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High agility, maneuverability, and payload capacity, combined with small
footprints, make legged robots well-suited for precision agriculture applications.
In this study, we introduce a novel bionic hexapod robot designed for agricultural
applications to address the limitations of traditional wheeled and aerial robots.
The robot features a terrain-adaptive gait and adjustable clearance to ensure
stability and robustness over various terrains and obstacles. Equipped with a
high-precision Inertial Measurement Unit (IMU), the robot is able to monitor
its attitude in real time to maintain balance. To enhance obstacle detection
and self-navigation capabilities, we have designed an advanced version of the
robot equipped with an optional advanced sensing system. This advanced
version includes LiDAR, stereo cameras, and distance sensors to enable obstacle
detection and self-navigation capabilities. We have tested the standard version
of the robot under different ground conditions, including hard concrete floors,
rugged grass, slopes, and uneven field with obstacles. The robot maintains good
stability with pitch angle fluctuations ranging from —11.5° to 8.6° in all conditions
and can walk on slopes with gradients up to 17°. These trials demonstrated the
robot’'s adaptability to complex field environments and validated its ability to
maintain stability and efficiency. In addition, the terrain-adaptive algorithm is
more energy efficient than traditional obstacle avoidance algorithms, reducing
energy consumption by 144% for each obstacle crossed. Combined with
its flexible and lightweight design, our robot shows significant potential in
improving agricultural practices by increasing efficiency, lowering labor costs,
and enhancing sustainability. In our future work, we will further develop the
robot’'s energy efficiency, durability in various environmental conditions, and
compatibility with different crops and farming methods.

precision agriculture, durability, energy efficiency, gait optimization, hexapod robot
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1 Introduction

The global population is projected to reach 9.75 billion by
2050. To feed such a large population, the world’s crop calorie
production would have to increase to 1,406 trillion, an increase of
27% from 2023 (Sands et al., 2023). Modern agriculture faces global
challenges such as climate change, soil degradation, water scarcity,
and labor shortages (Sparrow and Howard, 2021). Subsequently,
implementing agricultural automation and precision agriculture is
a viable response to these challenges, which relies not only on the
development of automation and information technology but also on
using high-performance agricultural robots for continuous field data
collection and precision operations.

Unlike industrial robots that work in predictable and controlled
environments, agricultural robots have to deal with unstructured or
semi-structured environments with tasks that are highly stochastic
(De Baerdemaeker et al., 2001). Robots often need to be equipped
with a range of sophisticated sensors to accommodate complex
environments and improve motion accuracy. This reliance on
sensors can result in increased robot costs. For example, the Spot
Robot Dog (Boston Dynamics, Waltham, MA, United States) can
carry 14 kg for 90 min but costs up to $200,000; the GO 1 EDU
Robot Dog (Unitree, Hangzhou, Zhejiang, China) can work for 2 h
with 3 kg payload, and it costs around $10,000. In recent years,
advances in sensing technology have led to a gradual decrease in the
cost of sensors and an increase in their durability. These advances
have allowed researchers and companies to develop and build
more affordable robots. For example, the MARS modular robotic
system developed by the University of Georgia demonstrates its cost
advantages (Xu and Li, 2022). The basic configuration of MARS costs
approximately $2,300, which includes the robot’s motion system,
hardware framework, and a minimal controller. Additionally, MARS
can be optionally equipped with additional RTK-GNSS and RGB
cameras to accurately navigate various physical obstacles, including
ditches and tree branches, and perform data collection tasks.

