trains.

5.4 Energy efficiency improvements

Experimental results for energy consumption are
presented in Figure 14. These results show that, in general, our
optimization techniques effectively reduce the energy consumption
as compared to the baseline model (32b_20t). For instance, in the
100× 100 attention window case, our optimizations lead to energy
improvements by 1.36x—1.41x for settings 16b_15t, 12b_15t, and
10b_15t; by 1.94x—2.08x for settings 16b_10t, 12b_10t and 10b_10t;
as well as by 3.82x—4.03x for settings 16b_5t, 12b_5t, and 10b_5t;

as shown by ❾. Meanwhile, in the 50× 50 attention window case,
our optimizations lead to energy improvements by 1.35x—1.54x for
settings 16b_15t, 12b_15t, and 10b_15t; by 2.24x—2.48x for settings
16b_10t, 12b_10t and 10b_10t; as well as by 4.32x—4.66x for settings
16b_5t, 12b_5t, and 10b_5t; as shown by❿.These significant energy
efficiency improvements come from the joint benefits from weight
quantization, timestep reduction, and attention window reduction
that decrease the processing power and processing latency, and
hence the energy consumption.

5.5 Trade-off analysis

To properly select the appropriate SNN model for the given
memory and latency constraints, we perform a trade-off analysis. To
do this, we analyze the correlation between accuracy and memory
footprint, accuracy and latency, as well as accuracy and energy
consumption. For the accuracy-memory analysis, we observe that
accuracy decreases as the memory footprint decreases, which is
indicated by lower bit precision levels with smaller attentionwindow
sizes; see Figure 15a.1 It means that we need to select the appropriate
network model whose memory footprint meets the given memory
constraint. For instance, if the memory constraint is 8MB, then we
can select networkmodels with 12- and 10-bit precision under 100×
100 attention window, as well as all network models under 50× 50
attention window. For the accuracy-latency analysis, we observe that
accuracy decreases as the latency decreases, which is indicated by
shorter timesteps; see Figure 15a.2 Itmeans thatwe need to select the
appropriate network model whose latency meets the given memory
constraint. For instance, if the latency constraint is 0.25x from the
baseline latency, then we can select network models with 5 timestep
under both 100× 100 and 50× 50 attention window sizes. For the
accuracy-energy analysis, we observe that accuracy also decreases
as the energy consumption decreases, which is indicated by lower
bit precision levels with shorter timesteps and smaller attention
window sizes; see Figure 15a.3 For instance, if the given constraints
are 8 MB memory with 0.25x latency from the baseline latency, then
we can select the network model with 10b_5t_100w setting, which
achieves 84.12% with 68.75% memory saving and 3.58x speed-up,
and 4.03x energy efficiency improvement from the baseline model;

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2024.1401677
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Putra et al. 10.3389/frobt.2024.1401677

FIGURE 9
Results of accuracy across different attention window sizes (i.e., 100× 100 and 50×50).

FIGURE 10
Experimental setup for evaluating our SNN4Agents framework. The proposed settings from our SNN4Agents are incorporated into the experimental
setup as highlighted in green.

TABLE 7 Parameter settings for our DSE in evaluating our SNN4Agent
framework.

Precision
(bit)

Timestep Attention
window

Training
epoch

32, 16, 12, and 10 20, 15, 10, and 5 100× 100 and
50× 50

0–200

see label-11. Furthermore, if the memory constraint is significantly
smaller (e.g., 1 MB memory) with 0.25x latency from the baseline
latency, then we can select the network model with 10b_5t_50w
setting, which achieves 77.10% with 97.32% memory saving and
4x speed-up, and 5.85x energy efficiency improvement from the
baseline model; see label-12.

In summary, all these experimental results show that our
SNN4Agents framework effectively improves energy efficiency of
SNN models for autonomous agent applications. Furthermore,
our framework also enables the users to find and select

the suitable SNN model to meet the given memory and
latency constraints, i.e., by tuning the optimization settings
for weight quantization, timestep setting, and attention
window size.

