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Social mediator robots have shown potential in facilitating human interactions
by improving communication, fostering relationships, providing support, and
promoting inclusivity. However, for these robots to effectively shape human
interactions, they must understand the intricacies of interpersonal dynamics.
This necessitates models of human understanding that capture interpersonal
states and the relational affect arising from interactions. Traditional affect
recognition methods, primarily focus on individual affect, and may fall short
in capturing interpersonal dynamics crucial for social mediation. To address
this gap, we propose a multimodal, multi-perspective model of relational
affect, utilizing a conversational dataset collected in uncontrolled settings. Our
model extracts features from audiovisual data to capture affective behaviors
indicative of relational affect. By considering the interpersonal perspectives
of both interactants, our model predicts relational affect, enabling real-time
understanding of evolving interpersonal dynamics.We discuss ourmodel’s utility
for social mediation applications and compare it with existing approaches,
highlighting its advantages for real-world applicability. Despite the complexity
of human interactions and subjective nature of affect ratings, our model
demonstrates early capabilities to enable proactive intervention in negative
interactions, enhancing neutral exchanges, and respecting positive dialogues.
We discuss implications for real-world deployment and highlight the limitations
of current work. Our work represents a step towards developing computational
models of relational affect tailored for real-world social mediation, offering
insights into effective mediation strategies for social mediator robots.

KEYWORDS

relational affect, multimodal, multi-perspective, dyadic interaction, group dynamics,
interpersonal dynamics, social mediation

1 Introduction

Social mediator robots can play a pivotal role in shaping human interactions.
They can facilitate human interactions by improving communication, building
relationships, providing support, and promoting inclusion. To achieve these goals,
the robot must produce behaviors that impact how humans interact with one
another. However, for the behaviors to be effective in shaping human interactions,
these must be in line with the interpersonal dynamics within these interactions.
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Therefore, it is crucial that the robot be able to “understand”
humans and their interpersonal relationships with one another. This
objective requires models of human understanding that consider
the interpersonal states of the interactants and represent the
interpersonal dynamics that exist between them.

Interpersonal dynamics may be captured by relational affect–a
dyadic construct that represents affective states that an individual
experiences from their interactions with others. According to Slaby
(Slaby, 2019), relational affect “does not refer to individual feeling
states but to affective interactions in relational scenes, either between
two or more interactants, or between an agent and aspects of
[her or his] environment.” Relational affect is a consequence of
the interaction itself in the form of an interplay of gaze, gesture,
tone of voice, etc. (Slaby, 2019), and it focuses on the observable
expressions of affect between the interactants rather than the
individual internal experiences of emotion. This shift from viewing
affective behaviors as reflections of internal states to observable
expressions of interpersonal states enables the design of studies that
deliberately target the capture of interpersonal affective states that
represent the underlying dynamics in human-human interactions.

Although advances in the field of Affective Computing have
spurred numerous investigations into human affect recognition, it
is important to note that traditional methods for affect detection
in individuals (Calvo and D’Mello, 2010) may not appropriately
capture interpersonal dynamics (Jung, 2017) that are crucial for
social mediation applications. Some studies use a combination
of individual-level affect states to estimate group-level affect
(Veltmeijer et al., 2023). In doing so, however, only the individual,
internal affect of each group member is represented. This is different
from relational affect which is meant to capture interpersonal
affective states. This gap is also reflected in the available affect
recognition datasets, a majority of which are labeled for internal
affective state of an individual rather than relational affect states
resulting from interpersonal interactions. In addition to the limited
ability to capture interpersonal dynamics, affect recognition datasets
often have the disadvantage of being collected in controlled,
laboratory settings that limits their applicability for affect-based
social mediation applications in the real world. We discuss this
in detail in Section 2.

For robot-assisted social mediation applications, an
understanding of relational affect can be crucial. A model
of relational affect can enable a real-time understanding of
continuously evolving interpersonal dynamics within human
interactions. This enables the detection of salient interpersonal
events, informing the timely generation ofmeaningful, contextually-
appropriate mediation actions from the robot. It also paves the path
for real-world deployment of a social mediator robot, which can
detect changes in relational affect and act autonomously in response
to these changes to perform effectively in its mediation role.

Additionally, for social mediation to be effective, a mediator
robot must be able to understand the interpersonal perception of
each interactant towards the other. By capturing these individual
perspectives, a nuanced view of the interpersonal dynamics becomes
available, offering the robot crucial insights to inform its mediation
strategy. In contrast, if only a group-level measure of overall
relational affect is available, the robot may only be able to
mediatewith generic, undirected prompts (see Figure 1A).However,
equipped with amulti-perspective view of relational affect, the robot

FIGURE 1
A comparison of potential mediation strategies resulting from a
group-level view versus a multi-perspective view of relational affect
within an interaction. (A) A group-level view of relational affect
yielding generic, undirected mediation prompts from the robot. (B) A
multi-perspective view of relational affect yielding directed, targeted
mediation prompts from the robot.

can produce directed, targeted prompts that are sensitive to the
intricacies of interpersonal interactions (see Figure 1B).

In this work, we develop amultimodal, multi-perspective model
of relational affect that can be useful for robot-assisted social
mediation in the real world. We utilize an audiovisual dataset1

collected using the COntinuous Retrospective Affect Evaluation
(CORAE) tool from Sack et al. (2023), which contains video
recordings of dyadic social interactions. For this work, the choice of
dataset is indeed a critical one in order to ensure applicability of the
developed relational affect model to real-worldmediation scenarios.
We discuss this dataset and its suitability for this work in Section 3.

In this paper, we utilize the video data from this dataset to
extract relevant features to represent interpersonal dynamics in
dyadic interactions. Tomodel relational affect in dyadic interactions,
we take a multimodal, multi-perspective approach that takes as
input sequential audiovisual features to capture the interplay of
affective behaviors that represent relational affect. We design our
feature space to represent the interpersonal perspectives of both
interactants to enable a model that can predict relational affect for

1 https://https://corae.org/
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each interactant.We then evaluate thismodel and assess its potential
to inform social mediation applications in the real world. Motivated
with the goal of deployment in real-world social mediation
applications, this work takes the first steps towards developing a
model of relational affect tailored for use in uncontrolled settings.

