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Head tracking using an optical
soft tactile sensing surface

Bhoomika Gandhi*, Lyudmila Mihaylova and Sanja Dogramadzi

School of Electrical and Electronic Engineering, The University of Sheffield, Sheffield, United Kingdom

This research proposes a sensor for tracking the motion of a human head
via optical tactile sensing. It implements the use of a fibrescope a non-metal
alternative to a webcam. Previous works have included robotics grippers to
mimic the sensory features of human skin, that used monochrome cameras
and depth cameras. Tactile sensing has shown advantages in feedback-based
interactions between robots and their environment. The methodology in this
paper is utilised to track motion of objects in physical contact with these sensors
to replace external camera based motion capture systems. Our immediate
application is related to detection of human head motion during radiotherapy
procedures. The motion was analysed in two degrees of freedom, respective
to the tactile sensor (translational in z-axis, and rotational around y-axis), to
produce repeatable and accurate results. The movements were stimulated
by a robot arm, which also provided ground truth values from its end-
effector. The fibrescope was implemented to ensure the device’s compatibility
with electromagnetic waves. The cameras and the ground truth values were
time synchronised using robotics operating systems tools. Image processing
methods were compared between grayscale and binary image sequences,
followed by motion tracking estimation using deterministic approaches. These
included Lukas-Kanade Optical Flow and Simple Blob Detection, by OpenCV.
The results showed that the grayscale image processing along with the Lukas-
Kanade algorithm for motion tracking can produce better tracking abilities,
although further exploration to improve the accuracy is still required.
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1 Introduction

1.1 Motion tracking

Motion tracking involves recording and monitoring the movements of objects in space
over time. It commonly uses active or passive sensors (Field et al., 2011). Active sensors
provide global coordinates of the sensor, which is placed on the target object. Passive sensors
involve markers that are tracked by infrared cameras. The markers are placed on the target
object. Some other sensors commonly used include inertial, magnetic, mechanical and
acoustic (Field et al., 2011). In the last 30 years, advances in computer vision have enabled
motion tracking without the use of markers, using computer vision techniques (Field et al.,
2011; Lam et al., 2023).The recent works with event cameras over the last 10 years have also
contributed to motion tracking in more challenging environments where lighting may be
poorer, whilst maintaining low power consumption (Chamorro et al., 2020). They all have
different applications today in animation, sports, medicine and medical imaging, robotics,
gaming, augmented reality, virtual reality, and surveillance and inspection.
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1.2 Tactile sensing

Tactile-sensing is a growing field of robotics, providing a range
of sensing features including tactile, thermal, and haptic stimuli,
and variations in textures. These emulate the intricate structure
of the human skin. The type of skin found on fingers, hands,
and feet is called Glabrous skin (or non-hairy skin). This consists
of sensory corpuscles especially tuned for tactile, thermal, and
haptic perception, along with rapid adapting and slow adapting
mechanoreceptors in Merkel cell-neutrite complexes (Dahiya et al.,
2010; Cobo et al., 2021). The mechanoreceptors obtain spatial
information, transient mechanical stimuli, and lateral stretching of
skin (Westling and Johansson, 1987), which can also be detected
via tactile sensors. Tactile sensing technologies cover a wide range
of sensor architectures including piezoresistive, capacitive, optical,
and magnetic, which are widely used in robotics to interact with the
robot’s environment (Chi et al., 2018).

1.3 Problem statement

The problem being acknowledged here is that the target objects
that are outside the FOV of the vision-based markerless motion
capture systems cannot be tracked due to occlusions. In such cases,
tactile based systems have shown promising results to sense motion
of objects in direct contact with the sensor. The case study in direct
relation to this problem involves tracking head and neck motion
during radiotherapy, which is further described in the next section.

