
TYPE Original Research
PUBLISHED 08 January 2025
DOI 10.3389/frobt.2024.1424036

OPEN ACCESS

EDITED BY

Luis Paya,
Miguel Hernández University of Elche, Spain

REVIEWED BY

Ruiheng Zhang,
Beijing Institute of Technology, China
Vladan Papić,
University of Split, Croatia

*CORRESPONDENCE

Jose Moises Araya-Martinez,
araya.martinez@campus.tu-berlin.de

RECEIVED 27 April 2024
ACCEPTED 02 December 2024
PUBLISHED 08 January 2025

CITATION

Araya-Martinez JM, Matthiesen VS, Bøgh S,
Lambrecht J and Pimentel de Figueiredo R
(2025) A fast monocular 6D pose estimation
method for textureless objects based on
perceptual hashing and template matching.
Front. Robot. AI 11:1424036.
doi: 10.3389/frobt.2024.1424036

COPYRIGHT

© 2025 Araya-Martinez, Matthiesen, Bøgh,
Lambrecht and Pimentel de Figueiredo. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

A fast monocular 6D pose
estimation method for
textureless objects based on
perceptual hashing and template
matching

Jose Moises Araya-Martinez1,2*, Vinicius Soares Matthiesen2,3,
Simon Bøgh3, Jens Lambrecht1 and Rui Pimentel de Figueiredo3

1Industry Grade Networks and Clouds, Institute of Telecommunication Systems, Electrical Engineering
and Computer Science, Technical University Berlin, Berlin, Germany, 2Future Manufacturing
Technologies, Mercedes-Benz AG, Sindelfingen, Germany, 3Department of Materials and Production,
Aalborg University, Aalborg, Denmark

Object pose estimation is essential for computer vision applications such
as quality inspection, robotic bin picking, and warehouse logistics. However,
this task often requires expensive equipment such as 3D cameras or Lidar
sensors, as well as significant computational resources. Many state-of-the-
art methods for 6D pose estimation depend on deep neural networks,
which are computationally demanding and require GPUs for real-time
performance. Moreover, they usually involve the collection and labeling of
large training datasets, which is costly and time-consuming. In this study,
we propose a template-based matching algorithm that utilizes a novel
perceptual hashing method for binary images, enabling fast and robust pose
estimation. This approach allows the automatic preselection of a subset
of templates, significantly reducing inference time while maintaining similar
accuracy. Our solution runs efficiently onmultiple devices without GPU support,
offering reduced runtime and high accuracy on cost-effective hardware. We
benchmarked our proposed approach on a body-in-white automotive part
and a widely used publicly available dataset. Our set of experiments on a
synthetically generated dataset reveals a trade-off between accuracy and
computation time superior to a previous work on the same automotive-
production use case. Additionally, our algorithm efficiently utilizes all CPU
cores and includes adjustable parameters for balancing computation time and
accuracy, making it suitable for a wide range of applications where hardware
cost and power efficiency are critical. For instance, with a rotation step of
10° in the template database, we achieve an average rotation error of 10°,
matching the template quantization level, and an average translation error
of 14% of the object’s size, with an average processing time of 0.3s per
image on a small form-factor NVIDIA AGX Orin device. We also evaluate
robustness under partial occlusions (up to 10% occlusion) and noisy inputs
(signal-to-noise ratios [SNRs] up to 10 dB), with only minor losses in accuracy.
Additionally, we compare our method to state-of-the-art deep learning models
on a public dataset. Although our algorithm does not outperform them in
absolute accuracy, it provides a more favorable trade-off between accuracy

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2024.1424036
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2024.1424036&domain=pdf&date_stamp=2025-01-03
mailto:araya.martinez@campus.tu-berlin.de
mailto:araya.martinez@campus.tu-berlin.de
https://doi.org/10.3389/frobt.2024.1424036
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2024.1424036/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1424036/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1424036/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1424036/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1424036/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Araya-Martinez et al. 10.3389/frobt.2024.1424036

and processing time, which is especially relevant to applications using resource-
constrained devices.

KEYWORDS

6Dpose estimation, perceptual hashing, IoU, hammingdistance, automotiveproduction

1 Introduction

The estimation of the six degrees-of-freedom (6DOF) pose of
objects from image data is known as object 6D pose estimation
and stands as a fundamental problem in various fields such
as computer vision, robotics, augmented reality, and industrial
automation.

The ability to precisely determine an object’s position and
orientation in its environment plays a pivotal role in enabling
machines to interact intelligently with the physical world. In
robotics, robots equipped with vision systems rely on precise pose
estimation to manipulate objects with dexterity and efficiency.
Augmented reality applications leverage 6D pose estimation to
seamlessly integrate virtual objects into real-world environments,
enhancing user experiences. Industrial automation relies on
accurate pose estimation for tasks such as assembly and quality
control in production lines.

Despite its significance, the accurate estimation of the 6D pose
is hindered by various challenges inherent to real-world scenarios,
which include variability in lighting conditions, occlusions,
cluttered backgrounds, changes in object appearance, and viewpoint
alterations. These factors introduce ambiguity and complexity,
making it difficult for algorithms to robustly infer the object’s
pose solely from image data. For instance, an object’s appearance
may change due to different lighting conditions or occlusions,
and background clutter can confuse algorithms by introducing
false positives. Although the literature on object detection and
6D pose estimation is vast (Marullo et al., 2022; Guan et al.,
2024) and popular state-of-the-art methods are accurate when
dealing with textured objects, most fail in the presence of
textureless objects, such as metallic parts, which are common
in industrial assembly and quality inspection lines (e.g., in the
automotive industry).

In this work, we tackle the former problem by proposing a
fast and robust template-matching methodology for textureless
(metallic) 6D pose estimation, using a single conventional RGB
camera. Similar to the work by Druskinis et al. (2023), we propose
a model-based template matching approach for textureless object
pose estimation, with benefits of perceptual hashing (Farid, 2021), to
cleverly select only a subset of all possible templates for the template-
matching routine. Unlike state-of-the-art data-driven deep learning
methods, which are data and computationally hungry, our method
only requires CADmodels of the objects of interest for training, and
our multi-threading implementation runs in real-time without the
need for expensive and power-demanding GPUs.

Our main contributions, compared to our previous work
(Druskinis et al., 2023), are as follows:

• We propose a method for generating a database of silhouettes,
representing different 3D viewpoints, from a given object

geometric (CAD) model. Viewpoints are deterministically
sampled, instead of randomly, from all possible
orientations.

• We propose the use of binary masks for representing the object
instead of edges. Furthermore, we use the intersection over
union for fast template matching instead of computationally
expensive Chamfer distance between edges.

• We propose a novel perceptual hashing of binary
image algorithms for preselecting a subset of the
templates on the database for matching at run time.
Our method shows improvements in several orders of
magnitude in processing times compared to similar
previous methods (Druskinis et al., 2023).

• A systematic set of experiments using simulated data
demonstrates the robustness of our algorithm in the presence
of occlusion and noise if optimized for speed.

The rest of this paper is organized as follows: Section 2
reviews the related work on computer vision methods for 6D
pose estimation; Section 3 presents our perceptual hashing
and template-matching approach for fast 6D object pose
estimation; Section 4 presents the test of the robustness of
our methods against noise and occlusion, as well as its run-
time inference speed on different (workstation and embedded
computing) devices; and finally, Section 5 presents the main
benefits and setbacks of our approaches and proposes ideas for
future work.

2 Related work

The literature onmethods for 6Dpose estimation of objects from
color and depth image data is vast and spans across multiple fields
(see Sahin et al., 2020; Zhao et al., 2019; Du et al., 2021;Marullo et al.,
2022 for detailed reviews). Generally, these approaches can be split
into three categories, namely, template-based, feature-based, and
data-driven methods. Template-based methods create 2D object
representations from many viewpoints, which are matched against
a given input target image. However, these are typically prone
to errors in the presence of occlusions and clutter. Feature-based
methods detect and extract local features from the object. The 6D
pose is typically retrieved using PnP algorithms. Unlike template-
based methods, these are robust to occlusions and clutter but
require rich textures to allow for features to be extracted. Data-
driven methods learn to perform feature extraction and pose
estimation from annotated datasets. Instead of engineering features,
one utilizes neural network architectures (e.g., deep convolutional
neural networks (Indolia et al., 2018)), which are optimized with
large datasets to perform object detection and pose estimation in an
end-to-end manner.