5.6 Computational complexity

Besides performance and efficiency benefits, a set of
optimization techniques in our SNN4Agents framework also leads
to different levels of computational complexity, which can be
quantified through the number of synaptic and neuronal operations
across different layers and the given timestep setting. Figure 15B
shows the comparison of computational complexity from different
designs across different attention window sizes (i.e., 100× 100
and 50× 50) and timestep settings (i.e., 20, 15, 10, and 5). In
general, a smaller attention window incurs lower computational
complexity than the bigger ones. The reason is that, a smaller
attention window leads to smaller model size as indicated in

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2024.1401677
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Putra et al. 10.3389/frobt.2024.1401677

FIGURE 11
Experimental results for accuracy across different parameter settings, including precision levels, timesteps, and training epochs under (A) 100× 100
attention window, and (B) 50×50 attention window.

FIGURE 12
Experimental results for memory footprint normalized to the baseline (32b_100w) across different precision levels and attention window sizes (i.e.,
100× 100 and 50×50).

Table 2 and Table 3, and hence smaller number of synaptic and
neuronal operations. Specifically, if the larger attention window
size is W0 ×W0 and the smaller attention window size is W1 ×
W1, then the reduction factor of the computational complexity
achieved by employing the smaller attention window can be
estimated with ≈ (W0/W1)

2. For instance, the 20t_50w model
has around 80% lower computation than the state-of-the-art (i.e.,

20t_100w). Furthermore, a smaller number of timestep setting also
incurs lower computational complexity than the bigger ones, as
the synaptic and neuronal operations are performed in a timestep
unit. Specifically, if the larger timestep is T0 and the smaller
timestep is T1, then the reduction factor of the computational
complexity achieved by employing the smaller timestep can be
computed with (T0/T1). For instance, the 15t_100w, 10t_100w,

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2024.1401677
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Putra et al. 10.3389/frobt.2024.1401677

FIGURE 13
Experimental results for latency normalized to the baseline (32b_20t) across different parameter settings, including precision levels, timesteps, and
training epochs under (A) 100× 100 attention window, and (B) 50×50 attention window.

FIGURE 14
Experimental results for energy consumption normalized to the baseline (32b_20t) across different parameter settings, including precision levels,
timesteps, and training epochs under (A) 100× 100 attention window, and (B) 50×50 attention window.

and 5t_100w models incur lower computation than the 20t_
100w by 25%, 50%, and 75%, respectively. Consequently, jointly
employing smaller attention window size and smaller number of
timestep will further decrease the computational complexity, whose

reduction factor can be estimated with ≈ (W0/W1)
2 ⋅ (T0/T1). For

instance, the 15t_50w, 10t_50w, and 5t_50w models incur lower
computation than the 20t_100w by about 85%, 90%, and 95%,
respectively.

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2024.1401677
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Putra et al. 10.3389/frobt.2024.1401677

FIGURE 15
(A) Trade-off analysis for accuracy vs memory, accuracy vs normalized latency, and accuracy vs normalized energy consumption. (B) Computational
complexity of different designs across different attention window sizes (i.e., 100× 100 and 50×50) and timestep settings (i.e., 20, 15, 10, and 5).

5.7 Further discussion

Our SNN4Agents framework is the first work that
incorporates a set of optimization techniques while considering
the event-based automotive dataset for enabling the efficient
development of SNN-based autonomous agents. Therefore, it has
several advantages as the following.

• Our framework incorporates each optimization technique in a
modular form.Therefore, the existing optimization techniques
in the framework can be activated or deactivated as per

the design requirements. Furthermore, new optimization
techniques can also be incorporated feasibly into the
framework.
• Our framework can be used for design space exploration

to investigate and understand the role of different SNN
parameters. For instance, this framework can be utilized to
observe the impact of specific parameters (e.g., membrane
threshold potential) on the accuracy (Bano et al., 2024).
• The generated SNN model has direct interfacing with event-

based input data stream, thereby enabling efficient integration
with event-based sensors (e.g., DVS Camera).