1.4 Case study: radiotherapy for head &
neck (H&N) cancer

Patient positioning and immobilisation (P&I) is an integral
part of radiotherapy treatment for H&N (Head and Neck) and
brain tumour therapies (Yeh, 2010; Pavlica et al., 2021). It ensures
that the patient stays in the appropriate position throughout the
radiotherapy procedure. This is generally achieved with the use

of thermoplastic masks and stereotactic frames, respectively. The
thermoplastic masks are moulded custom to the patient’s structure,
whilst stereotactic frames are standardised (see Figure 1).The frames
are surgically attached to the patient’s skull prior to the delivery
of the radiotherapy. Although the frame provides higher accuracy,
the masks provide an ease-of-use and a faster recovery period.
The application cases of each may vary depending on the type of
treatment for the tumour. The higher accuracy of the frame is due
to it holding the patient’s skull in place using surgically invasive
pins. This requires the use of local anaesthesia and needs to be
done immediately before and after the radiotherapy procedures
(primarily including imaging) to ensure consistency in treatment
procedures (Pavlica et al., 2021). To ensure comfort with the mask,
some recent efforts have been made along with standardisation of
the procedure (Leech et al., 2017) and adaptations to the design of
the mask itself, this includes an alternative custommold, along with
straps to immobilise the patient using Vac Fix (Kim et al., 2004), and
making larger holes in the thermoplastic mask to reduce chances of
claustrophobia (Li et al., 2013). Both of these techniques also involve
tracking the head motion of the patient, one using passive markers
placed on a mouth guard, and a markerless approach with multiple
ceiling mounted cameras with AlignRT, respectively. According
to a recent focus group study (Goldsworthy et al., 2016), patient
positioning and comfort has been acknowledged as an important
factor in improving the efficacy of radiotherapy, although further
analysis is necessary (Nixon et al., 2018).

The patient-based focus group study (Goldsworthy et al., 2016)
implied finding alternatives to patient P&I. Based on this, the
Motion Capture Pillow (MCP) was first designed and reported in
(21). The MCP was previously developed as a proof-of-concept
prototype for improving patient comfort and the accuracy of the
radiotherapy treatment for H&N cancers. It is a sensorised soft
surface in the form of a pillow that is placed underneath the
patient’s head. The deformations created on the pillow are optically
captured from underneath the pillow, avoiding any obstructions in
the field of view (FOV) of the camera that may otherwise occur in
ceiling-mounted cameras. Based on the feedback, the radiographers
may modify the treatment accordingly. The motion feedback

FIGURE 1
Immobilisation methods used with Gamma Knife Radiotherapy. (A) Thermoplastic mask: This is moulded specifically for each patient based on their
anatomy. It has an inlet for the nose. The ends of the mask are held securely to the base using nuts and bolts. The base has semi-firm cushioning which
is also moulded around each patients’ anatomy. (B) Stereotactic frame: This is placed around the patient’s head and secured to the skull using surgically
invasive pins. The frame is then secured to the bed of the radiotherapy equipment. This frame is specifically used for brain radiosurgeries using the
Gamma Knife.
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TABLE 1 A list of examples of Optical tactile sensors.

Sensing technology Design structure Applications and algorithms used

GelSight∗Yuan et al. (2017) It captures deformation on a reflective elastomer (skin of the
gripper) via a camera to visualise the texture of a target
object/surface

It uses a photometric stereo algorithm to create a depth map
from the images obtained

Punyo∗Kuppuswamy et al. (2020) It is an air bubble contained in a soft rubbery elastomer, the
surface of which has patterns on it. These patterns can vary
based on the application. The distortions in the patterns caused
by an object are tracked using a dual camera system which also
measures uses depth and IR features

It is an assistive robot that is being designed for use in hospitals
and care homes. It uses tactile sensors to mimic a sense of touch
from the users. The dual camera system is assisted with DART
and GunnarFarneback Optical flow algorithms for shear
displacement estimation and pose tracking

TacTip Ward-Cherrier et al. (2018) It has an array of white pins on a black deformable silicone
sheet, which is held in a convex shape with an optically clear
elastomer. The deformations of these pins are tracked by a
monochrome camera

It is used as an interactive robot gripper. Using CNN-based
techniques, several features of the object causing the
deformation can be identified such as object detection, pose
estimation (Alkkiomäki et al., 2009), slip detection (James et al.,
2018), and texture detection (Winstone et al., 2013)

FingerVision Yamaguchi and
Atkeson (2017)

It uses optically clear silicon sheets with an array of markers. The
deformable sheet is held intact by a 3D printed frame, and the
deformations are captured by a wide-angled web camera