2 Related work

2.1 Traditional datasets for affect
recognition

Facilitated by advances in the field of affective computing, a large
body of research on affect prediction has emerged in recent years.
As a result, a multitude of behavioral datasets collected for affect
recognition purposes have become available that are labeled for
internal affective states. In general, a fundamental assumption made
during the collection and annotation ofmany of these datasets is that
affective expressions are reliable indicators of an individual’s internal
state. This assumption explains the popular annotation strategy that
draws a one-to-one mapping between an emotional expression and
the experienced internal emotion. However, it has been suggested
that affective expressions alone may not be sufficient to reliably infer
internal affective states (Fernandez-Dols et al., 1997).

In addition, affective expressions in these datasets are largely
collected in controlled laboratory settings, either 1) performed
by actors through exaggerated behavior (Lucey et al., 2010;
Noroozi et al., 2017), or 2) spontaneously elicited through
audiovisual stimulation (Zhalehpour et al., 2016; Busso et al.,
2008). In both cases, these expressions may not resemble natural
affective expressions that result from affective experiences in the
real world. Moreover, relying on oversimplified representations of
affect resulting from exaggerated performances can lead to an overly
simplistic annotation process, which can also give a biased view of
the performance of computational models trained on this data. Both
approaches are likely to yield models that may not generalize to
real-world applications.

Some datasets are collected to reflect uncontrolled, in-the-wild
affective expressions by sourcing image data from the internet
(Mollahosseini et al., 2017; Barsoum et al., 2016), the labels for
the affective expressions are predominantly provided by annotators
that are external to the affective experiences being labeled, which
can introduce a disconnect between the label and the actual
affective experience. Computational models trained on such data
may show higher performance than on data from real world
affective experiences since 1) the image data sourced from the
internet may still be drawn from performed affective expressions,
and 2) the labels, which often come from trained annotators
who follow the same set of instructions. This leads to a high
level of consistency in the labels applied to the expressions
captured in the images. This consistency can lead to computational
models that perform well on the test data. However, it may
also limit their ability to generalize effectively in real-world
scenarios.

Laboratory settings may result in higher data quality that may
yield computational models that perform well. However, their
applicability to affect recognition in the wild and subsequent social
mediation applications is limited. In our study, we use a dataset

in which the only instruction given to the participants was related
to the interaction task. The participants were free to engage in the
interaction in a natural setting from the environment of their choice.

2.2 Affect recognition in group settings

A small subset of the available affect recognition datasets enable
an evaluation of group affective behavior. Braley and Murray (2018)
collected the Group Affect and Performance (GAP) dataset from
small group meetings and used human annotators to provide labels
of satisfaction, groupmember influence, and binary sentiment based
on utterance analysis. However, this dataset is developed primarily
to study group performance rather than affect.

Mou et al. (2019b) use the multimodal AMIGOS dataset
(Miranda-Correa et al., 2018), which was collected to study
affect, mood, and personality in group settings. The authors
studied how the affect of an individual may be influenced by their
group members. However, this study was done in a laboratory
setting within an audience context where all individuals watched
movie clips together without interacting, as the participants’
physiological states are tracked with wearable sensors. The
controlled environment, stimulation techniques, and the use of
obtrusive sensors make this setting diverge from the uncontrolled
experiences in the real world.

Additional datasets are available to study group affect, such as
GAF (Ghosh et al., 2019) or VGAF (Sharma et al., 2019) that source
data from the web to mimic uncontrolled, in-the-wild settings.
Ghosh et al. (2020), Sharma et al. (2019), and Liu et al. (2020)
used pretrained image classification models to estimate levels of
group cohesion and emotion in the GAF and VGAF datasets.
The labels in these datasets capture a single group-level measure
of affect and do not represent each individual’s perspective of
relational affect.

Fewstudieshaveexploredaffect tocapture interpersonaldynamics
in human-human interactions. Chen et al. (2022) collected the
Dyadic Affect in Multimodal Interaction–Parent to Child (DAMI-
P2C) dataset to study parent-child engagement during story reading
activities. The parent-child interaction is centered around a tablet
device with the reading activity, making behaviors such as gaze
and speech task-specific and difficult to generalize to other social
interactions.Semnani-AzadandNouri(2015)collectabespokedataset
containing dyadic interactions over a negotiation task.This is the only
dataset we found that was labeled for relational rather than individual,
internal affect.TheyemployanSVMclassifieronnonverbalbehavioral
datasuchasfacial featuresandbodylanguagetopredictrelationalaffect
and degree of participant involvement while negotiating. However,
the participants were given instructions to act in negative or positive
relationalaffect statesprior to the interaction, suggesting thepossibility
of captured behaviors deviating from real world affective behaviors.

These models of group affective behavior, their datasets and
annotation approaches are summarized in Table 1.

2.3 Group dynamics in HRI

Several studies in Human-Robot Interaction (HRI) have
investigated the use of a robot to influence the dynamics within
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TABLE 1 Summary of related studies of group affect in terms of their dataset, experiment settings, and annotations of affects.

Citation Dataset Data type Task type Annotator Annotations

Sack et al. (2023) CORAE Audio + video from
online meeting

Dyadic uncontrolled
negotiation

Participants Relational affect
(affective ratings toward
partner)

Chen et al. (2022) DAMI-P2C Audio + video +
transcription from
cameras

Parent-child guided
story reading

External annotator Individual affect
(valence, arousal,
engagement,
coordination)

Ghosh et al. (2019) GAF Images from internet Uncontrolled group
activities

External annotator Group affect (group
emotion level)

Sharma et al. (2019) VGAF Audio + video from
internet

Uncontrolled group
activities

External annotator Group affect (group
emotion level)

Miranda-Correa et al.
(2018)

AMIGOS Audio + video +
physiological signals
from camera +
neuro-physiological
sensors

Grouped movie
watching

Self-assessment +
external annotator

Individual affect in
group settings (audience
context) (valence,
arousal)

Braley and Murray
(2018)

GAP Audio + video +
transcription from
cameras

Grouped decision
making

External annotator Group affect
(utterance-based
sentiment),
decision-making

Semnani-Azad and
Nouri (2015)

(Unnamed) Video from cameras Dyadic controlled
negotiation

External annotator Relational affect
(positive or negative)

a group interaction. Jung et al. (2015) studied how members of a
group resolve conflict. They showed that when conflict arises due to
personal violations, a robot functioning as an emotional regulator
could assist in managing the conflict. Another study investigated
conflict over object possession in child-play scenarios (Shen et al.,
2018). However, these studies did not attempt to develop models of
conflict resolution and instead relied on human experimenters to
detect conflict and manually control the robot to produce relevant
responses.