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2024.1424036
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Araya-Martinez et al. 10.3389/frobt.2024.1424036

Zakharov et al. (2019) introduced a method called the Dense
Pose Object Detector (DPOD), a deep learning method for 3D
object detection and 6D pose estimation from RGB-D images.
The DPOD utilizes dense multi-class 2D–3D correspondence maps
to estimate object poses using PnP (Fischler and Bolles, 1981a)
and RANSAC (Fischler and Bolles, 1981b) algorithms. Additionally,
it uses a deep learning-based refinement scheme for further
improving pose accuracy. Evaluation of both synthetic and real data
shows superior performance compared to recent detectors, with
real-time capability.

Choi and Christensen (2010) proposed a real-time 3D model-
based tracking system designed for robotic manipulation tasks. The
method leverages edge and key point features for robust tracking.
The system uses a 3D model of the object to be tracked and utilizes
edge and key point features extracted from the object and the scene.
These features are matched in real time to estimate the object’s pose
relative to the camera. This approach enables accurate and efficient
tracking suitable for robotic manipulation applications.

Drost et al. (2010) and de Figueiredo et al. (2015) proposed
a method for recognizing free-form 3D objects in point clouds.
Unlike traditional approaches relying on local point descriptors,
their method constructs a global model description using oriented
point pair features and uses a fast-voting scheme for local matching.
Recognition occurs locally via an efficient Hough voting scheme
on a two-dimensional search space. The experimental results
demonstrate high speed and high recognition performance in the
presence of noise, clutter, and partial occlusions.

Although traditional methods for 6D pose estimation may
achieve high accuracy, they are typically not robust to appearance
variations and require a significant amount of engineering effort
to design and optimize feature extractors, object proposals, and
their classes (O’Mahony et al., 2020). More recent data-driven deep
learningmethods learn to perform complex visual recognition tasks,
including 6D pose estimation, in an end-to-end manner by training
neural network models with large, annotated datasets.

Pix2Pose (Park et al., 2019) is a deep learning method
specifically engineered for 6D pose estimation from individual
RGB images. Utilizing a convolutional neural network (CNN)
architecture, Pix2Pose is trained end-to-end to directly predict the
6D pose parameters of objects depicted in the input images. During
training, the network learns to minimize the disparity between its
predicted poses and groundtruth annotations, typically comprising
object translations and rotations relative to a reference frame. To
enhance robustness and generalization, Pix2Pose incorporates data
augmentation techniques, applying random transformations to both
the input images and corresponding pose annotations.

Sundermeyer et al. (2019) proposed an approach for 6D object
detection that utilizes augmented autoencoders to implicitly learn
the 3D orientation of objects from 2D images. By augmenting
autoencoders with orientation information during training, the
proposed approach effectively encodes and decodes 3D object
representations, facilitating the improved detection of object poses
in 3D space.This is achieved by embedding orientation information
directly into the latent space of the autoencoder, enabling the model
to learn robust features for orientation estimation.

Wu et al. (2022) introduced pose interpreter networks (PINs)
for efficiently predicting the 3D pose of objects from 2D images in
real time. Unlike conventionalmethods that rely on computationally

expensive geometric calculations or complex network architectures,
PINs use a lightweight structure combined with a learnable
pose interpreter module. This module refines pose predictions
dynamically based on contextual information extracted from
input images, ensuring accurate and robust pose estimation. The
experimental results demonstrate that PINs outperform existing
methods in terms of both accuracy and computational efficiency,
making them suitable for applications such as robotics, augmented
reality, and industrial automation.

Deep-IRTarget (Zhang et al., 2022) is a novel backbone network
that detects targets using infrared images. The challenge of using
CNNs in thermal imagery is due to poor texture information,
low resolution, and high noise levels, which restrict the feature
extraction ability of CNNs. Thus, Deep-IRTarget uses features from
the frequency domain and spatial domain and stacks them together
to construct dual-domain features. This approach offers a solution
using infrared images and can be used as the object detection stage of
a pose estimation algorithm to detect key features in objects without
the need for RGB images.

MegaPose is a method introduced by Labbé et al. (2022) to
estimate the 6D pose of novel objects using RGB or RGB-D images.
Novel objects are those that are unseen during training, which
eliminates the requirement of having to re-train the model for every
new object that is added after training. MegaPose only assumes
knowledge about a region of interest that contains the desired
object in the image, along with its CAD model. To train the coarse
and refiner models to generalize to novel objects, they required
RGB-D images of many objects with their groundtruth 6D object
pose annotations along with 3D models for these objects. To solve
this task, they trained their models on purely synthetic data using
BlenderProc (Denninger et al., 2023a), a procedural Blender pipeline
for photorealistic rendering that provides 6D pose estimation data
in the BOP format. Two million images were generated for their
dataset by randomly sampling objects and dropping them from a
plane using a physics simulator.

Labbé et al. (2020) introduced CosyPose, an approach to recover
the 6D pose of multiple known objects captured by multiple input
images, where the camera viewpoints are unknown and no depth
information is given. It is assumed that the 3Dmodels of the objects
are known; however, there can be multiple instances of the object in
the same, and the amount is unknown. Since multiple views of the
scene are captured, some objects may not be visible in some scenes,
and the relative poses between the cameras are unknown.Theoutput
of CosyPose is a scene containing the number of objects and their
class along with their 6D pose and the relative poses of the cameras.

Hinterstoisser et al. (2013) created the Linemod dataset, which
is a large dataset of 15 registered video sequences containing 15
textureless household objects with discriminative color, shape, and
size. Every video sequence contains over 1,100 real images taken
from multiple viewpoints, where one video sequence is associated
with one of the 15 household objects and only has annotations for
that object. Each sequence also uniformly covers views around the
complete pose space of the object. This guarantees views from 0° to
360° around the object, 0°–90° tilt rotation, 65 cm–115-cm scaling,
and ±45° in-plane rotation. Furthermore, each image has heavily
cluttered backgrounds consisting of random day-to-day objects.
Linemod-Occluded (Brachmann et al., 2014) is a subcategory of
the Linemod dataset, where all objects in each image are occluded

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2024.1424036
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Araya-Martinez et al. 10.3389/frobt.2024.1424036

instead of just one, which creates a more challenging dataset as
occlusion is added to the masks. The Linemod and Linemod-
Occluded datasets are commonly used by other state-of-the-art
methods for evaluation.

In this paper, we propose a method for the 6D pose estimation
of textureless objects from a single monocular image. Ourmethod is
fast, robust, and requires only a CADmodel of the object of interest
for training.

3 Methodologies

In this section, we describe our proposed methodologies for 6D
object pose estimation. We begin by defining the method’s main
phases and then each phase in detail, including the offline template
database generation and the online pose estimation approach.

3.1 Problem statement

In this work, we tackle the problem of estimating the 6D pose
of industrial, textureless objects while keeping the complexity of the
input hardware as low as possible, i.e., we rely on a single industrial
monocular RGB camera, as shown in Figure 1. We also reduce
the time complexity of the inference phase to allow deployment
on embedded computing devices in the context of automotive
production. In the following problem statement, we consider two
algorithmic stages:

• Offline phase: A database comprising multiple viewpoints
of an object of interest is generated from an available
geometric CAD model.

• Online phase: Two-dimensional images are acquired from a
monocular 2D camera, and with this input, a segmentation
algorithm generates non-perfect segmentation masks of the
object. The resulting binary masks are the input of our 6D pose
estimation algorithm.

Figure 1 shows the basic elements considered in this problem
statement for both the online and offline stages of our algorithm.
Note that even though the world coordinate system is the general
reference, it is not relevant to find a 6DOF translation matrix
between an object and the camera. Thus, in this work, we focus
on finding the object-to-camera transformation function without
considering where the system is placed with respect to the world
coordinate system. The input of our algorithm is on the two-
dimensional image plane. Let O be a discrete set of visible surface
points belonging to an object in the Euclidean three-dimensional
space ℝ3, as defined in Equation 1.

O = {oi ∈ ℝ3 with i = 1,…,No} (1)

Our goal is to find an object-to-camera transformation function
in the special Euclidean group (Blanco-Claraco, 2022), T =
[R | t] ∈ SE(3): ℝ3→ℝ3, that maps arbitrary points from the
object to the camera reference frame according to Equation 2.

ci = [R | t] oi = T oi (2)

To solve the given problem statement, we used a template-
matching method suggested by Druskinis et al. (2023).
As shown in Figure 2, the main idea of template matching is to
rely on a template database containing the object’s masks seen from
different viewpoints. Then, during the online estimation phase, we
aim to find the best match between the segmented object, i.e., input
mask, and the masks in the database. The method is split into an
offline and online stage, which is explained in the following sections.