It is used as an interactive robot gripper, which has been applied
for slip classification using LSTMs (Zhang et al., 2018), surface
recognition via blob detection (Zhang et al., 2020), and
deformation tracking using dense optical flow (Du et al., 2021)

DenseTact Do and Kennedy III
(2022)

This sensor contains a reflective gel within the deformable
elastomeris skin. It has a ring of RGB LEDs which illuminate
specific regions of the elastomer with specific colours, and a
wide-eyed lens for capturing the depressions on the skin

It is used as an interactive robot gripper for grasping small
everyday objects. It produces high-resolution depth maps based
on the skin deformations from the target object. It has been used
for dense shape reconstruction from which location, class, and
surface can be estimated in real-time. This follows an
encoder-decoder block structure where the encoder uses the
DenseNet-161 algorithm (deep CNN network) and the decoder
is a simple architecture with skipped connections (Do and
Kennedy III, 2022). This has been for grasping small objects,
assisted with an adhesive surface (Do et al., 2023b). The encoder
has been updated with DenseNet2.0 (Do et al., 2023c) which
also has a retractible fingernail to assist grasping (Do et al.,
2023a)

∗ denotes that this sensing technology is commercially available, whilst the rest are ongoing research projects.

provided can be used to increase automated safety measures of the
radiotherapy procedure to ensure effective tumour irradiation and
improve patient comfort.

1.5 Literature review

1.5.1 Optical tactile sensors
Optical tactile sensors use a monochrome camera or a depth

camera. The image sequences are processed and analysed with
computer vision algorithms to enable interaction with the object.
Some existing technologies of such type are listed in Table 1. These
grippers have not been used for tracking motion exclusively.

1.5.2 Motion tracking algorithms
Some classical motion estimation algorithms include Optical

Flow (OF) (Sharmin and Brad, 2012; Bhogal and Devendran, 2023),
and Simple Blob detection (BD) (Kong et al., 2013), both of which
are available via OpenCV, an open-source computer vision library.
They use a deterministic, equation-based approach to estimate
motion. Further deterministic approaches have been developed
based on these algorithms, of which some of the milestones include
EpicFlow (Revaud et al., 2015), and FlowFields (Bailer et al., 2015).
These algorithms will not be discussed further in this paper, as they

address issues around the aperture problem in Optical Flow, which
is not an issue for this application since the FOV is kept constant.

1.5.2.1 Lukas-Kanade optical flow tracking algorithm
Lukas-Kanade Optical Flow tracking is a widely-established,

gradient-based algorithm that other motion estimation algorithms
in computer vision are based on. The optical flow method
(Weickert et al., 2006; Bhogal and Devendran, 2023) represents the
change of pixel intensities with respect to time, to determine spatial
and temporal flow vectors in x and y directions. There are several
versions of this algorithm. Lukas Kanade (Eq. 1) offers sparse flow
vectors, reducing computational complexity.

I (x,y, t) = I (x+ dx,y+ dy, t+ dt) (1)
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(2)

Here, I represents pixel intensity in the respective direction, t
represents time, v represents the velocity, and n is the total number of
pixels with the same velocity in the neighbouring region of a target
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TABLE 2 A temporal list of Deep Learning and ViT algorithms for motion estimation from years 2017–2024.

Algorithm Description

SpyNet Ranjan and Black (2017) This applies a convolutional filters on pairs of warped images to formulate a spatial-pyramid network to estimate large motions, with
a coarse-to-fine approach. Each pyramid level is used to compute and update the flow. The convolution filters used are similar to
classic spatio-temporal filters which provides transparency and opportunities for improvement. This has been proved to be simpler
and require significantly less model parameters than FlowNet (Dosovitskiy et al., 2015)

FlowNet 2.0 Ilg et al. (2017) Demonstrates Optical Flow as a learning problem using CNN, with some improvements over FlowNet (Dosovitskiy et al., 2015), as
this version has been fine-tuned to include small displacements

PWC-Net Sun et al. (2018) This builds on a similar CNN model as from the FlowNet models to initialise a hierarchical cost volume based on warped features,
which is used to progressively estimate the Optical Flow

FlowFormer Huang et al. (2022) This is a transformer based on neural networks for learning the Optical Flow problem. Here the decoder is a recurrent transformer
with dynamic positional cost queries