Tennent et al. (2019) used a microphone robot to mediate
engagement in group interactions by rotating to face different
participants upon detecting participation imbalance. The
interactionswere post-processed by human annotators that followed
a coding scheme to label the dataset. Even though the robot
behaved autonomously based on the detection of speech from
participants, this work did not produce a computational model
of group engagement.

Several studies from Gillet et al. (2021) investigate how
group dynamics can be shaped by a robot. In one study,
the authors evaluate the influence of adapted gaze behaviors
on participation imbalance (Gillet et al., 2021) by measuring
relative speaking times of the participants. In another study,
the authors used a robot to facilitate inclusion within
groups of children as they played a music-based puzzle
game with online evaluation of collaboration (Gillet et al.,
2020). However, these approaches do not explicitly measure
interpersonal states (Gillet et al., 2021), with measures of
dynamics that may be task-dependent, in this case, the puzzle
game setup (Gillet et al., 2020).

While several other HRI studies have been designed to
investigate and influence group dynamics, relational affect-based
modeling of interpersonal dynamics is limited. By and large, the
landscape of HRI research lacks studies that incorporate real-time
assessment of interpersonal dynamics during group interactions,
particularly in contexts where autonomous robot mediation is
deployed in the wild. Our work attempts to address this gap by
enabling real-time evaluations of interpersonal perception from
the perspective of each interacting individual that can, in the
future, facilitate autonomous mediation from a social robot in
nonrestrictive, task-agnostic, natural environments.

3 Dataset overview

3.1 Interaction setting

In this work, we utilize a dataset consisting of 30 dyadic
interaction sessions (Sack et al., 2023). The study was conducted
online through a video conferencing platform. An example of
these interactions is shown in Figure 2. Upon joining the call,
participants were presented with 13 possible reasons for why
poverty exists, which cover several categories of explanations,
including personal problems of poor people, lack of opportunities
to escape poverty, exploitation of poor people, and bad fate (Shek,
2002). They were then asked to negotiate with their interaction
partner to reach a consensus on their 5 most important reasons
for poverty. They were given up to 10 min to come to an
agreement. The participants were intentionally paired such that
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FIGURE 2
An example of the online dyadic interactions available in the dataset (Sack et al., 2023).

each person identified with a contrasting political ideology, creating
an opportunity to study evolving interaction dynamics involving
opinion-sharing, disagreements, persuasion, and empathy. Beyond
imposing a time limit and providing the task instructions, the
interactions were not structured or controlled. The goal was to use
an uncontrolled setting to enable the development and evolution of
natural conversational dynamics.

At the end of the interaction, each participant was shown
a video recording of their partner containing the audio from
both participants. They were asked to retrospectively rate how
their interaction partner came across to them through the course
of the interaction. This rating serves as a measure of social
distance between the interaction partners from each participant’s
perspective. To this end, we used the CORAE tool (Sack et al.,
2023), which is designed to extract intuitive and continuous ratings
for interpersonal perception from the interactants themselves, with
a slider bar interface representing a 15-point scale ranging from
disagreeable (−7) to agreeable (+7) (Figure 3). The agreeableness
ratings provided by the participants can be understood as an
individual’s subjective interpretation of how their interaction
partner came across to them during the interaction. Therefore, the
rating serves as an indicator of how the relational affect manifested
itself from the individual’s perspective and is used in this work as a
measure for relational affect.

Details of the tool design and data collection process can be
found here (Sack et al., 2023). The dataset was collected at Cornell
University with IRB approval (IRB0143729). The authors obtained
informed consent for collecting demographic and observational
data from all study participants prior to the data release. However,
as an additional precaution, we concealed the faces of participants
in the figures to protect their identities.

3.2 Demographics

Of the 60 participants in the 30 dyadic interaction sessions,
28 were male, 31 female, and 1 non-binary. The ages ranged from

19 to 87 (M = 42.6, SD = 16.4). Race/ethnicity was primarily
Caucasian/White (47), followed by Asian/Asian American (6),
Hispanic/Latino (6), African/African American/Black (4), Middle
Eastern/North African (1) and American Indian (1) (participants
could selectmultiple options).Most participants were native English
speakers (55), with 5 proficient users. For each online session,
the dataset provided recordings of RGB videos and corresponding
audio streams.

3.3 Dataset characteristics

This dataset offers a number of advantages over other available
databases to study group social behaviors. Firstly, the dataset
contains ratings from the participants themselves. This means that
the provided labels may resemble the interpersonal experiences
more closely than annotations from external observers who
may offer an outsider’s view of the participants’ experiences.
Consequently, this could facilitate a more accurate reflection of
the interpersonal states. Secondly, the ratings in this dataset
represent evaluations of the interaction partner’s behavior rather
than one’s own, internal affective states. Thirdly, the dataset records
interpersonal perception from the perspective of each individual,
offering a view into each participant’s interpersonal perception.
These ratings are continuous and provide a granular look into
the interpersonal dynamics evolving during the interaction. This
allows for a nuanced examination of the dynamics by enabling
a study of the interplay between the affective behaviors exhibited
by one participant and the corresponding responses from their
partner, and how these unravel over time. Additionally, this provides
a more fine-grained perspective compared to a single label to
represent the interaction state as a whole, as is the case in some
datasets mentioned in Section 2. These features make this dataset
a suitable choice to develop models of relational affect for a
social mediator robot that observes real-world social interactions
and produces contextually-appropriate and impactful actions to
successfully mediate.

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2024.1410957
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Javed et al. 10.3389/frobt.2024.1410957

FIGURE 3
CORAE user interface showing the video replay and the slider interface designed to extract interpersonal ratings along a 15-point scale ranging from
disagreeable (−7) to agreeable (+7).

On the other hand, the dataset also has limitations that pose
some interesting challenges for developing computational models.
Since the dataset was collected in uncontrolled settings, participants
were allowed to connect using their personal devices from any
environment that would not interfere with the conversation taking
place.The hardware inconsistencies have implications for the feature
extraction process, where the differences in quality of the recorded
video and audio lead to inconsistent feature representations.
Additionally, there are also variations in the camera angles and
illumination conditions under which the videos were collected,
potentially interfering with the subsequent visual feature extraction
process. Another major challenge posed by this dataset is the
large amount of subjectivity in both the affective expressions of
the participants that may indicate interpersonal states and the
retrospective ratings coming from the unique perspective of every
participant. Lastly, the dataset consists largely of positively rated
interactions compared to the negative. This imbalance causes
difficulties in training machine learning or deep learning models,
resulting in overfitting to the majority class. These challenges
underscore the unique complexity of modeling human social states.