3.2 Object template generation

Let us consider a pinhole camera (Harltey and Zisserman, 2006)
to model how 3D points project to a 2D image plane (see Figure 1).
During the offline phase, for each point oi belonging to the CAD
model of the object of interest, we project the point to the image
plane according to Equation 3.

pi = K [R | t] oi = K T oi (3)

Where pi = (ui,vi) denotes the projected point in pixel coordinates,
i.e., in the 2D camera image plane, and K ∈ ℝ3×3 represents the
intrinsic camera matrix (Harltey and Zisserman, 2006). Equation 4
denotes the set of all projected points in the image plane, in pixel
coordinates.

P = {pi ∈ ℕ
2 with i = 1,…,No} (4)

The corresponding binary image mask is denoted in Equation 5,
where |B| represents the resolution (i.e., the number of pixels) of the
binary image mask.

B =
{
{
{

1 ∀pi∈P
0 other wise,

}
}
}

(5)

3.3 Offline database generation

In the offline phase, our method creates a binary image database
of the object of interest seen from various viewpoints. We utilize a
geometric model (CAD) of the object of interest and a rendering
engine to generate multiple templates, i.e., binary image masks,
corresponding to different object orientations.

More specifically, the binary image templates are obtained by
discretizing the orientation space of the object, using an Euler angle
representation, with θx ∈ [0,π], θy ∈ [0,2π], and θz ∈ [0,2π] denoting
roll, pitch, and yaw, respectively, and projecting the rotated object
geometric model in the image plane, as described in Section 3.2.The
quantization steps are expressed in Equation 6.

θstepx =
π
Nθx
,θstepy =

2π
Nθy
,θstepz =

2π
Nθz

(6)

Nθx , Nθy , and Nθz are user-defined discretization parameters.
The template database, D, is thus a set of binary masks

representing the silhouette of the object seen from different
orientations and is defined according to Equation 7.

D = {Bi,j,z with i = 1,…,Nθx , j = 1,…,Nθy , z = 1,…,Nθz}
(7)

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2024.1424036
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Araya-Martinez et al. 10.3389/frobt.2024.1424036

FIGURE 1
Pinhole camera model relevant to both the offline database generation and the online inference from a 2D camera. Masked images on the camera
image plane are the input of our algorithm, which aims to estimate the object-to-camera pose T, regardless of the absolute system’s position on the
world coordinate system.

This comprises a total of Nθ = Nθx ×Nθy ×Nθz orientation bins (as
shown in Figure 3). The main difference in this approach compared
to that used by Druskinis et al. (2023) is that the viewpoints of
the object are not randomly sampled but instead created based
on a deterministically defined 3D grid. Furthermore, we do not
store edges of the object’s contours in the dataset but binary
segmentation masks.

3.4 Template-based 6D pose estimation

In the online pose estimation stage, our algorithm receives
an input binary image, given by a segmentation algorithm, and
finds the best match with the database created in the offline
stage (see Figure 2).

As shown in Figure 2, the first step of the online stage is to
estimate the center pixel coordinates of the mask. Then, the center
of the mask is aligned with the image’s center for subsequent
computation of the 3D translation of the object. To do so, the
centered binary mask is matched with the offline template database.
For efficient computation, the hash number of the input images is
computed. This input hash is compared against the mask database
using a cost-effective Hamming distance. The templates with the
lowest Hamming distance to the input image are preselected for
further processing. Before thematching step begins, the input image
is resized to have the same number of pixels as the template image.

After resizing, the intersection over union cost function is used.
The template that maximizes this cost function is selected as the
best-matching mask. Then, the predicted rotation is retrieved from
the database information on this winner template. The translation
result is calculated from converting the previously estimated center
pixel from the pixel space to the 3D world by using the camera’s
intrinsic function. Lastly, the depth is calculated from the resize
factor computed before IoU matching. The final output is the
6D pose of the object relative to the camera’s coordinate system,
as shown in Figure 2.

3.4.1 Perceptual hashing of binary images
Perceptual hashing (Mıhçak and Venkatesan, 2001) allows

us to compare two images based on the underlying scene
content instead of a purely numeric comparison of pixel values.
It enables image comparison even in the presence of pixel
modifications such as compression, color shifts, cropping, and
rotation.This higher-level assessment of image contents has enabled
perceptual hashing to be widely used in fields where comparing
a massive amount of data is required in an efficient and robust
manner, such as multimedia content grasping and identification
(Farid, 2021).

In general terms, an ideal hashing algorithm should be
characterized by a set of properties. The most important of
them for our purposes can be described as follows: it must be
distinctive, which implies that it must provide a distinguishable

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2024.1424036
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Araya-Martinez et al. 10.3389/frobt.2024.1424036

FIGURE 2
Full pipeline of our algorithm. The input is a binary mask of the object, which we match against rendered masks contained in an offline database. If
hashing is used, then only a preselected number of images are matched instead of the whole database.

result for inputs with different content; it should also be resilient
to pixel value modifications that do not fundamentally alter the
underlying content; a perceptual hashing algorithm must also
offer a deterministic output for invariant content; and finally,
it must be efficient in terms of the cost of extracting and
comparing hashes (Farid, 2021).

Given the abovementioned distinct, resilient, deterministic,
and efficient properties of perceptual hashing, we used this
method to optimize the image search in our large template
database in the field of pose estimation. To do so, we extracted

hashes of all templates present in the dataset and saved a
hash table in the offline stage, as shown in Figure 4. Then, at
inference time, we computed once the hashing number of the
input mask and used the database hashing table to search for
hashes with the lowest Hamming distance with respect to the
input mask. Templates with the smallest Hamming distance were
then retrieved from the database and kept as candidates for
the final IoU-based cost computation. This hash-based template
preselection optimizes the brute-force search of the previous
work (Druskinis et al., 2023).

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2024.1424036
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Araya-Martinez et al. 10.3389/frobt.2024.1424036

FIGURE 3
Images generated for the template database. Each row shows the object’s rotation on each axis: roll (X), pitch (Y), and yaw (Z). The object was rendered
at 0.65 m from the camera to ensure that the entire object was in frame at every chosen orientation.

FIGURE 4
Representation of the offline and online steps involved in the hash-based preselection mechanism to create a subset Dpresel ⊆ D of template candidates
as the first step in our pose estimation algorithm.

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2024.1424036
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Araya-Martinez et al. 10.3389/frobt.2024.1424036

FIGURE 5
Step-by-step representation of the typical implementation of average hash (top) and our optimized version for binary inputs (bottom). We demonstrate
the algorithm with object 9 of the Linemod (Hinterstoisser et al., 2013) dataset.

There are multiple available implementations of perceptual
hashing algorithms, such as average hash (aHash), perceptive
hash (pHash), and difference hash (dHash) (Fei et al., 2017).
We implement a modified version of aHash as its simplicity
offers a reduced computation time compared to other methods
while also offering good results in terms of the abovementioned
properties (Fei et al., 2017).

Average hashing mainly extracts features from low-frequency
information in the image. Typically, it has four computation steps
(Fei et al., 2017), as shown in the top of Figure 5, i.e., image
downsampling, color reduction, average pixel computation, and
pixel thresholding. However, considering a binary input, such as
the binary mask B as defined by Equation 5, we can optimize the
traditional aHash implementation for our specific inputs in two
ways, as shown in the bottom of Figure 5. First, as the input B is
already a single-channel binary mask, we do not need to reduce
the input’s color dimensionality from RGB to grayscale. Second, if
the nearest neighbor method is used as the interpolation method
in the first step of the algorithm, the resulting lower-resolution
mask keeps its binarized pixel values, which allow us to skip the
subsequent pixel binarization step via a thresholding operation.
Thus, our implementation of aHash can be summarized as follows:

1. Given an input binary mask B, its resolution is reduced
by several orders of magnitude by using a two-dimensional
interpolation method, such as nearest-neighbor interpolation.
The resulting downscaled and binary image is further denoted
as G.