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2024.1401677
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Putra et al. 10.3389/frobt.2024.1401677

Besides these advantages, our framework in the current form
can still be improved further to enhance the generated SNN
model. Our SNN4Agents currently supports the STBP learning rule
with offline-based training scenarios, which may be insufficient
for some application use-cases. For instance, some autonomous
agents may need to continuously adapt to dynamic operational
environments, hence our SNN4Agents framework needs to be
enhanced with advanced neural architectures and/or continual
learning algorithms, while considering both offline and online
training scenarios (Putra et al., 2024). Toward this, in the future, we
plan to continue extending thework by incorporatingmore complex
datasets in our framework, such as EventKITTI (Liang et al., 2022),
then evaluating the performance as well as testing it for a real-world
robotic application use-case (e.g., UGV rover).

6 Conclusion

In this work, we propose an SNN4Agents framework
that employs a set of optimization techniques for developing
energy-efficient SNNs targeting autonomous agent applications.
Here, our SNN4Agents compresses the SNN model through
weight quantization, optimizes processing time through timestep
reduction, and optimizes input samples through attention window
reduction. The experimental results show that our proposed
framework effectively improves energy efficiency, reduces memory
footprint and latency, while maintaining high accuracy. If we
consider a tolerance range of 2% lower accuracy from the baseline,
we can achieve 84.12% accuracy with 68.75% memory saving, 3.58x
speed-up, and 4.03x energy efficiency improvement. In this manner,
our SNN4Agents framework paves the way for further research and
studies toward enabling the efficient development of SNN-based
autonomous agents, and can be enhanced by incorporating other
optimization techniques.

Data availability statement

Publicly available datasets were analyzed in this study.
NCARS dataset can be accessed at https://www.prophesee.

ai/2018/03/13/dataset-n-cars/. Codes of SNN4Agents are available
at https://github.com/rachmadvwp/SNN4Agents.

Author contributions

RP: Conceptualization, Data curation, Investigation,
Methodology, Software, Validation, Visualization, Writing–original
draft, Writing–review and editing. AM: Conceptualization,
Methodology, Writing–original draft, Writing–review and
editing, Visualization. MS: Conceptualization, Supervision,
Writing–original draft, Writing–review and editing.

Funding

The author(s) declare that financial support was received for
the research, authorship, and/or publication of this article. This
work was partially supported by the NYUAD Center for Artificial
Intelligence and Robotics (CAIR), funded by Tamkeen under the
NYUAD Research Institute Award CG010.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may
be evaluated in this article, or claim that may be made
by its manufacturer, is not guaranteed or endorsed by
the publisher.

References

Bano, I., Putra, R. V. W., Marchisio, A., and Shafique, M. (2024). A methodology
to study the impact of spiking neural network parameters considering event-based
automotive data. arXiv Prepr. arXiv:2404.03493.

Bartolozzi, C., Indiveri, G., and Donati, E. (2022). Embodied neuromorphic
intelligence. Nat. Commun. 13, 1024. doi:10.1038/s41467-022-28487-2

Bonnevie, R., Duberg, D., and Jensfelt, P. (2021). “Long-term exploration
in unknown dynamic environments,” in 2021 7th International Conference on
Automation, Robotics and Applications (ICARA), 32–37. doi:10.1109/ICARA51699.
2021.9376367

Bu, T., Fang, W., Ding, J., Dai, P., Yu, Z., and Huang, T. (2022). “Optimal ANN-
SNN conversion for high-accuracy and ultra-low-latency spiking neural networks,” in
International Conference on Learning Representations.

Chowdhury, S. S., Rathi, N., and Roy, K. (2021). One timestep is all you need: training
spiking neural networks with ultra low latency. Corr. abs/2110, 05929.