CRAFT Sui et al. (2022) This is designed for large motion estimations which have been distorted with motion blur. It removes this noise by semantic
smoothing transformer layers and Transformer Cross-Frame Attention for convolution filters

TransFlowNet Wang et al. (2022b) This targets uncertainty in boundary and initial conditions, with the use of a physics-constrained deep learning framework, it
produces stable and high resolution outputs when tested on a large spatio-temporal scale

TransFlow Lu et al. (2023) Demonstrates a pure-transoformer architecture to solve the Optical Flow problem. It has advantages over CNN including higher
correlation accuracy, retrieval of compromised information, and has a more concise framework

FocusFlow Yi et al. (2024) This has been designed for autonomous driving, where a conditioned controlling model has been developed that uses a novel
conditional control encoder, along with a mix loss function. This function combines classic photometric loss function and novel
conditional point control loss function. This was compared against FlowFormer and PWC-Net where it performed competitively

pixel. The movement of each pixel is determined by the movements
of the pixels in its neighbourhood, hence it can be written as a Least
Squares problem, as in Eq. 2, via which v can be calculated (Sharmin
and Brad, 2012).

1.5.2.2 Simple Blob detection algorithm
This specifically uses the Laplacian of Gaussian method for Blob

Detection, which is described in Eq. 3 (Kong et al., 2013).

∇2G (x,y;σ) =
x2 + y2 − 2σ2

πσ4
e−

x2+y2

2σ4 (3)

Here, ∇2 denotes the Laplacian operator, which is applied to
the Gaussian scale-space representation of an image, G(x,y,σ); and
σ denotes the standard deviation of the Gaussian function. The
Gaussian function is used to smoothen and denoise an image.

1.5.2.3 Deep learning algorithms
For improving the precision and accuracy in estimating motion,

some probabilistic deep-learning algorithms, followed by Vision
Transformers (ViT) have been developed. A list of these are
presented in Table 2.

1.5.3 Head and neck pose estimation and tracking
Monochrome cameras and depth cameras have been used

to estimate 2D and 3D poses and movements of the head and
neck. They have used Lukas-Kanade Optical Flow (Mihalik and
Michalcin, 2006), and a hybrid approach that used the depth
field alongside Lukas-Kanade Optical Flow algorithm (Zhu and
Fujimura, 2003). Active Appearance Models (AAMs) (Ariz et al.,
2019), Siamese PointNet (Wang et al., 2023), and CNN-based
approaches (Shao et al., 2020; Wang J. et al., 2022) have also been

implemented. Although only a few of the CNN-based approaches
can be used in real-time.

These cameras rely on having a clear FOV of the target objects.
Occlusions often introduce errors, and occlusion avoidancemethods
require complex solutions (Teng et al., 2018). The algorithms used
for tracking, rely on detecting key facial features including nose,
lips, and eyes. This detection requires a higher computational cost
than simply using deterministic motion tracking algorithms. In the
application of radiotherapy, these features are often occluded with a
thermoplastic mask.

1.5.4 Clinical implementation of motion tracking

VisionRT® is a commercially existing example of a motion
tracking system during radiotherapy. It tracks the patient’s surface
deformations (Vision rt, 2023). It employs a markerless tracking
approach, that uses multiple cameras mounted to the ceiling,
enabling tracking with 6-DOF in real-time. This mechanism has
been used to enhance radiotherapy procedures (Peng et al., 2010).
However, this is not used with radiotherapy equipment like the
Gamma Knife and Linear Accelerators (LINAC) due to the field of
view of the cameras being obscured by its chamber. The Gamma
Knife is a device used for delivering brain radiotherapies using
ionising beams. It uses a dual-camera set along with zed-tracking,
which is mounted to the bed’s frame facing towards the patient’s
nose. A passive marker is generally placed on their nose-tip,
which is tracked to estimate the three-dimensional translational
motion of their head. Since rotational motion is not tracked
effectively, this method is susceptible to errors (Wright et al.,
2019; MacDonald et al., 2021). Along with this, the patient is also
required to be immobilised with either a thermoplastic mask or a
stereotactic frame. The LINAC systems are used for Head and Neck
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FIGURE 2
MCP anatomy and the rough placements for webcam and fibrescope, with their respective views. Only one camera was used at a time due to physical
constraints.