2. The dimensionality of the resulting binary image G is reduced
into a single-dimension binary code. The resulting binary
number h represents the perceptual hash of the input image.
The computed hash number h should have bits of several orders
of magnitude lower than the original binary imagemask B, i.e.,
|h| ≪ |B|.

As shown in the offline stage of Figure 4, we compute
the above steps over all templates in our template database

D to create a perceptual hash set, given by Equation
8, where aHash is the algorithm defined in the two
abovementioned steps.

H = {hj = aHash(Dj) with j = 1,…, |D|} (8)

Furthermore, as shown in Figure 4, during the online stage,
we select a subset of template candidates from the database D by
following the next two steps.

1. For a given input perceptual hash, hinput, we compute the
Hamming distance δHammingj

(Hamming, 1986) between all
elements in our perceptual hash set, H, by counting the
number of binary elements that are different in each hash array
according to Equation 9.

ΔHamming = {δHammingj
= |{i ∈ {1,…,n} | hji ≠ hinputi} | with j = 1,…, |H|}

(9)

Where n represents the length of the binary perceptual hash
arrays.

2. The elements in the database D are then sorted according to
their Hamming distance values in ΔHamming. Consequently, the
top mask templates, i.e., |Dpresel| = α|D| are selected as the
best candidates for further template matching. The variable
α ∈ [0,1] represents the ratio of preselected elements. It can
be defined by the user to adjust our search algorithm for
maximum speed or higher accuracy, as demonstrated in
Section 4.5.1, specifically in Figure 11. The preselection set is
hence defined in Equation 10.

Dpresel = {Dj with j = 1,…,α|D|} (10)

Comparisons between one-dimensional hashes allow for a
fast preselection of a fraction of template candidates Dpresel
from D, where |Dpresel| ≪ |D|, at the cost of minor accuracy
losses (see Section 4.5.1). In other words, the main benefit of

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2024.1424036
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Araya-Martinez et al. 10.3389/frobt.2024.1424036

using perceptual hashing, as an early step in our pose estimation
algorithm, is to provide an efficient way to preselect a subset of likely
orientations (i.e., template candidates Dpresel) from the database D,
using a single-dimension hash code and Hamming distances for
similarity measure.

In the next section, we introduce a suitable similarity
metric applied after the preselection step to select the winner
from Dpresel, with a metric able to differentiate subtler mask
differences than the coarse hashing-based preselection is able
to distinguish.

3.4.2 Similarity cost function
As introduced in Equation 2, given a binary image representing

the observed object mask, B̂, our goal is to estimate a SE(3)
transformation T̂ seen in Equation 11, that minimizes the error
between B̂ and a template transformation Bi ⊆ D by using a suitable
cost function C (Talak et al., 2023; Yang et al., 2023).

T̂ = arg min
i
(C(Bi, B̂)) ∀Bi⊆D (11)

As addressed in Section 3.2, our pose estimation algorithm relies
on a simple 2D input to tackle the 6DOF pose estimation problem.
Additionally, we aim to keep the time complexity of our approach
as low as possible to guarantee real-time inference on embedded
computing devices. Thus, a suitable lightweight cost function that
accepts such a 2D input and is agnostic to the object’s texture must
be developed.

In our previous work (Druskinis et al., 2023), we used the
Chamfer distance metric (Choi and Christensen, 2012) as a cost
function for template matching. This function takes as input two
binary images B and B̂ and computes their similarity according to
Equation 12.

dchamfer (B, B̂) =
1
|B||B̂|
∑
pi∈B

min
pj∈B̂
 d2E (pi,pj) =

1
|B||B̂|
∑
pi∈B

min
pj∈B̂
 ‖pi − pj‖

2
2

(12)

Where dE(.) denotes the Euclidean distance between two
points. The Chamfer distance has quadratic computation time
complexity (Bakshi et al., 2024), i.e., O(B× B̂), due to the nested
combination of sumandminimumsearchwithin the function across
the elements contained in B and B̂.

In this work, we avoid expensive computations involved in edge
extraction and rely on a simple intersection over union as our cost
function, defined according to Equation 13.

IoU(B, B̂) = B∩ B̂
B∪ B̂

(13)

Therefore, the pose estimation problem is reduced to estimating
which binary image in the database best overlaps the observed one,
as seen in Equation 14.

T̂ = arg max
i
(
B∩ B̂i

B∪ B̂i
) ∀B̂i⊆D (14)

4 Results

In order to evaluate the proposed pose estimation methods, we
generated synthetic object views, corresponding to different relative

camera–object poses, using a realistic rendering engine, to have
groundtruth pose, noise and occlusion, which are difficult to acquire
in real-life experimental scenarios.

As the segmentation algorithm is beyond the scope of
this work, we directly rendered synthetic masks in the image
plane. In all our experiments, we used a realistic open-source
rendering engine, BlenderProc (Denninger et al., 2023b), to generate
binary image masks representing different views of the object
of interest.

In the rest of this section, we evaluate the robustness of our
algorithms in the presence of synthetically generated occlusions and
noise, as well as the computational gains of the proposed perceptual
hashing for binary images. Finally, we measure the processing time
of the proposed methods on different computing devices.

4.1 Evaluation metrics

In this work, we use two metrics for evaluating the translation
and rotation error of inferred poses of a given test setDtest compared
to a ground truth, as described by Hodan et al. (2016). Following
the definition of a transformation function T = [R | t] ∈ SE(3)
defined in Equation 2, we denote a groundtruth translation matrix
as ̄t and an estimated translation matrix as ̂t, both in ℝ3. The
Euclidean distance is used to calculate the translation error inmeters
(m) between the groundtruth and predicted translation vectors as
defined in Equation 15.

etrans (̂t, ̄t) = avg
x∈Dtest

‖ ̂t− ̄t‖2 (15)

Similarly, we define a groundtruth rotation matrix, R̄ and an
estimated rotationmatrix, R̂, and compute the average rotation error
as per Equation 16, across a test setDtest given by the angle in degrees.

erot (R̂, R̄) = avg
x∈Dtest

arccos(
Tr(R̂R̄−1) − 1

2
) (16)

For simplicity, our implementation represents the Euler angles of
R̄ and R̂ as quaternions and calculates Equation 16 as the error
between two quaternions by computing the Hamilton product
according to Equation 17.

qΔ = q2q
−1
1 (17)

4.2 Experimental setup

As shown in Figures 2, 4, our algorithm consists of an offline
database generation and an online matching stage. For both,
we define a set of parameters that are kept invariant during
the experimental phase, unless otherwise explicitly stated in a
particular experimental scenario. In particular, for the template
database D generation, we quantize the orientations in steps of 10°
as seen in Equation 18.

θstepx = θ
step
y = θ

step
z = 10° (18)

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2024.1424036
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Araya-Martinez et al. 10.3389/frobt.2024.1424036

FIGURE 6
Occlusion of a mask using the sliding box approach. The first row contains one mask with an occlusion box with 10% of the size of the image. The
second row contains two different masks with an occlusion box size of 25% of the image.

This is achieved by setting the rotation discretization parameters
to the values seen in Equation 19.

Nθx = 18 and Nθy = Nθz = 36, (19)

yielding a total of |D| = |H| = Nθx ×Nθy ×Nθz = 23328 elements
in the database.

A base binary mask testing set was further created to not
contain the same images as the template database. Instead, these
were generated with a 1° offset from the template database to avoid
trivial matches.

Thus, the testing set was generated with the following rotations:
θx ∈ [−21°,19°], θy ∈ [−21°,19°], and θz ∈ [−1°,359°] with a rotation
step of 12.

Furthermore, to test the translation accuracy of our pose
estimation method, the object was further translated in the images
with the translations X ∈ [−0.25m,0.25m],Y ∈ [−0.25m,0.25m],Z ∈
[0.65m,2m] while discarding views in which the object was only
partially visible, i.e., not fully within the field of view of the
simulated camera.

To assess the robustness of our method, the binary images in the
base test set were further corruptedwith different levels of artificially
generated occlusions and noise.

In this section, we evaluate the accuracy of our pose estimation
approach in the presence of occlusion and noise by artificially
generating occlusions and noise over the input testing masks.

4.3 Robustness against occlusion

In order to test the robustness of the pose estimation method
to different occlusion levels, each image in the base testing set was
occluded using a variable-size black sliding window. The occlusion
levels ranged from 0% to 100% depending on the amount of
occlusion (i.e., overlap) between the sliding window and the original
binary mask (see Figure 6).