Precision agriculture continues to evolve in the search for
efficient, sustainable, and cutting-edge technological solutions.
Traditional several

agricultural machinery often presents

disadvantages, including cumbersome transportation, soil
compaction, land damage, and limitations imposed by varying field
terrains. Therefore, smaller, precise, and flexible robots are becoming
a trend. These robots can move flexibly through complex terrain
while reducing compaction and damage to the soil. Moreover,
the integration of automatic control, sensing, and computer
technologies has facilitated advances in agricultural robot design
and holds great promise for modern agriculture (Bawden et al.,
2017). Although many robots are still in the developmental stage,
they are showing promising results in agricultural tasks. Examples
include 1) Spot irrigation and precision weeding (Bawden et al.,
2017; Shahrooz et al., 2020), which help to reduce the consumption
of water and pesticides, therefore increase the sustainability of
agricultural production. 2) Pest and disease detection (Oberti et al.,
2016; Mahlein, 2016), where the robot can promptly report areas
where pests and diseases are found, allowing for early intervention
of pests and diseases. 3) Fruit picking (Arad et al., 2020; Xiong et al.,
2020), where the robot can pick fruits automatically using flexible
mechanical grippers to make up for the lack of productivity

due to labor shortage. Furthermore, a cluster of robots can be
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deployed over large areas of farmland, where individual units work
collaboratively to enhance operational efficiency. In addition, robot
clusters can improve the system’s robustness and reduce the chances
of delays due to possible malfunctions of individual machines
(Blender et al., 20165 Ball et al., 2015). This cluster-based method
improves the reliability of agricultural operations, optimizing
resource utilization and task distribution, leading to more consistent
and effective farming outcomes.

Most previous research on agricultural robots has focused
on wheeled robots and unmanned aerial vehicles (UAVs). The
configuration of wheeled robots is ideal for autonomous navigation
and harvesting in rows and columns of farmland, such as orchards,
maize fields, and strawberry fields, where the ground is relatively
flat, with fewer obstacles in the path and a relatively straightforward
navigation line (Kim et al., 2021). However, for fields without rows
and columns, wheeled robots are unsuitable for use due to their
poor adaptation to terrain conditions and limited maneuverability.
Additionally, the robot’s wheels may cause damage to plants as there
is no clearance for a wheeled robot to drive through (Sparrow and
Howard, 2021). UAVs are also gaining interest due to their low
cost, portability, high efficiency, high throughput, and simplicity
of operation (Barbedo, 2019; Xiang et al., 2020). However, aerial
imaging systems have low accuracy because of long working
distances. They can only capture top-view images and are unable to
assess plant features that can only be observed in other viewpoints,
for example, under the canopy. Furthermore, when UAVs operate
outdoors, their flight stability is significantly affected by wind.
This issue is exacerbated when there are substantial changes in
load, making them prone to control instability. When flying at low
altitudes, UAVs are likely to collide with numerous obstacles, such as
tree branches, increasing operational risks. Therefore, drones may
not be the best choice for tasks requiring precise control, such as
picking and carrying operations.

Compared to wheeled robots and UAVs, legged robots have
shown much better terrain adaptation and maneuverability
performance. With more degrees of freedom (DOF) and
multiple footing points, legged robots can pass through complex
environments and have many applications in disaster rescue
(Leeetal,, 2020) and material transportation (Fuetal., 2021).
Operators can adjust the robot’s center of gravity by precisely
controlling the angle of each joint to adapt to different ground
conditions. In addition, by precisely controlling the landing position
of each leg, the robot can effectively avoid obstacles, thereby
increasing its operational efficiency and safety in unpredictable
environments. This advanced mobility and adaptability allow legged
robots to play a crucial role in outdoor operations.

In the field of legged robots, quadruped robots have fewer
support points compared to hexapod robots. Consequently,
quadrupeds must alternately lift each leg during movement. If a
suitable support point cannot be found within the robot’s accessible
space, its ability to progress is limited. Additionally, the dynamic
characteristics of quadrupedal motion require constant body
balance maintenance, increasing the computational complexity
of control algorithms and power consumption. This requirement
is reflected in shorter operational endurance times. We tested a
commercially available quadrupedal robot (Unitree, Hangzhou,
Zhejiang, China) carrying a 3 kg payload and traveling at 2 m/s
on flat concrete ground, resulting in an endurance of only
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approximately 30 min. In contrast, with more support points,
hexapod robots provide more stable support and higher dexterity,
making them more suitable for agricultural applications where
higher load capacities and longer endurance are required.