(H&N) cancer treatments and have a similar physical architecture to
Gamma knife. Although these systems utilise Electromagnetic (EM)
waves which may interfere with the ferromagnetic components, this
initiates a need to ensure the components used in the MCP are
non-ferromagnetic.

1.6 Overview of this paper

This research paper has implemented a monochrome fibrescope
in a tactile sensor as a non-metal alternative to a webcam,
and Lukas-Kanade optical flow algorithm to track the motion
via the MCP. The movements tracked were in real-time and
had 2 DOF (pitch and depth of an artificial human head). The
experimental setup explains the use of a robot arm to stimulate
a mannequin (the object) on the MCP. It compares two imaging
systems (a webcam, and a fibrescope), from which the images
are pre-processed using two methods producing a different format
(grayscale, and binary images). The motion is then extracted using
blob detection and optical flow on each of these sets of data.
The data is validated against the ground truth values of motion
obtained from the robot arm performing the motion that is being
recorded by the MCP.

Previously, the MCP has been used to prove that it successfully
tracks the head movements of a mannequin using a webcam along
with binarised image processing, and the Simple Blob Detection
algorithm. This research builds on this foundation to investigate
the pre-processing methods for the images, implements the use of
a fibrescope to ensure minimal obstruction to the electromagnetic
waves in radiotherapy rooms, and evaluates its tracking performance
using the Lukas-Kanade Optical Flow algorithm.

2 Materials and methods

This section describes the design of the MCP, the procedures
for the data collection using this device, and the procedures for
data manipulation, along with validation procedures for testing its
performance.

2.1 MCP design

TheMCP and its contents can be seen in Figure 2.The fibrescope
is attached to the frame with a clamp to ensure repeatability (this
clamp is not shown in the diagram). The fibrescope is made of the
fibre bundle and the Basler area scan camera, where the fibre bundle
acts as an extension to the area scan camera. This allows the imaging
system in direct contact with the patient to stay non-ferromagnetic,
for compliance with electromagnetic fields. The other camera is a
Logitech webcam, which is being used for a benchmark comparison
with previous works.

The MCP has a pin array on the deformable skin, which is
monitored by a webcam and a fibrescope, see Figure 2. The pillow
maintains a convex shape using a pneumatic system, as described
further.The pillowmaintains its convex shape using a PID controller,
with a setpoint at 2 kPa. This was established using a microcontroller
(Arduino Uno board), a pressure sensor (PS-A ADP51B63), a 5 V
air pump, a 5 V solenoid valve, and some pipes connected to
the pillow. Figure 3 demonstrates the PID controller used for this
application.

2.2 Data collection procedures

The Franka Emika Panda robot was used for this experiment
(see setup in Figure 4). The sampling rate for the three systems
(webcam, fibrescope, robot-arm) was set to 10 Hz to provide a
continuous stream of positional values during data collection. This
sampling frequency was chosen due to its compatibility with all
the systems used whilst collecting sufficient samples. The motions
for the robot arm were set using point-to-point (PTP) method,
where the mannequin was gripped by the robot and the robot
arm was manually manuvered to desirable locations whilst rotating
or translating the mannequin, for respective movements. These
desirable locations were stored using the joint geometry of the robot
arm to plan an automated, oscillatory trajectory.

It performed two motion types on the mannequin:
Movement 1: a repetitive oscillatory motion (rotational)

around the yP-axis which ranges to approximately 12°on either
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FIGURE 3
PID controller to maintain the air pressure inside the pillow.

FIGURE 4
Experimental set-up of the Franka Emika Panda robot arm gripping the mannequin in a neutral position on the pillow. The frame, FR, represents the
frame for the robot arm, Fee represents the end-effector frame, and FP represents the frame for the MCP. The data was collected with respect to FP.
The translational values between the end-effector and the MCP, with respect to the MCP are Tx = 75mm, and Tz = 200mm.

side. Three desirable locations were set to plan this trajectory,
see Figure 5 for illustrations. The mean resolution for this data
was 0.5359° ± 0.0003°.