Cordone, L., Miramond, B., and Thierion, P. (2022). “Object detection with
spiking neural networks on automotive event data,” in 2022 International Joint
Conference on Neural Networks (IJCNN), 1–8. doi:10.1109/IJCNN55064.2022.
9892618

Guo, W., Fouda, M. E., Eltawil, A. M., and Salama, K. N. (2021). Neural coding in
spiking neural networks: a comparative study for robust neuromorphic systems. Front.
Neurosci. (FNINS) 15, 638474. doi:10.3389/fnins.2021.638474

Gupta, S., Agrawal, A., Gopalakrishnan, K., andNarayanan, P. (2015). “Deep learning
with limited numerical precision,” in International Conference on Machine Learning
(ICML). Editors F. Bach, and D. Blei, 1737–1746.

Hao, Z., Ding, J., Bu, T., Huang, T., and Yu, Z. (2023). “Bridging the gap between
ANNs and SNNs by calibrating offset spikes,” in The Eleventh International Conference
on Learning Representations.

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE
Trans. Neural Netw. (TNN) 15, 1063–1070. doi:10.1109/tnn.2004.832719

Li, Y., He, X., Dong, Y., Kong, Q., and Zeng, Y. (2022). Spike calibration: fast and
accurate conversion of spiking neural network for object detection and segmentation.
arXiv Prepr. arXiv:2207, 02702.

Liang, Z., Cao, H., Yang, C., Zhang, Z., and Chen, G. (2022). “Global-local feature
aggregation for event-based object detection on eventkitti,” in 2022 IEEE International
Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), 1–7.
doi:10.1109/MFI55806.2022.9913852

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2024.1401677
https://www.prophesee.ai/2018/03/13/dataset-n-cars/
https://www.prophesee.ai/2018/03/13/dataset-n-cars/
https://github.com/rachmadvwp/SNN4Agents
https://doi.org/10.1038/s41467-022-28487-2
https://doi.org/10.1109/ICARA51699.2021.9376367
https://doi.org/10.1109/ICARA51699.2021.9376367
https://doi.org/10.1109/IJCNN55064.2022.9892618
https://doi.org/10.1109/IJCNN55064.2022.9892618
https://doi.org/10.3389/fnins.2021.638474
https://doi.org/10.1109/tnn.2004.832719
https://doi.org/10.1109/MFI55806.2022.9913852
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Putra et al. 10.3389/frobt.2024.1401677

Maass, W. (1997). Networks of spiking neurons: the third generation of neural
network models. Neural Netw. 10, 1659–1671. doi:10.1016/s0893-6080(97)00011-7

Massa, R., Marchisio, A., Martina, M., and Shafique, M. (2020). “An efficient spiking
neural network for recognizing gestures with a DVS camera on the loihi neuromorphic
processor,” in International Joint Conference onNeural Networks (IJCNN) (IEEE), 1–9.
doi:10.1109/IJCNN48605.2020.9207109

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., et al. (2018).
“Mixed precision training,” in International Conference on Learning Representation
(ICLR).

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning
in spiking neural networks: bringing the power of gradient-based optimization to
spiking neural networks. IEEE Signal Process. Mag. 36, 51–63. doi:10.1109/msp.
2019.2931595

Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A QVGA 143 db dynamic
range frame-free PWM image sensor with lossless pixel-level video compression
and time-domain CDS. IEEE J. Solid State Circuits 46, 259–275. doi:10.1109/.JSSC.
2010.2085952

Putra, R. V. W., Hanif, M. A., and Shafique, M. (2021a). “Respawn: energy-efficient
fault-tolerance for spiking neural networks considering unreliable memories,” in 2021
IEEE/ACM International Conference On Computer Aided Design (ICCAD), 1–9.
doi:10.1109/ICCAD51958.2021.9643524

Putra, R. V. W., Hanif, M. A., and Shafique, M. (2021b). “Sparkxd: a framework
for resilient and energy-efficient spiking neural network inference using approximate
dram,” in 2021 58th ACM/IEEE Design Automation Conference, 379–384.
doi:10.1109/DAC18074.2021.9586332