Researchers have been working on robot locomotion over the
past three decades (Bhatti et al., 2015). Significant advancements
have been achieved in the stability and sensitivity of robot
locomotion. Intensive research and experimentation have led to
the development of advanced algorithms that can be dynamically
adapted to speed changes and different terrain types (Raibert et al.,
2008; Bretl and Lall, 2008). Numerous studies have validated the
performance of hexapod robots in terms of stability, accuracy, and
flexibility across various environments, including flat hard surfaces
and terrains with regular obstacles (Coelho et al., 2021; Saranli et al.,
2001). These investigations demonstrate that hexapod robots exhibit
superior performance compared to other robotic configurations
like quadruped robots. Such attributes render hexapod robots
exceptionally well-suited for applications necessitating high
precision and complexity. In terms of control algorithms for hexapod
robots, some researchers have developed control methods based
on neuromodulation mechanisms inspired by biological systems
(Polykretis et al., 2020) as well as neural networks that mimic
the stimulus-response of the nervous system (Lopez-Osorio et al.,
2022). Meanwhile, other researchers have worked on developing
machine learning-based control algorithms (Ehrlich and Tsur,
2021; Thor and Manoonpong, 2021; Jorge etal., 2020). These
algorithms provide sophisticated solutions to maintain robot
stability in environments with dense obstacles and uneven terrain.
However, improving the stability and efficiency of legged robots
in unstructured environments, such as agriculture, remains a
challenge. To address this issue, a research group at Kyoto University
developed a tracking robot based on ambient CO2 concentration
(Tida et al., 2008). These advances provide solutions for modifying
robot behavior based on external environmental inputs. In addition,
researchers at ETH Zurich developed another robot that integrates
stereo vision for navigation and proprioceptive terrain sensing for
adaptive control (Bjelonic et al., 2018). Despite these technological
advances, the widespread use of hexapod robots in agriculture
still faces significant challenges, such as adapting to different soil
properties, avoiding plant damage, and improving endurance,
which led to the limited use of hexapod robots in agricultural
practices.

Our research introduces a bionic hexapod robot with innovative
control mechanisms to address the challenges of applying legged
robots in agricultural scenarios. The objectives of this study are
to: 1) conceptualize and create a design framework for a terrain-
adaptive agricultural robot that meets predefined requirements,
focusing on adaptability to different agricultural scenarios; 2)
build the robot according to the established design concepts to
ensure structural integrity and operational feasibility; 3) design
algorithms to enable the robot to perform basic autonomous
and intelligent tasks, including but not limited to obstacle
avoidance and automatic gait transformation, enhancing its
functionality in dynamic environments; and 4) evaluate the robot’s
operational efficiency in agricultural environments and gather
empirical data and insights to inform advances in more complex
functions such as autonomous navigation and robot clustering
strategies.
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2 System overview

The robotic system designed in this study is based on bionic
principles, which offer superior dexterity, robust load capacity, and
the ability to adapt to complex agricultural terrains. The system’s
overall architecture integrates three core subsystems: a sensing
system (Section 3.3), a control system (Section 3.4), and a motion
system (Section 3.5). Each has been specifically designed to improve
the efficiency and stability of the robot in agricultural environments.
The specifications are given in Table 1.