Movement 2: a repetitive oscillatory (translational) motion in
the zP-axis which displaces the mannequin up and down by 3 mm
onto the pillow. Two desirable locations were set to plan this
trajectory, see Figure 6 for illustrations.Themean resolution for this
data was 0.1231mm± 0.0001.

Only one camera was used at a given time for recording the
videos. This was due to the limitations of the physical set-up. To
ensure consistency relative to the ground truth values from the robot,
the recordings were synchronised with the movement motion using
robot operating system (ROS) tools, see Figure 7 for a flowchart
representation of the data collection. The code for this can be found
on this GitHub repository franka-datacollect-ws-ros-mcp. ROS is
an open-source set of libraries that enables customised interactions
between hardware and software. ROS1 noetic andROS2 foxy versions

were used for this data collection, alongwith respective publishers and
subscribers for communication between different nodes. ROS1 was
used for serial interaction with the Arduino board (using the GitHub
repository rosserial), and automating the cameras for synchronising
themwith the robot arm’s movements. ROS2 was used for interacting
with the Franka Emika Panda robot arm with the help of the GitHub
repository franka_ros2. When the selected camera was ready for
recording, a trigger key via thekeyboardwas sent across the ros-bridge
(which is available on the GitHub repository ros1_bridge from ROS1
to ROS2 to start the planned trajectory of motion on the mannequin
at the same time that the camera started recording.

2.2.1 Recording videos
The Basler area scan camera used the pylon API to set the

imaging parameters as stated above, the same parameters were also
used by the Logitech webcam, with a few exceptions as specified
in Table 3.
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FIGURE 5
Movement 1 showing the rotations around the y-axis.

FIGURE 6
Movement 2 showing the translational movement along the z-axis.

2.2.2 Recording ground truth values
The ground truth data obtained from the end-effector positions

of Franka Emika robot arm were with respect to FR, the translations
and rotations in quaternion format were recorded at a sampling
frequency of 10 Hz. The quaternions were first converted to euler
format for better visualisation of the two motion types performed
using the Scipy library. The zxy sequence was assumed for the robot
arm for this conversion.

Therotationaldata frommovement1was transformedfromframe
FR to FP (as shown in Figure 4, using the rotation matrix Eq. 4. The
transformation was applied iteratively to all the vectors of the ground
truthdataset.The transformeddata obtainedwasused as ground truth
for movement 1 (rotation around y-axis of FP).

RR
P = Rot (xR,180°) ×Rot (zR,−90°) =

[[[[

[

0 1 0

1 0 0

0 0 −1

]]]]

]

(4)

The translational data from the z-axis of the robot arm was
recorded for movement 2 (translation in z-axis of FP). This was first

obtained in the frame FR, and transformed to FP by multiplying the
values obtained with a factor of −1, since the z-axis of the two frames
directly oppose each other in their orientation.

These transformations enabled comparison of the ground truth
data with the experimental data from the MCP in the same frame
(FP). All the values obtained were normalised before comparison for
analysis.

2.3 Image processing

Two image processing outputs were obtained—grayscale and
binary.The videos obtained were processed iteratively for each frame.
Each frame was cropped to focus the FOV on the pin array using a
mask, via the OpenCV library. The webcam had a rectangular mask,
whilst the fibrescope had a circular mask that was used for cropping.
This also removed some noise from the illuminations used around the
pin array.

For the fibrescope, the grayscale frames were brightened
to increase the contrast between the pins and the background
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FIGURE 7
Flow-chart of the data collection methodology using ROS tools for
time synchronising.

TABLE 3 Imaging parameters used for cameras.

FPS 10

Gain (area scan camera only) 200 (out of 355)

Exposure Time (area scan camera only) 10000.0 (arb. units)

Pixel Format Monochrome (8-bit)

Video length (time) 45s

Number of videos recorded 2

further. This brightened grayscale output was then used for motion
tracking. This was also further processed to obtain binarised
frames using thresholding, where threshold = 50. The binarised
image was then morphed with a 2 by 2 kernel of ones to open
and close the morphology. This ensures that the noise is first
removed, following which the remaining features are highlighted,
respectively.

For the webcam, the grayscale frames were not processed
further for the grayscale output, since brightening here was not
needed. They were binarised using threshold = 100, following which
the frames were morphed in a similar way with a 4 by 4 kernel
of ones.