In Figure 7, we evaluate the accuracy behavior of our approach
in terms of absolute rotation and translation errors in the presence
of the abovementioned occlusion levels. On the left, only IoU is
used as the cost function, whereas on the right, we first filter
template candidates with perceptual hashing, only allowing 10%

of the original amount of images in the dataset to be evaluated
with IoU. The results for every occlusion level are plotted as
distributions in the logarithmic scale, while outliers are marked as
points outside it.

Rotation and translation errors are low (around 10°) in the
presence of low levels of occlusion (i.e., the first two sample
bins); however, their average exhibits a linear increase afterward
proportionally to the occlusion level. Additionally, the similarity
between the results in the left and right plots shows that the accuracy
in the presence of occlusion is not degraded even if we use our
preselection perceptual hash to filter out 90% of the binary image
masks in the database, before the refined IoU-basedmatching-based
pose estimation takes place.

4.4 Robustness against noise

Similar to the approach followed in Section 4.3, we characterize
the behavior of our algorithm in the presence of multiple noise
levels. Given a binary image mask B, as defined in Equation 5,
we apply binary noise with a signal-to-noise ratio (SNR) defined
by Equation 20. Note that, as shown in Figure 8, a higher
SNR means a cleaner mask, whereas a negative value means
that the number of mask pixels is smaller than the number
of noisy pixels.

We applied the binary salt and pepper method suggested
by Zhou and Gordon (1991) for random noise generation (see
Figure 8 for generated masks), where the SNR is calculated using
Equation 20.

SNR = 10 ⋅ log10(
σ2s
σ2n
) (20)

Here, σ2s and σ2n are the variance of the signal and the variance of
the noise, respectively, as seen in Equations 21, 22. N0 denotes the
number of pixels belonging to the object, andNn denotes the number
of pixels for the noise, i.e., the number of pixels that have been
altered. N is the total number of pixels in the image.

σ2s =
N0

N
(1−

N0

N
) (21)

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2024.1424036
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Araya-Martinez et al. 10.3389/frobt.2024.1424036

FIGURE 7
Logarithmic representation of absolute rotation and translation errors at occlusion levels ranging from 0% to 100% with and without dataset
preselection based on perceptual hashing. (A) Absolute rotation and translation errors vs occlusion levels only using IoU as the matching method. (B)
Absolute rotation and translation errors vs occlusion levels using image hashing as preselection and IoU as the matching method.

FIGURE 8
Gaussian noise added to four example masks (two masks in each row), with a signal-to-noise ratio (SNR) varying between 20 dB, 15 dB, 5 dB, and −5 dB
(from left to right).

σ2n =
Nn

N
(1−

Nn

N
) (22)

Figure 9 shows the accuracy of our pose estimation algorithm
in the presence of binary noise with SNR ∈ [−10,0,10,20,30]. On
the left side, we observe that both the rotation and translation errors
remain stable from 30 to 10 dB, and at a noise level of 0 dB, only the
translation error increases.

On the right side of Figure 9, we observe a similar behavior
in the presence of noise, even if in this case, we filter 90%
of the original database with the perceptual hashing method
discussed in Section 3.4.1 before starting to evaluate the remaining
10% of image candidates with IoU.

With an extreme SNR worse than 0 dB, where the
amount of noise predominates over the information on the
image, our algorithm reaches its limits and does not provide
satisfactory results.

It is noteworthy that these tests were made with a template
database with a quantization step of 10° in the Euler rotation

space, as described in Equation 6, and a hashing preselection of
only 10% for fast computation. One should expect lower errors
if lower rotation quantization steps are set at the cost of higher
inference time.

4.5 Image hashing analysis

As stated in Section 3.4.1, we investigate the usage of perceptual
hashing to avoid brute-force search of large template databases
needed for a 6DOF pose estimation algorithm introduced by
Druskinis et al. (2023). To do so, we propose a template preselection
phase, as shown in Figure 2, where, based on perceptual hashing
features, the preselection stage identifies template candidates with
similar rotations.

Depending on the rotation quantization steps and the range
of allowed viewpoints in the rotation space, the database can
potentially contain thousands of templates to be compared.

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2024.1424036
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Araya-Martinez et al. 10.3389/frobt.2024.1424036

FIGURE 9
Absolute rotation and translation errors at signal-to-noise levels ranging from −10 dB to 30 dB. In (A), there is no hashing preselection, whereas in (B), a
hashing preselection of 10% of the original database is taken. (A) Absolute rotation and translation errors vs signal-to-noise levels only using IoU as the
matching method. (B) Absolute rotation and translation errors vs. signal-to-noise levels using image hashing as preselection and IoU as the
matching method.

FIGURE 10
Cost functions based on Hamming distances of perceptual hashes and IoU over the three-dimensional rotation space of the template database for an
input image with a groundtruth rotation given by (θx,θy,θz) = (−10°,10°,85°). (A) Hamming distance of image hashing over the template dataset with a
distance smaller than 2. Note the limited resolution leading to many templates having the same score. (B) IoU cost of template candidates from the
hashing stage with a score greater than 0.7. Note a higher IoU score resolution than that in (A).

For instance, Figure 10 shows a 3D visualization of the three-
dimensional rotation space in Euler angles of a dataset with
θz ∈ [−100°,100°], θy ∈ [−20°,20°] and θx ∈ [−20°,20°] degrees in a
spherical grid of viewpoints with 0.65 m radius and a rotation
quantization step of 2°.

In this ℝ3 space, we take a sample test input located
at rotations (θx,θy,θz) = (−10°,10°,85°) and visualize its
similarity to the multiple templates in the database by
using perceptual hashing (Figure 10A) and IoU (Figure 10B)
as cost functions.

More specifically, in Figure 10A, we apply perceptual hashing
and calculate the distance of resulting binary hash numbers by using
Hamming distance; then, only templates with a Hamming distance
<2 (template candidates) are plotted to reduce cluttering. On the
other hand, in Figure 10B, we re-evaluate the resulting template
candidates from the previous preselection stage with the IoU cost
function and plot the location of the resulting templates with an IoU
greater than 0.7.

As shown in Figure 10A, the Hamming distance metric
compares two binary numbers and outputs an integer result,

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2024.1424036
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Araya-Martinez et al. 10.3389/frobt.2024.1424036

FIGURE 11
Inference time and median rotation error as a function of the hashing preselection ratio α ∈ [0.1,0.9] and database quantization step θstepx = θ

step
y =

θstepz ∈ [2°,10°]. (A) Median inference time (s) as a function of the hashing preselection percentage and the dataset quantization step. Furthermore, we
draw a polynomial fitted line for hashing preselection at 20%. (B) Median rotation error as a function of the hashing preselection percentage and the
dataset quantization step. Furthermore, we draw a polynomial fitted line for hashing preselection at 20%.

providing coarse resolution for images with similar perceptual
hashing numbers. This explains why many templates share the
slowest distance of 0 with respect to the input mask, which are
plotted as blue points in the graph. This shows that even though
perceptual hashing offers a way to filter out more than 90% of the
templates in the dataset for this specific example, the discrete nature
of its result makes it hard to use it to directly select a single winner
template with the smallest distance. Thus, a cost function, such
as IoU, which allows evaluation refinement of template candidates
from the preselection step, is required. As shown in Figure 10B, the
red hotspot offers a clearer winner template close to the (θx,θy,θz) =
(−10°,10°,85°) ground truth.

4.5.1 Computational complexity and pose
accuracy

In this section, we evaluate different levels of computational
complexity (inference time) and its relationship with the resulting
pose accuracy. As shown in Figure 11, we base our benchmarking on
the discrete variation in two variables, i.e., the dataset quantization
θstepx = θ

step
y = θ

step
z ∈ [2°,10°], as defined in Equation 6, and the ratio

of hashing preselection α ∈ [0.1,0.9].
We observe on the left in Figure 11 that a lower hashing

preselection ratio allows us to meet the condition |Dpresel| ≪ |D|,
as described in Section 3.4.1, saving computation time across all
database quantization levels. For instance, for a database created
with 2° quantization step, if we compare the inference time
between α = 0.9 and α = 0.2, we observe a four-fold inference
time reduction.

On the right side of Figure 11, we observe no significant
accuracy improvement if α > 0.2. Based on this, we observe
that we are able to reduce four times the inference time with
virtually no loss in accuracy by using our perceptual hashing
preselection step.