Given these dataset characteristics, Parreira et al. (2023)
sought to understand the interpersonal trends captured in this
dataset by performing a preliminary qualitative analysis on the
correlations between ratings from the two participants in a
session. They used cumulative ratings per participant in a time
series to identify key interaction events, such as a sudden drop,
opposing trends, and synchronicity to shed light on the contextual
factors in the interaction that may explain the respective trends.
Leveraging these findings, our current work focuses on developing

a multi-perspective computational modeling approach to predict
interpersonal affect states for social mediation applications.

4 Feature extraction and data
pre-processing

In line with prior work that relies on audio and visual features to
capture affect [see Poria et al. (2017) and Javed and Jamali (2023) for
a review], our feature space is comprised of audiovisual features to
capture amultimodal representation of relational affect in the dyadic
interactions. A prior analysis of the interactions in this dataset found
that verbal backchannels (“mmhmm,” “okay,” “yeah,” etc.) and non-
verbal backchannels (nodding, head tilt, eyebrow raise, etc.) were
important indicators of the interpersonal dynamics (Parreira et al.,
2023). Based on these findings, we adapted our approach
to feature extraction to emphasize the capture of short-term
behavioral events occurring within the interactions. Each sample
in the feature space includes audiovisual features from both
participants to capture a joint representation of affective facial
and/or verbal behaviors from the interaction partners. This
joint representation is intended to reflect the interplay of salient
affective cues exchanged between the two individuals during their
interaction.

The inconsistencies in data collection environments and setups
across the participants necessitated additional pre-processing steps
to ensure data integrity. Since the two participants’ video and audio
data were recorded disparately, further steps were implemented
to align the extracted features to form a joint representation of
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FIGURE 4
An example of the 34 2D facial landmarks extracted from a participant’s video data using iMotions.

participants’ features. The uncontrolled, online setup resulted in
varying lighting conditions, camera angles, and face occlusions,
as shown in Figure 5. These inconsistencies led to failures in
extracting visual features, rendering some sessions unsuitable for
analysis. Consequently, we utilized data from only 21 out of the 30
interaction sessions available in the dataset. This section discusses
the details of the feature extraction and pre-processing implemented
in our approach.

4.1 Visual features

Our visual features comprised of facial landmarks to
represent key parts of a human face (nose, eyebrow, mouth,
eyes, etc.). These were extracted using the facial expression
analysis module from the iMotions2 software platform. The videos
were processed at an average rate of 30 frames per second.
This resulted in two-dimensional coordinates for 34 unique 2D
facial landmarks, as depicted in Figure 4. This yielded 68 (×34,
34 years coordinates) features per participant, i.e., 136 visual
features per data sample in the joint representation of both
participants. A complete list of video features is provided as
Supplementary Material.

4.2 Audio features

We extracted short-term acoustic features to capture the
salient verbal expressions of relational affect, i.e., backchannels.

2 https://imotions.com/products/imotions-lab/

Though both global and short-term acoustic features have
been utilized in prior research, global-level acoustic features
are limited in their ability to describe the short-term, dynamic
variations (Busso et al., 2004) that commonly occur within
human social interactions. Therefore, we extracted 34 audio
features that represent low-level descriptors of voice, including
Mel Frequency Cepstral Coefficients (MFCCs), energy, and
spectral features. These features were extracted separately for
each individual. A complete list of audio features is provided as
Supplementary Material.

As in the case of video features, variations in the audio
recording process, including differences in microphones or
environmental conditions, can introduce inconsistencies that
deteriorate the quality of the audio data available for feature
extraction. Audio features were extracted at a sampling rate of
48,000 Hz and were then down-sampled to match the sampling
rate of the video features to enable synchronization of the two
modalities.

4.3 Data synchronization

Due to the disparate recording of data for each participant
within a session, we needed to align data samples to create a joint
representation of audiovisual behaviors from both participants.
In addition to the suboptimal conditions depicted in Figure 5,
behaviors such as turning away from the camera or partially
covering the face with a hand were observed frequently, resulting
in facial occlusion. These instances presented challenges for
the facial landmark extraction process, resulting in missing
data in affected video segments. Consequently, only interaction
segments where facial landmark data for both participants
were available were included in our extracted dataset. The
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FIGURE 5
Some examples of the suboptimal conditions resulting from the uncontrolled data collection process that necessitate additional data pre-processing.
Left: Suboptimal camera angle resulting in an incomplete view of the participant’s face, compounded by the occlusion from the glasses. Center:
Occlusion from facial coverings. Right: Suboptimal lighting conditions causing uneven illumination, with one side of the face appearing significantly
brighter than the other.

FIGURE 6
Structure of our feature space and labels that is used to capture multi-perspective representations of relational affect in dyadic interactions
between P1 and P2.

audio feature extraction process did not pose such difficulties.
The remaining data samples were then synchronized through
timestamp matching to yield the aligned dyadic interaction
dataset.

4.4 Multi-perspective representation

In our study, we aimed to incorporate both participants’
perspectives on interpersonal affective states by leveraging the
two sets of relational affect ratings. To achieve this, we adopted
a method of alternating the order in which the features from
each interactant were represented in the dataset. Specifically,
we structured the dataset such that each session yielded two
sets of sequences. In the first sequence, samples contained
68 landmarks (XV P1) and 34 audio features (XAP1) from P1
followed by 68 landmarks (XV P2) and 34 audio features (XAP2)
from P2 and labeled with the rating from P1 (YP1). The
second sequence contained 68 landmarks (XV P2) and 34 audio
features (XAP2) from P2 followed by 68 landmarks (XV P1) and
34 audio features (XAP1) from P1 and labeled with the rating
from P2 (YP2). This approach ensured that each interaction
session was represented in the dataset from the viewpoints of
both interactants. The resulting dataset structure is illustrated
in Figure 6.