2.4 Motion tracking algorithms

The motion estimation for the rotational motion (movement 1)
from the MCP’s imaging systems were calculated using Simple Blob
Detection and Lukas Kanade tracking algorithms. Blob Detection
was used as a standard for comparison with LK tracking algorithm
since it has been used previously with the MCP. LK tracking
algorithm used Shi-Tomasi corner detection method. The z-axis
translational motion (movement 2) estimation was calculated using
themean pixel brightness for each frame.These were all normalised,
and then evaluated against the ground truth values obtained from
the end-effector positions of the robot arm.

2.4.1 Lucas-Kanade tracking algorithm
The Lukas-Kanade Optical Flow tracking algorithm was used

with the MCP to track the motion of the head due to its simplicity
and low computational cost for real-time processing.

This algorithm was modified to obtain displacement vectors
instead of velocity. This was done by comparing each frame of
the video to a reference frame, instead of the previous frame. The
reference frame was the first frame of the video. The x-axis vectors
from frame FP were averaged to obtain a 1D vector to represent the
rotational information of the mannequin around the y-axis of the
same frame. See Figure 8 for reference.

The aperture problem and the brightness constancy assumption
are issues that commonly affect Optical Flow since they are usually
violated. In this application with theMCP, the target features remain
in the cameras’ FOV and the illumination in theMCP stays constant.
Hence these two assumptions can be assumed to be true.

2.4.2 Simple blob detection
Simple Blob detection was used due to its previous use with

the MCP, to provide a benchmark for comparison of tracking
information.

The median of the x-axis data obtained from the pins in frame
FP was used to obtain a 1D vector to represent the rotational
information of the mannequin around the y-axis of the same frame.

2.4.3 Mean pixel brightness
To obtain the amount of pressure being applied on the MCP

by the head, the z-axis motion in frame FP was monitored by
the robot arm and estimated by the MCP. This is being estimated
using the mean brightness of the pixels in each frame, as has also
been done previously with the TacTip (Winstone, 2018) for object
localisation.

3 Results

The outputs obtained from the MCP and the robot arm were
y-axis rotations (from movement 1) and z-axis translation (from
movement 2), a sample of these results can be seen in Figure 9.
A total of two samples (two videos of 30 s each) were collected
for testing the tracking algorithms, imaging devices, and imaging
pre-processing methods each. The MCP obtained these values via
Blob detection and Lukas-Kanade tracking algorithms, fibrescope
and webcam imaging devices, and through grayscale and binarised
image processing. The outputs are evaluated in Figure 10 using
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FIGURE 8
Demonstration of Lukas-Kanade tracking algorithm with respect to rotations in movement 1. The highlight dots represent the pins as corners via
Shi-Tomasi corner detection. The displacement of these corners is tracked and displayed on the figures. The mean displacement is calculated to
estimate the overall motion of the mannequin on the pillow. This is also available in a video format at: https://www.youtube.com/watch?v=
Yk9Cr35gk4o.

Spearman’s correlation (Lovie and Lovie, 2010), due to its robustness
for handling non-linearity in continuous numerical data. For
movement 1, Blob Detection and Lukas-Kanade algorithms used for
estimating motion in the x-axis of the pillow were evaluated against
the pitch values from the robot’s end effector. For movement 2, the
average pixel brightness for each frame in the video was evaluated
against the robot’s translation along the z-axis of the pillow.

Movement 1: The webcam and the fibrescope show comparable
results suggesting that the fibrescope can replace the webcam
without losing essential motion-tracking features. Using the Blob
Detection method (Figure 10), the webcam with a grayscale image
processing method shows the highest correlation of all, 0.622,
and the grayscale fibrescope shows a higher correlation than its
binary version by 0.041. However, using Lukas-Kanade’s method
(Figure 10) higher correlations than Blob Detection have been
observed, with the grayscale fibrescope performing better than the
others, with its correlation being 0.855.