4.5.2 Inference time on different computing
devices

Table 1 shows a comparison of the computation time of our
algorithm inmultiple computing devices, comprising a workstation,
an industrial NUC, and two embedded computing devices. It is
noteworthy that our implementation runs completely on the CPU,
which means that the GPU of the shown devices does not play
a role in the time benchmarking. However, as our CPU-based
implementation is optimized to run in parallel threads, the amount
of physical and virtual cores plays a key role in the shown timings.

In our implementation, we first load the database D in the
RAM of the shown devices to avoid slow accesses to the persistent
memory. Thus, the template dataset used in these tests has been
designed to fit in the available RAM of all devices, comprising, in
total, 2,916 images. This also corresponds to a viewpoint range of
θx ∈ [0°,90°], θy ∈ [0°,90°], and θz ∈ [0°,360°], which is in line with
datasets based on viewpoints on the upper hemisphere, such as
Linemod (Hinterstoisser et al., 2013). Additionally, to be consistent
with the accuracy results shown in Figure 7 and Figure 9, we use a
quantization step of 10°.

The frame rate of our pose estimation algorithm is around
4,7 frames per second (FPS) on a modern workstation without

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2024.1424036
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Araya-Martinez et al. 10.3389/frobt.2024.1424036

TABLE 1 Results of our method on different computing devices. Each device has the CPU architecture, cores, type, and frequency noted.

Workstation NVIDIA AGX Orin Intel NUC Raspberry Pi 4

Average inference time [s] 0.210 0.297 0.520 1.52

CPU architecture x86_64 aarch64 x86_64 aarch64

CPU cores 20 12 4 4

CPU type Intel i9-9820X Cortex-A78AE Intel i5-7300U Cortex-A72

CPU frequency [GHz] 3.3 2.2 2.6 1.5

GPU support and at 3,3 FPS on a modern embedded device. To
compare our method against that suggested by Druskinis et al.
(2023), we measured the inference time on the same workstation
under the same conditions and measured an inference time of
47.8 s per image, which translates to 0.02 FPS. Thus, our novel
implementation exhibits a processing time improvement of two
orders of magnitude while delivering similar average rotation and
translation accuracy.

To further emphasize the importance of fast pose estimation,
consider our specific use case of the automotive production in
Mercedes-Benz AG automated factories in Sindelfingen, where, for
instance, the pose of a body-in-white part being transported by an
automated guided vehicle (AGV) must be computed at a quality
gate where the AGV stops for 4 s. Under such conditions, a total
processing time of less than 4 s is enough to avoid delaying the
advance of the AGV to a subsequent assembly line. Such a practical
processing time requirement could be met by our algorithm even if
deployed on a low-cost Raspberry Pi4.

4.6 Comparison against state-of-the-art
methods

Ourmethod has been compared against leading pose estimation
algorithms to quantify the advantages and disadvantages between
them. The BOP Challenge website offers results from various
6D pose estimation models that have been tested on popular
6D datasets. We tested our method on the Linemod-Occluded
dataset, which is a large dataset containing 15 textureless household
objects with discriminative color, shape, and size. The BOP
challenge uses different evaluation metrics to assess pose accuracy
from those used in our previous experiments; thus, we used
their metric to directly compare our method with others. The
error of an estimated pose with respect to the groundtruth
pose is calculated using the following pose–error functions:
Visible Surface Discrepancy (VSD), Maximum Symmetry-Aware
Surface Distance (MSSD), and Maximum Symmetry-Aware
Projection Distance (MSPD). VSD, defined in Equation 23, treats
indistinguishable poses as equivalent by considering only the visible
object part.

eV SD (D̂, D̄, V̂, V̄,τ) = avgp∈V̂∪V̄{
0, ifp ∈ V̂∐ V̄Λ|D̂ (p) − D̄ (p) | < τ
1, otherwise.

(23)

τ is the misalignment tolerance. The MSSD, defined in Equation
24, considers a set of pre-identified global object symmetries and
measures the surface deviation in 3D.

eMSSD (P̂, P̄,SM,VM) =minS∈SMmaxx∈VM
‖P̂x− P̄Sx‖2 (24)

The MSPD, defined in Equation 25, considers the object
symmetries and measures perceivable deviation.

eMSPD (P̂, P̄,SM,VM) =minS∈SMmaxx∈VM
‖proj(P̂x) − proj(P̂Sx)‖2

(25)

An estimated pose is considered correct with respect to a
pose–error function, e, if e < θe, where θe is a threshold of correctness
and e ∈ VSD,MSSF,MSPD is a pose–error function. The fraction
of object instances with a correct pose is referred to as recall.
The average recall, AR, with respect to a pose–error function, e,
is denoted as ARe and defined as the average of the recall rates
calculated for multiple settings of the threshold θe. Finally, the
accuracy for a dataset D, such as the Linemod-Occluded dataset
(Brachmann et al., 2014), is measured by Equation 26, which is
calculated over all the estimated poses of all objects from the
Linemod-Occluded dataset. Our method was tested on the 15
objects from the Linemod-Occluded dataset (Brachmann et al.,
2014) to benchmark our 6D pose estimation method against other
reported state-of-the-art algorithms.

A template database of all 15 objects with Linemod-Occluded
compatible viewpoints was generated with multiple quantization
steps in {5°,10°,15°}. Our results were evaluated using the evaluation
file from the BOP toolkit1. The results are given in Table 2,
showcasing the average recall for each object depending on the
quantization step used.

ARD = (ARV SD +ARMSSD +ARMSPD)/3 (26)

Table 3 shows the results comparing different 6D pose
estimation methods on the Linemod-Occluded dataset.

Figure 12 shows some predictions using our method on the drill
(object 8) and the cup (object 7) of the Linemod-Occluded dataset.
Figure 12A shows a good prediction on the drill object, where the
prediction mask is overlaid perfectly on the actual image. On the
contrary, Figure 12B shows a bad prediction of the drill, where our

1 https://github.com/thodan/bop_toolkit

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2024.1424036
https://github.com/thodan/bop_toolkit
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Araya-Martinez et al. 10.3389/frobt.2024.1424036

TABLE 2 Results of the 15 objects from the Linemod-Occluded (Brachmann et al., 2014) dataset. The metric used is the average recall from the
BOP metrics.

Object 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

AR 0.44 0.47 0.38 0.55 0.41 0.52 0.31 0.40 0.45 0.60 0.49 0.56 0.48 0.42 0.46

TABLE 3 Results from various 6D pose estimation methods on the
Linemod-Occluded dataset (Brachmann et al., 2014).

MegaPose CosyPose Ours

ARD 0.65 0.63 0.46

Inference time (s) 6.04 1.20 0.21

Bold values indicate the highest-performing method in each category.

method rotated the object 180° along the major axis, causing it to
face the other way, resulting in a large rotation error. The cup object
is also interesting as prediction is good when the handle is clearly
visible, as shown in Figure 12C. However, our method fails on this
object when the handle is not clearly visible and distinct in themask,
as shown in Figure 12D. This object is specifically challenging since
there are many different angles where the cup can have the same
mask due to the symmetry of the cup, which is also why the average
recall on the cup is 0.29.

Furthermore, the processing time for one image for our method
is 0.21 s, whereas MegaPose uses 6.04 s.

4.7 Discussion

As shown in Figure 11A, the computational inference time of
our approach scales in an inversely proportional manner with the
size of the template image database as the algorithm necessitates
assessing all images within the database to identify the optimal
match. Notably, as shown in the fitted polynomial curve in
Figure 11A at a hashing preselection of 20%, the theoretical upper
bound for the computing time corresponds to 19.489 s if the
quantization step≪ 10°, and it stands at 1.4 s for a quantization step
of 10°. In line with this, as shown in Figure 11B, as the number of
images increases, leading to a greater array of potential rotations, the
mean rotation error decreases. For instance, as shown in the fitted
polynomial curve of Figure 11B, at a hashing preselection percentage
of 20%, the mean rotational discrepancy diminishes to a theoretical
minimum of 5.87° with a quantization step size ≪10° of 2° and
increases to a maximum of 10.84° with a quantization step size
of 10°, accurately reflecting the precision gap for this quantization
step. Moreover, the translation error remains constant, regardless
of the step size and hashing preselection percentage as the method
for computing translation is independent of the database, relying
instead on determining the central pixel of the input mask and
converting it to world coordinates. The average translation error of
0.1 m suggests improving potential in pinpointing the central pixel
as it fails to correspond precisely with the center of the 3D object.