4.5 Additional pre-processing steps

In the extracted dataset, we noticed that, on average, there were
slower changes in ratings recorded at the start and the end of the
interaction session. This observation can be explained as follows: at
the start, the slider is initialized at neutral (see Figure 3) and results
in extended periods of neutral ratings as participants acclimate to
the interface, and towards the end this behaviormay be explained by
possible fatigue experienced by the participants from providing the
retrospective ratings. We, therefore, compute the average number
of samples at the start (Mstart = 214) and end (Mend = 975) of each
session’s data before the first and after the last rating change occurs
respectively and trim the data per session by eliminating these
samples.

Lastly, we also perform feature normalization for each
participant’s data. While normalizing the facial landmarks, we
wanted to preserve the relationships between the 34 landmark
coordinates and reduce between-subject differences. We opted for
a technique that normalizes the landmark features by computing
their relative distance from the nose and dividing them by the
distance between the left and right jaw landmarks, to acquire a
standardized landmark representation for modeling across subjects
with different face sizes. The feature space consists of 204 features
comprising of 68 facial landmarks and 34 audio features per
participant.
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FIGURE 7
A barplot showing large imbalance in the rating classes available in our dataset, with a majority of positive ratings and a small minority of
negative ratings.

5 Estimating relational affect

5.1 Data imbalance

In the dataset resulting from the techniques described in
Section 4, we inspected the class distribution and found that our
dataset contained a majority of positive ratings (79.6%), followed
by neutral ratings (15.6%), and a very small minority of negative
ratings (4.7%), as shown in Figure 7. Possible explanations for this
observation are discussed in Section 3.3 Such a stark imbalance is
known to cause difficulties with model training, making it prone to
overfitting and leading to poor generalization.Therefore, addressing
this class imbalance is critical for our model’s ability to produce
reliable predictions of relational affect and facilitate effective social
mediation.

We implemented a weighted sampling technique that
is commonly used in machine learning to address class
imbalance within datasets. Each sample is assigned a weight
that is inversely proportional to the number of samples
available in the dataset for its corresponding class. This
increases the probability of the minority classes being
sampled during training, effectively reducing the imbalance in
the data.

Additionally, we also implemented a weighted loss function that
weights the loss computed for different samples differently based
on whether they belong to the majority or the minority classes.
By assigning higher weights to minority classes than to majority
classes, our weighted cross-entropy loss function penalizes the
misclassification of negative ratings more than positive ratings. This

increases the cost of misclassifying the negatively-rated samples,
making the model more sensitive to these classes.

5.2 Relational affect zones for social
mediation applications

The dataset collected by Sack et al. (2023) captures the
interpersonal behaviors within dyads as interaction dynamics
develop and evolve over time. The 15 rating classes provide
a granular view into the exchange of affective behaviors and
their correlation with interpersonal perceptions. While this offers
valuable nuance in the study of group dynamics, the foremost
prerequisite for a social mediation application remains the ability to
detect the need for mediation.The need tomediate is correlated with
the ability to detect the valence of the relational affect state. In its
simplified form, this implies the ability to distinguish low relational
affect from moderate and high relational affect. Since interactions in
high or evenmoderate affective states indicate functional interaction
dynamics thatmay not necessitate immediate intervention, it ismost
critical for mediation to be initiated if interpersonal perceptions
are low. Motivated by this understanding, we decided to reduce the
number of rating classes in our dataset, remapping them to three
relational affect zones: Zone 1 (low), Zone 2 (moderate), and Zone 3
(high).This is in line with prior research from Section 2 that typically
predicts 3 affective states.

Therefore, Zone 1 requires mediation with high priority since
it is critical for the robot to take action when relational affect in an
interaction is low. Zone 2 requires mediation withmoderate priority
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since this state does not present a critical need for mediation. Zone
3 requires mediation with a low priority since the relational affect
is high and represents well-functioning interpersonal dynamics that
do not necessitate mediation from a robot.

We implemented the following two techniques to remap the
15 original rating classes to the 3 zones that are useful for social
mediation applications:

• Rebinning: This presents a naive approach to remapping
classes in this dataset—it takes an objective view of the rating
data and assumes that all participants use the scale the same
way. This method takes the range of ratings provided by a
given participant and divides it into three equal segments,
as shown in Figure 8A. For example, consider a scenariowhere,
out of the 15 possible rating options from −7 to +7, Participant
1 provided ratings in the range of −3 to +5, and Participant
2 provided ratings in the range of +2 to +7. This technique
always utilizes the full range of the scale to create the three
standardized relational affect zones: low (red),moderate (blue),
and high (green). In this case, the zone boundaries are always
represented by integer values (low: −7 to −3, moderate: −2 to
+2, high: +3 to +7) and are consistent between all participants
irrespective of the range of rating scale they utilize.This implies
that, for example, if a participant did not provide any negative
ratings, the low category will contain zero samples.
• Rescaling: In contrast to Rebinning, this method takes a

subjective view of the data by acknowledging that different
participants may use the scale in different ways. Instead of
using the full range of the scale, this method only takes the
range of ratings provided by a given participant and divides it
into three equal segments, as shown in Figure 8B. For example,
consider the same scenario as above where, out of the 15
possible rating options from −7 to +7, Participant 1 provided
ratings in the range of −3 to +5, and Participant 2 provided
ratings in the range of +2 to +7. The Rescaling technique
divides this range into 3 zones: low (red), moderate (blue),
and high (green), with the raw rating values within each zone
varying between participants depending on the range of the
scale they utilized. As such, the zone boundaries may not
always be represented by integer values.

The difference in definitions of zone boundaries and the
correlation between the three relations affect zones with an action
initiative priority from the mediating robot is evident in Figure 8.
Additionally, the number of samples allocated to each rating zone
after implementing the Rescaling and Rebinning methods are
illustrated in Figure 9. As expected, the Rescaling strategy is better
at balancing the class distribution compared to Rebinning. This is
evident upon comparing the number of samples in Zone 1 resulting
from the Rescaling (76,450) and Rebinning (5796). Therefore, we
settled on using the Rescaling method to reduce the number of
classes before proceeding to train our model.

5.3 Modeling

The relational affect ratings provided by the participants are
closely tied to their observations of their partners’ behavior,
including facial expressions, head movements, speech patterns,

and nonverbal signals. This process is bidirectional, such that the
participants’ own behavioral expressions are observed by their
partners, influencing their affective evaluations. Thus, a dynamic
feedback loop exists, shaping how relational affect is perceived in
human relationships.