Putra, R. V. W., Hanif, M. A., and Shafique, M. (2022a). Enforcesnn: enabling
resilient and energy-efficient spiking neural network inference considering
approximate drams for embedded systems. Front. Neurosci. (FNINS) 16, 937782.
doi:10.3389/fnins.2022.937782

Putra, R. V. W., Hanif, M. A., and Shafique, M. (2022b). “Softsnn: low-cost fault
tolerance for spiking neural network accelerators under soft errors,” in 59th ACM/IEEE
Design Automation Conference (DAC), 151–156.

Putra, R. V. W., Hanif, M. A., and Shafique, M. (2023). Rescuesnn: enabling reliable
executions on spiking neural network accelerators under permanent faults. Front.
Neurosci. (FNINS) 17, 1159440. doi:10.3389/fnins.2023.1159440

Putra, R. V. W., Marchisio, A., Zayer, F., Dias, J., and Shafique, M. (2024). Embodied
neuromorphic artificial intelligence for robotics: perspectives, challenges, and
research development stack. arXiv Prepr. arXiv:2404.03325. doi:10.48550/arXiv.2404.
03325

Putra, R. V. W., and Shafique, M. (2020). Fspinn: an optimization framework
for memory-efficient and energy-efficient spiking neural networks. IEEE
Trans. Computer-Aided Des. Integr. Circuits Syst. (TCAD) 39, 3601–3613.
doi:10.1109/TCAD.2020.3013049

Putra, R. V. W., and Shafique, M. (2021a). “Q-spinn: a framework for quantizing
spiking neural networks,” in , 2021 International Joint Conference on Neural Networks
(IJCNN), 1–8. doi:10.1109/IJCNN52387.2021.9534087

Putra, R. V. W., and Shafique, M. (2021b). “Spikedyn: a framework for energy-
efficient spiking neural networks with continual and unsupervised learning capabilities

in dynamic environments,” in 58th ACM/IEEEDesign Automation Conference (DAC),
1057–1062.

Putra, R. V. W., and Shafique, M. (2022). “lpspikecon: enabling low-precision spiking
neural network processing for efficient unsupervised continual learning on autonomous
agents,” in 2022 International Joint Conference on Neural Networks (IJCNN), 1–8.
doi:10.1109/IJCNN55064.2022.9892948

Putra, R. V. W., and Shafique, M. (2023a). “Mantis: enabling energy-efficient
autonomous mobile agents with spiking neural networks,” in , 2023 9th International
Conference on Automation, Robotics and Applications (ICARA), 197–201.
doi:10.1109/ICARA56516.2023.10125781

Putra, R. V. W., and Shafique, M. (2023b). “Topspark: a timestep optimization
methodology for energy-efficient spiking neural networks on autonomous mobile
agents,” in IEEE RSJ International Conference on Intelligent Robots and Systems
(IROS), 3561–3567. doi:10.1109/.IROS55552.2023.10342499

Putra, R. V. W., and Shafique, M. (2024). Spikenas: a fast memory-aware neural
architecture search framework for spiking neural network-based autonomous agents.
arXiv Prepr. arXiv:2402.11322. doi:10.48550/arXiv.2402.11322

Rathi, N., Chakraborty, I., Kosta, A., Sengupta, A., Ankit, A., Panda, P., et al. (2023).
Exploring neuromorphic computing based on spiking neural networks: algorithms to
hardware. ACM Comput. Surv. 55, 1–49. doi:10.1145/3571155

Roy, K., Jaiswal, A., and Panda, P. (2019). Towards spike-based
machine intelligence with neuromorphic computing. Nature 575, 607–617.
doi:10.1038/s41586-019-1677-2

Rückauer, B., Känzig, N., Liu, S., Delbrück, T., and Sandamirskaya, Y. (2019). Closing
the accuracy gap in an event-based visual recognition task. Corr. abs/1906, 08859.