However, considering the length of the object being approximately
74 cm, the relative translation error corresponds to 14% compared
to its longitude.

Deviations observed in the test results highlight errors
stemming from flipping as the algorithm struggles to differentiate
between the correct template orientation and a template
rotated by 180° due to symmetries in the object used for
evaluation, which cause indistinguishable masks for different
orientations.

The data shown in Figure 11 suggest that the integration of a
hashing algorithmnotably expedites processing time by preselecting
a specific percentage of images from the database for comparison,
rather than evaluating all images. This pre-selection step decreases
the inference duration by two-fold with virtually no loss in accuracy
for a preselection range [20%,100%].

Additionally, as shown in Figure 7, our template matching
methodology exhibits accurate performance in instances where
the mask is significantly occluded. Notably, once 50% of the mask
is obscured, the predictions become erratic due to insufficient
data for accurate pose estimation. Similarly, as shown in Figure 9,
our pose estimation approach exhibits robustness to decreasing
SNRs, corresponding to increased image noise. In particular,
rotation and translation errors stay approximately constant
for up to 10 dB.

As shown in Table 3, our method achieves an average recall
of 0.44 on the whole Linemod-Occluded (Brachmann et al., 2014)
dataset using a quantization step of 10°, which translates into
an inference time of approximately 0.2 s per image. CosyPose
(Labbé et al., 2020) and MegaPose (Labbé et al., 2022) exhibit an
average recall of 0.63 and 0.65, respectively, by leveraging complex
learning-based algorithms. Even if we accelerate computation using
an NVIDIA Quadro GV100 GPU, MegaPose requires 30 times
more computation time compared to our method being executed
exclusively on the CPU. As shown in Table 2 and Figure 12,
object 10 has the highest average recall of 0.60 with our method,
whereas object 7 achieves an average recall of 0.31. This major
difference in the results can be because our template-based
method relies on unique viewpoints of objects to correctly find
the match, which is hard to achieve with object 7 due to a
lack of distinct features that are always visible in the mask,
making it harder to differentiate between different viewpoints.
Although our results do not outperform other leading state-of-
the-art methods, our approach can still have potential in cost-
effective devices as we achieve a better processing time than the
other methods, without the need for a GPU. Lastly, deep learning
based-methods usually require training of their models and a
large annotated dataset to train on, whereas our method only
requires a CAD model of each object for the generation of a
template database.

Frontiers in Robotics and AI 15 frontiersin.org

https://doi.org/10.3389/frobt.2024.1424036
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Araya-Martinez et al. 10.3389/frobt.2024.1424036

FIGURE 12
Predictions on the Linemod-Occluded dataset using our method. A blue mask indicates our prediction. (A) Good prediction on the drill (object 8) from
the Linemod-Occluded dataset using our method. (B) Bad prediction on the drill (object 8) from the Linemod-Occluded dataset using our method.
(C) Good prediction on the cup (object 7) from the Linemod-Occluded dataset using our method. (D) Good prediction on the cup (object 7) from the
Linemod-Occluded dataset using our method.

5 Conclusion and future work

In this work, we proposed a template-based approach for the 6D
pose estimation of objects using monocular images.

Our new template-based matching algorithm utilizes binary
image masks, representing the object silhouette, and perceptual
hashing for fast inference. Our algorithm effectively filters out
up to 80% of the template database, significantly enhancing the

inference speedwhilemaintaining a performance comparable to our
previously proposed non-optimized version. Remarkably, it operates
efficiently on diverse computing devices, evenwithoutGPU support,
showcasing reduced runtime and high accuracy.

We evaluated our approach on a body-in-white metallic part
relevant to automotive production, revealing superior trade-offs
between accuracy and computation time compared to previous
methods (Druskinis et al., 2023), as discussed in Section 4.5.2.

Frontiers in Robotics and AI 16 frontiersin.org

https://doi.org/10.3389/frobt.2024.1424036
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Araya-Martinez et al. 10.3389/frobt.2024.1424036

Specifically, our algorithm achieves an average rotation error of
approximately 10°, an average translation error of 14% of the
object’s length, and an average processing time of 0.3 s per image
on an NVIDIA AGX Orin device, i.e., two orders of magnitude
faster than the previous algorithm, while maintaining accuracy.
Furthermore, it demonstrates robustness against partial occlusion,
retaining accuracy even with up to 10% occlusion levels, and against
noisy image inputs with no loss of accuracy up to a 10-dB signal-
to-noise ratio. Additionally, we compared our approach to other
state-of-the-art-methods, CosyPose andMegaPose on the Linemod-
Occluded dataset, and achieved an average recall of 0.46 compared to
0.63 and 0.65, respectively, with a processing time of 0.29 s compared
to 1.2 s and 6.04 s, respectively.

Arguably, the main limitation to our lightweight 6D pose
estimation method is its sole reliance on segmentation masks,
making it impossible to distinguish different poses, resulting in
equivalent silhouettes. In order to improve the accuracy in these
cases, we propose refining our result using the object’s RGB
information as a post-processing step, for instance, by using RGB-
based key point descriptors.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, upon reasonable request.

Author contributions

JA-M: conceptualization, data curation, formal analysis,
investigation, methodology, resources, software, validation,
visualization, writing–original draft, and writing–review and
editing. VM: conceptualization, data curation, investigation,
resources, software, validation, visualization, writing–original
draft, and writing–review and editing. SB: funding acquisition,

resources, supervision, writing–original draft, and writing–review
and editing. JL: conceptualization, funding acquisition, project
administration, resources, supervision, writing–original draft,
and writing–review and editing. RP: conceptualization, formal
analysis, funding acquisition, methodology, project administration,
resources, supervision, writing–original draft, and writing–review
and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article.This research
work was funded by the German Federal Ministry for Economic
Affairs and Climate Action based on a resolution of the German
Bundestag, financed by the European Union. We acknowledge
support by the Open Access Publication Fund of TU Berlin.

Conflict of interest

Authors JA-M and VM were employed by Mercedes-Benz AG.
The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Bakshi, A., Indyk, P., Jayaram, R., Silwal, S., and Waingarten, E. (2024). Near-linear
time algorithm for the chamfer distance. Adv. Neural Inf. Process. Syst. 36.

Blanco-Claraco, J. L. (2022). A tutorial on SE(3) transformation parameterizations
and on-manifold optimization

Brachmann, E., Krull, A., Michel, F., Gumhold, S., Shotton, J., and Rother, C.
(2014). “Learning 6d object pose estimation using 3d object coordinates,” in Computer
vision–ECCV 2014: 13th European conference, Zurich, Switzerland, september 6-12,
2014, proceedings, Part II 13 (Springer), 536–551.

Choi, C., andChristensen, H. (2010). “Real-time 3dmodel-based tracking using edge
and keypoint features for robotic manipulation,” in 2010 IEEE international conference
on robotics and automation, 4048–4055.

Choi, C., and Christensen, H. I. (2012). “3d textureless object detection and tracking:
an edge-based approach,” in 2012 IEEE/RSJ international conference on intelligent robots
and systems, 3877–3884. doi:10.1109/IROS.2012.6386065

de Figueiredo, R. P., Moreno, P., and Bernardino, A. (2015). Efficient pose
estimation of rotationally symmetric objects. Neurocomputing 150, 126–135.
doi:10.1016/j.neucom.2014.07.070

Denninger, M., Winkelbauer, D., Sundermeyer, M., Boerdijk, W., Knauer,
M., Strobl, K. H., et al. (2023a). Blenderproc2: a procedural pipeline
for photorealistic rendering. J. Open Source Softw. 8, 4901. doi:10.21105/
joss.04901

Denninger, M., Winkelbauer, D., Sundermeyer, M., Boerdijk, W., Knauer, M., Strobl,
K. H., et al. (2023b). Blenderproc2: a procedural pipeline for photorealistic rendering.
J. Open Source Softw. 8, 4901. doi:10.21105/joss.04901

Drost, B., Ulrich, M., Navab, N., and Ilic, S. (2010). “Model globally, match locally:
efficient and robust 3d object recognition,” in 2010 IEEE computer society conference on
computer vision and pattern recognition (Ieee), 998–1005.