To capture affect-related information from sequential
interactions between subjects, we employed an LSTM (Long Short-
Term Memory) model. We chose a recurrent neural network
architecture to capture the temporal occurrence of salient affective
behaviors in the formof facial landmarks and audio features.The last
hidden state of the LSTM, which represents high-level information
aggregated from the input time window, was utilized together with
the last fully connected layer to classify the relational affect state of
each participant through the course of the interaction. We fine-
tuned the LSTM model by conducting an extensive parameter
search, ultimately setting the number of layers to 3 and the
number of hidden neurons to 32. Additionally, a dropout rate
of 0.1 was applied to the first two layers. We used a 5-s sliding
window, each containing 150 samples, with a step size of 1 sample.
Therefore, each input sequence consisted of 150 frames of facial
landmarks and audio features from both participants in a session
(204 features in total), corresponding to approximately 5 s of
interaction. This allowed us to capture and model the participants’
responses to affective stimuli. The choice of brief 5-s windows is
meant to capture important short-term interpersonal behaviors,
such as backchanneling, and is in line with previous studies
(Chen et al., 2022; Sharma et al., 2019).

The 3-layer LSTMmodel was trained using the Adam optimizer,
with a learning rate of 1e− 3, aweight decay of 1e− 4, and a batch size
of 64 to prevent overfitting. The model was trained for 500 epochs
on the training set. To obtain a model that is sensitive to minority
classes in an imbalanced dataset, we used the mean of class-specific
recall as the performance metric for model selection. This is done
to ensure the trained model is suitable for supporting mediation,
particularly in low relational affect states (Zone 1), given that the test
data is heavily biased toward moderate (Zone 2) and high (Zone 3)
relational affect.

We use data from 18 sessions (36 unique participants) for
training and 3 sessions (6 unique participants) for testing ourmodel.
This results in a 80/20 train-test split. It is important to note that
the model is tested on unseen data, where the 3 test sessions
are not represented in our training model. This is to evaluate the
generalizability of the trained model to ensure applicability to real-
world mediation scenarios involving humans that may not be a part
of the current dataset.

The complete pipeline for our modeling approach
is shown in Figure 10.

6 Results

We trained our 3-layer LSTM network on 18 dyadic interaction
sessions from the training dataset. On this training dataset, the
model achieved an average recall of 90.17% and an accuracy of
89.05%. The results presented in the rest of this section are based
on novel, unseen data from three hold-out sessions, consisting
of behavioral data from six unique individuals. These results are
a reflection of the model’s ability to learn from the behavioral
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FIGURE 8
An example comparing the rating zones resulting from the Rebinning and Rescaling methods. Rebinning always produces three standard zones for all
participants, as illustrated by the consistent boundaries in (A). In contrast, the zones may vary between participants when Rescaling is used, as
illustrated by the inconsistent zone boundaries in (B). Zone 1 requires mediation with a high priority, followed by Zone 2 with moderate priority, and
Zone 3 with low priority. (A) An example of rating zones resulting from Rebinning. (B) An example of rating zones resulting from Rescaling.

expressions of relational affect from some individuals and use these
to predict interpersonal states of unseen individuals.

Our model classifies the 3 relational affect zones at a class-
specific recall of 45.99% and an accuracy of 40.49%. Figure 12
shows the class-normalized confusion matrix resulting from the
evaluation of our model, which helps to visualize the recall
and misclassifications of the three relational affect zones [see
Simske (2019) and Mohamed et al. (2023) for class-normalized

confusion matrices]. Majority of Zone 1 (41%) and Zone 3 (72%)
samples were classified accurately, showing that our model is
sensitive to low and high relational affect. A majority (58%) of
Zone 2 samples were misclassified as Zone 3, showing that our
model is frequently unable to distinguish moderate relational affect
from high. Table 2 summarizes the performance of our model
and compares it to other models of group affect or relational
affect (discussed in Section 2). We explain our results in light of
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FIGURE 9
A comparison of the class distributions after implementing the rescaling and rebinning techniques.

FIGURE 10
An illustration of our pipeline, including multimodal feature extraction, pre-processing, LSTM model, and predicted relational affect zone.

these models in Section 7. Overall, our findings underscore the
unique complexity of modeling human interpersonal states in social
interactions.

Since the networks reported in this table were trained and
evaluated on different datasets, direct comparisons are difficult. To
address this, we trained and evaluated the Inception-V3 [used in
Ghosh et al. (2020)] and Inception-V3+LSTM[used in Sharma et al.
(2019)] networks on our dataset. We used the same training
and test sets as in our work, and used the same audiovisual
feature space to produce predictions for the 3 rating zones.
Inception-V3 achieved an average recall of 33.33% and an accuracy
of 23.67%, and Inception-V3 + LSTM achieved an average
recall of 33.33% and an accuracy of 23.84%. In comparison,
our model (average recall of 45.99% and accuracy of 40.49%)
outperforms these networks, highlighting the highly complex and
nuanced interpersonal dynamics captured in our dyadic interaction
dataset.

7 Discussion

We start with a comparison of our model with other comparable
approaches as in Table 2. Firstly, Ghosh et al. (2020), Sharma et al.
(2019), and Mou et al. (2019a), produce group affect states that
are based on estimates of individual, internal affect, and do not
consider relational affect to investigate group dynamics. Although
Ghosh et al. (2020) achieve a significantly higher performance (85%
accuracy), it is unclear if this performance comes from an evaluation
on novel image data. Additionally, the 47% accuracy reported by
Sharma et al.may be attributed to the fact that the labels are obtained
from trained annotators who follow the same set of instructions to
annotate affective states. This may present a skewed evaluation of
model’s ability to predict affect and masks its true generalization
capabilities. In contrast, our approach defines separate train and
test sets, ensuring that our model is evaluated solely on novel data
from previously unseen subjects. Generalizing to new data is a more
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TABLE 2 Comparison between this study and related prior work on group affect or relational affect.