Schuman, C. D., Kulkarni, S. R., Parsa, M., Mitchell, J. P., Date, P., and Kay, B. (2022).
Opportunities for neuromorphic computing algorithms and applications.Nat. Comput.
Sci. 2, 10–19. doi:10.1038/s43588-021-00184-y

Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., and Benosman, R. (2018). “Hats:
histograms of averaged time surfaces for robust event-based object classification,” in
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
1731–1740. doi:10.1109/CVPR.2018.00186

Viale, A., Marchisio, A., Martina, M., Masera, G., and Shafique, M. (2021). “Carsnn:
an efficient spiking neural network for event-based autonomous cars on the loihi
neuromorphic research processor,” in 2021 International Joint Conference on Neural
Networks (IJCNN), 1–10. doi:10.1109/.IJCNN52387.2021.9533738

Viale, A.,Marchisio, A.,Martina,M.,Masera, G., and Shafique,M. (2022). “Lanesnns:
spiking neural networks for lane detection on the loihi neuromorphic processor,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE),
79–86.

Wang, Z., Guo, L., and Adjouadi, M. (2014). “A biological plausible generalized
leaky integrate-and-fire neuron model,” in 36th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, EMBC 2014, Chicago,
IL, USA, August 26-30, 2014 (IEEE), 6810–6813. doi:10.1109/EMBC.2014.
6945192

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal backpropagation
for training high-performance spiking neural networks. Front. Neurosci. (FNINS) 12,
331. doi:10.3389/fnins.2018.00331

Frontiers in Robotics and AI 15 frontiersin.org

https://doi.org/10.3389/frobt.2024.1401677
https://doi.org/10.1016/s0893-6080(97)00011-7
https://doi.org/10.1109/IJCNN48605.2020.9207109
https://doi.org/10.1109/msp.2019.2931595
https://doi.org/10.1109/msp.2019.2931595
https://doi.org/10.1109/.JSSC.2010.2085952
https://doi.org/10.1109/.JSSC.2010.2085952
https://doi.org/10.1109/ICCAD51958.2021.9643524
https://doi.org/10.1109/DAC18074.2021.9586332
https://doi.org/10.3389/fnins.2022.937782
https://doi.org/10.3389/fnins.2023.1159440
https://doi.org/10.48550/arXiv.2404.03325
https://doi.org/10.48550/arXiv.2404.03325
https://doi.org/10.1109/TCAD.2020.3013049
https://doi.org/10.1109/IJCNN52387.2021.9534087
https://doi.org/10.1109/IJCNN55064.2022.9892948
https://doi.org/10.1109/ICARA56516.2023.10125781
https://doi.org/10.1109/.IROS55552.2023.10342499
https://doi.org/10.48550/arXiv.2402.11322
https://doi.org/10.1145/3571155
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1038/s43588-021-00184-y
https://doi.org/10.1109/CVPR.2018.00186
https://doi.org/10.1109/.IJCNN52387.2021.9533738
https://doi.org/10.1109/EMBC.2014.6945192
https://doi.org/10.1109/EMBC.2014.6945192
https://doi.org/10.3389/fnins.2018.00331
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	1.1 State-of-the-art works and their limitations
	1.2 Motivational case study
	1.3 Our novel contributions

	2 Preliminaries
	2.1 Spiking neural networks (SNNs)
	2.1.1 Overview

	2.2 Quantization
	2.3 Event-based automotive data
	2.4 SNN architecture

	3 Our SNN4Agents framework
	3.1 Overview
	3.2 Model compression through quantization
	3.3 Latency optimization through timestep reduction
	3.4 Attention window reduction for input samples
	3.5 Joint optimization strategy

	4 Evaluation methodology
	5 Experimental results and discussion
	5.1 Maintaining high accuracy
	5.2 Memory savings
	5.3 Processing time speed-up
	5.4 Energy efficiency improvements
	5.5 Trade-off analysis
	5.6 Computational complexity
	5.7 Further discussion

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