Druskinis, V., Araya-Martinez, J. M., Lambrecht, J., Bøgh, S., and de Figueiredo, R. P.
(2023). “A hybrid approach for accurate 6d pose estimation of textureless objects from
monocular images,” in 2023 IEEE 28th international conference on emerging technologies
and factory automation (ETFA), 1–8. doi:10.1109/ETFA54631.2023.10275651

Du, G., Wang, K., Lian, S., and Zhao, K. (2021). Vision-based robotic grasping from
object localization, object pose estimation to grasp estimation for parallel grippers: a
review. Artif. Intell. Rev. 54, 1677–1734. doi:10.1007/s10462-020-09888-5

Farid, H. (2021). An overview of perceptual hashing. J. Online Trust Saf. 1.
doi:10.54501/jots.v1i1.24

Fei,M., Ju, Z., Zhen, X., and Li, J. (2017). Real-time visual tracking based on improved
perceptual hashing. Multimedia Tools Appl. 76, 4617–4634. doi:10.1007/s11042-016-
3723-5

Fischler, M. A., and Bolles, R. C. (1981a). Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography.Commun.
ACM 24, 381–395. doi:10.1145/358669.358692

Frontiers in Robotics and AI 17 frontiersin.org

https://doi.org/10.3389/frobt.2024.1424036
https://doi.org/10.1109/IROS.2012.6386065
https://doi.org/10.1016/j.neucom.2014.07.070
https://doi.org/10.21105/joss.04901
https://doi.org/10.21105/joss.04901
https://doi.org/10.21105/joss.04901
https://doi.org/10.1109/ETFA54631.2023.10275651
https://doi.org/10.1007/s10462-020-09888-5
https://doi.org/10.54501/jots.v1i1.24
https://doi.org/10.1007/s11042-016-3723-5
https://doi.org/10.1007/s11042-016-3723-5
https://doi.org/10.1145/358669.358692
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Araya-Martinez et al. 10.3389/frobt.2024.1424036

Fischler, M. A., and Bolles, R. C. (1981b). Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography.Commun.
ACM 24, 381–395. doi:10.1145/358669.358692

Guan, J., Hao, Y., Wu, Q., Li, S., and Fang, Y. (2024). A survey of 6dof
object pose estimation methods for different application scenarios. Sensors 24, 1076.
doi:10.3390/s24041076

Hamming, R. W. (1986). Coding and information theory. Prentice-Hall, Inc.

Harltey, A., and Zisserman, A. (2006). Multiple view geometry in computer vision .

Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., et al. (2013).
“Model based training, detection and pose estimation of texture-less 3d objects in
heavily cluttered scenes,” in Computer vision–ACCV 2012: 11th asian conference on
computer vision, daejeon, korea, november 5-9, 2012, revised selected papers, Part I 11
(Springer), 548–562.

Hodan, T., Matas, J., and Obdrzalek, S. (2016). “On evaluation of 6d object pose
estimation,” in European conference on computer vision, 606–6019.

Indolia, S., Goswami, A. K., Mishra, S., and Asopa, P. (2018). Conceptual
understanding of convolutional neural network-a deep learning approach. Procedia
Comput. Sci. 132, 679–688. International Conference on Computational Intelligence
and Data Science. doi:10.1016/j.procs.2018.05.069

Labbé, Y., Carpentier, J., Aubry, M., and Sivic, J. (2020). “Cosypose: consistent multi-
view multi-object 6d pose estimation,” in Computer vision–ECCV 2020: 16th European
conference, glasgow, UK, august 23–28, 2020, proceedings, Part XVII 16 (Springer),
574–591.

Labbé, Y., Manuelli, L., Mousavian, A., Tyree, S., Birchfield, S., Tremblay, J., et al.
(2022). Megapose: 6d pose estimation of novel objects via render compare

Marullo, G., Tanzi, L., Piazzolla, P., and Vezzetti, E. (2022). 6d object position
estimation from 2d images: a literature review.Multimedia Tools Appl. 82, 24605–24643.
doi:10.1007/s11042-022-14213-z

Mıhçak, M. K., and Venkatesan, R. (2001). “New iterative geometric methods for
robust perceptual image hashing,” in ACM workshop on digital rights management
(Springer), 13–21.

O’Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez, G. V.,
Krpalkova, L., et al. (2020). “Deep learning vs. traditional computer vision,” inAdvances

in computer vision: proceedings of the 2019 computer vision conference (CVC) (Springer),
1 1, 128–144. doi:10.1007/978-3-030-17795-9_10

Park, K., Patten, T., and Vincze, M. (2019). “Pix2pose: pixel-wise coordinate
regression of objects for 6d pose estimation,” in 2019 IEEE/CVF international conference
on computer vision (ICCV), 7667–7676.

Sahin, C., Garcia-Hernando, G., Sock, J., and Kim, T.-K. (2020). A review on object
pose recovery: from 3d bounding box detectors to full 6d pose estimators. Image Vis.
Comput. 96, 103898. doi:10.1016/j.imavis.2020.103898

Sundermeyer, M., Marton, Z.-C., Durner, M., Brucker, M., and Triebel,
R. (2019). Augmented autoencoders: implicit 3d orientation learning for
6d object detection. Int. J. Comput. Vis. 128 (2020), 714–729. doi:10.1007/
s11263-019-01243-8

Talak, R., Peng, L. R., and Carlone, L. (2023). Certifiable object pose estimation:
foundations, learning models, and self-training. IEEE Trans. Robotics 39, 2805–2824.
doi:10.1109/TRO.2023.3271568

Wu, J., Zhou, B., Russell, R., Kee, V., Wagner, S., Hebert, M., et al. (2022). Real-
time object pose estimation with pose interpreter networks. IEEE/RSJ International
Conference on Intelligent Robots and Systems.

Yang, J., Xue, W., Ghavidel, S., and Waslander, S. L. (2023). “6d pose estimation
for textureless objects on rgb frames using multi-view optimization,” in 2023
IEEE international conference on robotics and automation (ICRA), 2905–2912.
doi:10.1109/ICRA48891.2023.10160529

Zakharov, S., Shugurov, I., and Ilic, S. (2019). Dpod: dense 6d pose object detector in
rgb images. arXiv Prepr. arXiv:1902.

Zhang, R., Xu, L., Yu, Z., Shi, Y., Mu, C., and Xu, M. (2022). Deep-irtarget:
an automatic target detector in infrared imagery using dual-domain feature
extraction and allocation. IEEE Trans. Multimedia 24, 1735–1749. doi:10.1109/
TMM.2021.3070138

Zhao, Z.-Q., Zheng, P., Xu, S.-t., and Wu, X. (2019). Object detection with
deep learning: a review. IEEE Trans. neural Netw. Learn. Syst. 30, 3212–3232.
doi:10.1109/tnnls.2018.2876865

Zhou, X., and Gordon, R. (1991). Generation of noise in binary images. CVGIP
Graph. Models Image Process. 53, 476–478. doi:10.1016/1049-9652(91)90031-E

Frontiers in Robotics and AI 18 frontiersin.org

https://doi.org/10.3389/frobt.2024.1424036
https://doi.org/10.1145/358669.358692
https://doi.org/10.3390/s24041076
https://doi.org/10.1016/j.procs.2018.05.069
https://doi.org/10.1007/s11042-022-14213-z
https://doi.org/10.1007/978-3-030-17795-9_10
https://doi.org/10.1016/j.imavis.2020.103898
https://doi.org/10.1007/s11263-019-01243-8
https://doi.org/10.1007/s11263-019-01243-8
https://doi.org/10.1109/TRO.2023.3271568
https://doi.org/10.1109/ICRA48891.2023.10160529
https://doi.org/10.1109/TMM.2021.3070138
https://doi.org/10.1109/TMM.2021.3070138
https://doi.org/10.1109/tnnls.2018.2876865
https://doi.org/10.1016/1049-9652(91)90031-E
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 Related work
	3 Methodologies
	3.1 Problem statement
	3.2 Object template generation
	3.3 Offline database generation
	3.4 Template-based 6D pose estimation
	3.4.1 Perceptual hashing of binary images
	3.4.2 Similarity cost function

	4 Results
	4.1 Evaluation metrics
	4.2 Experimental setup
	4.3 Robustness against occlusion
	4.4 Robustness against noise
	4.5 Image hashing analysis
	4.5.1 Computational complexity and pose accuracy
	4.5.2 Inference time on different computing devices

	4.6 Comparison against state-of-the-art methods
	4.7 Discussion

	5 Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