Research
study

Dataset Modalities Task Labeling
type

Model Affect
categories

Performance

Ours Dyadic
interactions/w
CORAE

Audiovisual
features

Unstructured,
uncontrolled
social interaction

Self-provided
ratings,
continuous labels

LSTM 3 relational affect
zones

Av. Recall =
45.99% Acc =
40.49%

Ghosh et al.
(2020)

GAF3 Visual features Sourced from the
internet

Observer-rated,
static labels

Inception-V3 3 group emotions Acc = 85.58%

Sharma et al.
(2019)

VGAF Audiovisual
features

Sourced from the
internet

Observer-rated,
static labels

Inception-V3
+LSTM

3 group emotions Acc = 47.50%

Mou et al.
(2019a)

AMIGOS Visual features Movie stimuli Observer-rated,
every 20s

LSTM Binary arousal
Binary valence

F1 = 0.71 F1 =
0.79

Semnani-Azad
and Nouri (2015)

Unnamed dataset Visual features Controlled
interactions/w
assigned roles
(act out affective
states)

Observer-rated,
static labels

SVM Binary relational
affec

Acc = 65%

complex challenge, and our methodology provides a more accurate
assessment of ourmodel’s ability to generalize its learning. Secondly,
results from Mou et al. (2019a) are generated from experiments that
investigate how individual affective states may be influenced by a
group in an audience context that do not contain any interpersonal
interactions between the subjects. In addition, they output binary
affect levels compared to our 3-class output. Thirdly, Semnani-
Azad and Nouri (2015) produce relational affect estimations on a
dataset containing interactions performed in two different relational
affect states. Since the subjects have assigned roles, it is possible
that their behavior is exaggerated or influenced by external factors,
potentially limiting the dataset’s representativeness of real-world
scenarios. Additionally, the authors’ binary classifications contrast
with our more nuanced 3-class output.

To understand why the model fails to correctly classify ratings
from Zone 1, i.e., low interpersonal ratings, consider the following
example. It examines instances from two distinct points in a
conversation from the test data. Figures 11A, B both depict instances
where Participant B gave a low rating to Participant A. It can be
seen that in Figure 11A, Participant B has an apparent look of
concern on their face while Figure 11B shows them smiling. On the
other hand, Participant A’s facial expressions indicate engagement
in both images. In both cases, Participant B was listening and
Participant A was speaking, with no observable difference in their
speaking style. Similarly, it is also evident that Participant B’s facial
expressions are not consistent across the instances where they
provide the same ratings to Participant A. This is not an isolated
occurrence in this dataset. Given that Zone 1 ratings are in minority
in our training data (as illustrated in Figure 9), the chances of our
network learning the behavioral patterns specific to this rating are
reduced.The complexities of human interactionsmanifest in diverse
combinations of audiovisual behavioral patterns that can indicate
different interpersonal dynamics in different contexts. This calls for
a representation of contextual factors and conversational content as
part of the modeling approach.

Next,wediscuss the implicationsofourresults forsocialmediation
applications. To do so, we interpret our confusion matrix (Figure 12)
from the perspective of impact on social mediation applications by
comparing with the matrix in Figure 13. First, we establish that for
a mediation application, it is critical that a robot takes action when
relationalaffect is inZone1. Incomparison,Zone2andZone3 indicate
well-functioning interpersonal dynamics that donotnecessitate active
intervention.While the robotmay still be able toprovide somesupport
by takingaction to improve interpersonaldynamics inZone2,weview
the absence of such supportive action to be a failure ofmediation.This
neutralizes the impact of the misclassifications of Zone 2 as Zone 3
(58%) shown in Figure 12. All misclassifications of Zone 1 as Zone
2 (28%) and Zone 3 (32%) indicate missed mediation opportunities
and represent failure to provide necessarymediation.When Zone 1 is
correctlyclassifiedasZone1, it indicatesaneedforcritical intervention.
A robot using our trained model is able to meet this expectation 41%
of the time. When Zone 2 in incorrectly classified as Zone 1, it gives
the robot an opportunity to offer non-critical support to improve the
interpersonal dynamics. A robot trained on our model is able to offer
non-critical support 17% of the time. When Zone 3 in incorrectly
classified as Zone 1, it prompts the robot to take action when there
is no need for intervention in a smoothly-functioning interaction. A
robot trainedonourmodelpresents suchunwanted interruptions13%
of the time. This analysis highlights the early capabilities of a social
mediator robot: proactively intervening during negative interactions,
enhancing neutral exchanges, all while respecting positive dialogues.

Human interactions are inherently intricate, involving subtleties
and nuances that are made more complex due to individual
dispositions, consequently adding to the challenge of developing
generalizable computationalmodels of relational affect.This is evident
in our model’s performance since it does not account for the
individual differences in our participants. The ratings in our dataset
are highly subjective and intricately tied to individual differences
in evaluating the interaction partners. Social psychology literature
suggests thatpersonalitydispositionspredicthowindividualsperceive,
interpret, and react to social interactions with others. Studies have
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FIGURE 11
Two instances from a session between Participant A and Participant B where Participant A receives a low rating (Zone 1) from Participant B. This is a test
session containing unseen data on which this model is evaluated. In both cases, the model fails to accurately classify Zone 1 ratings. (A) An example of
Participant B giving Participant A a low rating at 5:35. The model fails to predict this interpersonal rating accurately. (B) An example of Participant B
giving Participant A a low rating at 8:43. Again, the model fails to predict this interpersonal rating accurately.

established that interpersonal evaluations do not only reflect the
actual characteristics of the persons who are being rated, but also
depend on the characteristics of those who provide the ratings
(Kenny, 2004; Leising et al., 2015; Peabody, 1967; Saucier, 1994;
Hannuschke et al., 2020). In particular, Neuroticism-related positivity
bias in interpersonal perceptions has been found to cause raters to
make more positive judgments of others’ sociability and warmth
(Hannuschke et al., 2020). Neuroticismor negative affectivity is one of
the personality traits in the Big Fivemodel (McCrae andCosta, 1989),
and isparticularly suitable for investigating the influenceofpersonality
on interpersonal perceptions given its association with cognitive bias
and selection tendencies (Finn et al., 2013; Marshall et al., 2015).
Though personality analysis is beyond the scope of the present work,
its connection to positivity bias may offer a possible explanation for
the lack of negative ratings in our dataset. Additionally, individual
differences may also dictate the usage style of a scale, such as
extreme response style where raters tend to select responses at the
extremes of the scales provided (Baird et al., 2017; Kenny et al.,
2023).Thismay explain why +7 is themost frequently-selected rating
in our dataset (see Figure 7). These characteristics of the dataset
acknowledge that although self-reported, retrospective ratings are
crucial for obtaining labels for interpersonal affective states from the

raters’ own viewpoints, these can also be susceptible to biases that
compromise their validity.