Movement 2:Figure 10 shows a high correlation between average
pixel brightness and z-axis translation for all except binary webcam.
The grayscale sources have performed better than binary sources
for all motion estimation methods used, the highest being 0.887 for
grayscale fibrescope. However, a lag of approximately 2 s was also
noticeable in the estimation of the average pixel brightness.This was
due to hysteresis in the pillow skinmaterial (silicone).The hysteresis

causes a maximum error of 33 g, as was previously evaluated using
the same pillow device (Griffiths et al., 2018).

4 Discussion and conclusion

For movement 1, the Lukas-Kanade algorithm has performed
better than Blob Detection, this is due to Blob Detection mis-
detecting some blobs, hence introducing errors. Lukas-Kanade
detected the blobs using Shi-Tomasi corner detection, which has
been used in a wide range of recent applications such as object
recognition (Bansal et al., 2021), video stenography (Mstafa et al.,
2020), and cattle detection (Kaur et al., 2022). In both movements,
webcam videos with binarised image processing showed very poor
correlation (less than 0.5 correlation) with the ground truth values,
this could be due to the binarised images not varying significantly
with varying depressions on the pillow. The grayscale images
have performed better than the binarised images for the same
reason. Although binarised images are easier to interpret to the
human eye, and provide the key features to simplify computation,
the grayscale images provide informative features that are easier
to track for this application. Binary images remove noise but
also increase complexity in distinguishing features within a pixel’s
neighbourhood.
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FIGURE 9
Sample results from fibrescope with grayscale image processing for movement 1 and movement 2. Movement 1 is labelled Ry and movement 2 is
labelled Tz. Prediction (pred) from Optical Flow and ground truth (gnd) values from the robot’s end-effector has been provided, assisted with expected
positions of the mannequin at the extreme positions. The mannequin figures have been outlined with respective colours to their movements, where
red outline shows movement 1 for rotation in y-axis and blue outline shows translation in z-axis.

This paper explored two algorithms for motion estimation in
movement 1, Lukas-Kanade Optical Flow and Blob Detection, out
of whichOptical Flow performed better overall.Throughmovement
2, it demonstrated that depth can be estimated using a monochrome
camera with the MCP. It also explored grayscale and binarised
image formats, where grayscale performed better. This establishes
a foundation for a non-ferromagnetic tactile sensor for use in a
radiotherapy room, where the MCP can be used with a fibrescope,
using grayscale images and the Lukas-Kanade algorithm for motion
estimation. Although, the accuracy of the motion estimation could
be evaluated further and improvedwith the aid of deep learning tools
such as FlowNet2.0 (Ilg et al., 2017), PWC-Net (Sun et al., 2018), or
AutoFlow (Sun et al., 2021). These two algorithms require further
exploration, along with testing the MCP with human participants.

Ideally, rotational and translation data should both be extracted
from the same dataset (instead of having the two movements

isolated) for the MCP to be used in a radiotherapy room. Further
work on this is required to combine depth extraction from the
same image sequences as the ones used for rotation, along with
considering other degrees of freedom (rotation in the y-axis and
z-axis). Some machine learning methods have been established
to extract depth fields from single camera sources (Eigen and
Fergus, 2015; Garg et al., 2016; Xu et al., 2018). These require
further exploration and adaptation in real-time for this application.
Furthermore, this study used a mannequin which has some
underlying assumptions that are invalid to human participants. The
current experiment used a mannequin with a head and shoulders of
mass 1.7 kg. An average weight of a human head is approximately
between 3 and 6 kg (Yoganandan et al., 2009). To account for head
weight variations, a calibration procedure would be required to
determine pressure inside the pillow but further testing is required
to establish this procedure. Human participants may also have
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FIGURE 10
Spearman’s correlation results from both movements: Movement 1 (Ry - rotation around y-axis) results from averaged Spearman’s Correlation for
comparison of motion estimation with ground truth from the robot arm. Movement 2 (Tz - translation in z-axis) results from averaged Spearman’s
Correlation for comparison of motion estimation with ground truth from the robot arm. Showing comparison in translational z-axis using average pixel
brightness. Key: gray = grayscale, bin = binary, web = webcam, fib = fibrescope, BD = Blob Detection, LK = Lukas-Kanade.

variations in hair volume and quality, along with asymmetric
features on their head.These chracteristics have not been considered
in this study. Further experiments with human participants are
required to tune the MCP further to its target users.
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