It is important to note that while this work provides insights
into interpersonal dynamics within dyads, these dynamics may
vary considerably in larger groups. For instance, even groups as
small as three participants can form teams or sub-groups, where
two individuals might align against the third, potentially creating
in-group and out-group scenarios that directly impact interpersonal
perceptions. Furthermore, the introduction of a robot as a mediator
can significantly influence these dynamics. Previous research has
demonstrated that a robot’s inclusion can affect human-human
interactions in various ways (Weisswange et al., 2024), such as
improving participation balance in conversations (Traeger et al.,
2020), influencing conflict resolution strategies adopted by
interactants (Shen et al., 2018), promoting inclusion (Gillet et al.,
2020), and developing mutual understanding (Birmingham et al.,
2020). This research demonstrates a robot’s ability to influence
interpersonal interactions. However, questions regarding possible
differences in behavioral cues exchanged between humans with and
without the inclusion of a robot require further study.

A key factor in this work was the choice of the dataset and,
hence, the corresponding task in which the interactions will be
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FIGURE 12
Class-normalized confusion matrix for our model that classifies
relational affects into low (Zone 1), moderate (Zone 2), and high (Zone
3) affect zones.

FIGURE 13
This figure can be compared with Figure 12 to evaluate how a robot
using our model may perform as a mediator. The robot takes action
when the model predicts Zone 1. When relational affect lies in Zone 1,
and the model classifies it accurately as Zone 1, the robot is able to
provide critical intervention. When Zone 1 is misclassified as Zone 2 or
Zone 3, the robot misses opportunities to mediate an interaction.
When Zone 2 and Zone 3 are misclassified as Zone 1, the robot’s
actions are considered to provide non-critical support and unwanted
interruptions respectively.

grounded. While this grounding is useful in eliciting goal-directed
behavior—in this case, the negotiation between the participants—we
were careful to choose a mainly conversational task that did not
involve specialized movements or gestures for communication.
This is unlike studies that utilizes tasks where physical movements
may be the main indicators of participation within a team, e.g.,
assembly tasks (Haripriyan et al., 2024). Instead, we aimed to

elicit natural conversational dynamics that may generalize to other
conversational tasks as well. Having said that, our current model
does not incorporate contextual factors, such as relationship,
environmental setting, age, gender, and personality, among other
factors, that may be crucial when evaluating the generalizability of a
model to other conversational tasks. In addition to this, a negotiation
inherently includes agreements, disagreements, persuasion, and
collaborative decision-making, all of which can evoke diverse
interpersonal dynamics. This is important for collecting a dataset
containing samples of various interpersonal states from which
machine learning models can learn. Thus, negotiation serves as
a means to elicit these interpersonal dynamics, allowing us to
model them using machine learning and apply the insights to other
situations. The ratings estimated by our model can then be used by
the robot mediator to devise an appropriate mediation strategy in
line with the goals of the group and the target of mediation.

The goal of this work is to take steps towards the development
of a computational model of relational affect that can be used to
evaluate interpersonal dynamics in real-world social interactions in
order to facilitate robot-assisted mediation applications. This goal
guides our choice of dataset, our modeling techniques, and our
evaluation of the model. While several models of group affect or
other group behavior are available, we argue that their applicability
for real-world deployment is limited due to the nature of the
underlying training data, the constraints imposed by the modeling
techniques on their generalization capabilities, or their application
to very specific tasks. In contrast, our approach strives for real
world applicability by 1) using a conversational dataset collected
in the wild and is not task-specific; 2) capturing relational affect
states rather than internal affect states that are more useful to
evaluate interpersonal dynamics, 3) using a feature space that
can be extracted in real time to enable real-world deployment in
social mediation applications, and 4) employing a multi-perspective
approach to model relational affect from the perspective of each
individual interactant to enable the generation of effective and
nuanced mediation strategies from the robot.

8 Limitations and future work

Currently, our model faces limitations in accurately
classifying the three relational affect states, particularly the
low states. To address this, incorporating individual differences
among participants—such as personality traits or cultural
backgrounds—could enhance the model’s ability to generalize
learned affective representations. Additionally, we have yet to
fully explore the untapped potential of speech content within the
dataset. Analyzing speech patterns and linguistic cues may offer
valuable insights into affective behaviors during dyadic interactions.
Additional features that capture higher-level constructs, such
as pauses, silences, gaze focus, and attention, may also impact
the model’s ability to identify key interpersonal behavior. It is
crucial to acknowledge that while the dataset is collected “in the
wild,” the interactions occur in virtual settings. Consequently,
we miss out on capturing additional behavioral cues like body
pose and interpersonal distance, which are readily available in
in-person interactions. These virtual dynamics may differ from
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the complexities encountered outside our dataset, which may have
implications for mediation of in-person social interactions.

In future research, integrating personality traits and
demographic information into the modeling process could help
address the subjective nature of behavioral features and relational
affect ratings. By considering individual differences in personality
and demographics, the model may better capture the nuances of
affective behaviors. Another promising avenue is leveraging pre-
trained models. These models, often trained on large-scale datasets,
have learned useful representations of language, vision, or other
domains. Incorporating pre-trained embeddings or features into
the existing model architecture could enhance its ability to learn
from limited data.

Additionally, scaling to larger groups and real-world scenarios is
crucial. Current work focuses on dyadic interactions but extending
it to include larger groups can be valuable. In real-world scenarios
(e.g., group discussions, meetings, or social gatherings), interpersonal
dynamics involve complex interactions among multiple individuals.
Capturing these dynamics requires modeling interpersonal behaviors
takingplacebetweenallgroupmembers.Futureworkmayexplorehow
the existing approach can be adapted to handle group interactions
by considering group-level features, temporal dependencies, and
coordination patterns. Alternatively, other architectures may be
utilized to capture the complexities of interactions in larger
groups. For example, graph-based approaches are well-suited for
capturing interpersonal relationships in larger groups, as they can
effectively represent individual groupmembers and their interactions,
thereby capturing the complex dynamics within a group from each
individual’s perspective.

Addressing these limitations and exploring the highlighted
avenues will enhance the model’s practical utility and contribute to
its value in robot-assisted social mediation applications. By enabling
an understanding of the interpersonal dynamics in a human-
human interaction, this work lays the groundwork for real-world
applications of robot-assisted socialmediation in group interactions.
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