We offer a range of optional sensing system configurations
to accommodate varying mission requirements and enhance the
robot’s capabilities. For scenarios necessitating an assessment of the
robot’s kinematic performance, we equip the standard version of
the robot with IMU and force sensors to record comprehensive
data on the robot’s attitude and motion dynamics. Accordingly, we
have developed an advanced version of the robot for scenarios that
require autonomous navigation, with an additional environmental
sensing module. This module integrates multiple sensors, including
LIDAR, distance sensors, and cameras, to acquire real-time data on
ground conditions and potential obstacles. Such data is pivotal for
enabling autonomous navigation and obstacle avoidance, thereby
facilitating the robot’s efficient operation across diverse agricultural
environments. In the control system, the signals from the sensors
are analyzed by the data processor to generate the robot’s motion
parameters such as the angle each joint needs to rotate, the
robot’s motion speed, and the direction of motion according to
predefined algorithms. The motion controller then generates Pulse-
Width Modulation (PWM) signals recognizable by the motion
system based on these parameters according to a written algorithm.
The function of the motion system is to precisely regulate the
angle, rotational speed, and torque of the servos according to the
commands given by the control system. This regulation ensures that
the robot moves at a predetermined trajectory and speed. With these
three systems integrated, the robot can overcome the challenges
encountered in complex agricultural scenarios.

To accommodate obstacles of different heights in the field, a
notable feature of this robotic system is its ability to switch motion
modes between high clearance and low clearance. This feature
enhances its adaptability for plants at different growth stages and
enables it to move efficiently by changing its clearance to cross
obstacles of varying heights. The robot can operate in various
environmental conditions, from flat terrain to sloping terrain and
terrain with various obstacles.

3 Hardware design
3.1 Hardware design requirements

Since the application scenario of our robotic system is
agricultural tasks, parameters such as weight, endurance, traveling
speed, and payload of the robot need to be considered. Therefore,
the following performance requirements are used to guide the
hardware design (Xu and Li, 2022; Biswal and Mohanty, 2021; Raj
and Kos, 2022).

1. Lightweight. robots are characterized by

lightweight and flexible movement compared to large

Agricultural
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TABLE 1 Specifications of the robot.

10.3389/frobt.2024.1426269

Type Description

Mass 4.2 kg (without battery), 4.7 kg (with 2 batteries)

Dimension

Diameter:1.21 m (expanded), 0.77 m (standing), Clearance: 6-18 cm

Power supply

Two 3§ LiPo battery (11.1 V, 5200 mA h)

Traveling speed Upto1.2m/s

Payload

8 kg (including batteries and sensors)

Endurance (with 2 batteries)

3 h (standing), 1 h (traveling at 0.5 m/s)

machines such as tractors. Currently, most agricultural robots
weigh between 5 and 800 kg. For legged robots, due to their
simple structure and small size, their weight is on the small
side, between 1 and 20 kg. Therefore, our goal is to ensure
that the maximum weight should not exceed 10kg while
maintaining the strength and stability of the robot.

2. Endurance. The endurance time of a robot is mainly
determined by the battery capacity and the power of the robot’s
motion and control system. Existing legged robots have an
endurance from 2 to 12 h. Therefore, the minimum endurance
should be no less than 2 h.

3. Traveling speed. Agricultural robots do not need to travel
at high speeds because the task requires them to be highly
accurate. Most current agricultural robots travel at a speed
between 0.5 and 3 m/s, and our proposed design has a
maximum speed range from 0.8 to 1.5 m/s.

4. Payload. The robot needs to have enough payload to carry the
necessary hardware modules. Although the payload depends
on the different mission requirements, the robot we proposed
at this stage should be able to carry at least equipment such
as sensors, cameras, and LiDAR. Thus, the load should not be
less than 8 kg.

3.2 Body design

Inspired by the versatile locomotion capabilities of insects in
unstructured environments, the robot features six highly flexible
legs, each with three degrees of freedom. This design allows the
robot to mimic the complex movements of natural creatures.
Additionally, the robots architecture is modular, allowing for the
flexible integration of various sensors based on specific operational
requirements. This adaptability enhances the robots utility in
different tasks and environments. Figure 1A is a CAD model of
the standard version of the robot, depicting the structure of the
necessary components of the robot and showing the arrangement
of the bionic legs and core components. Figure 1B shows the design
of the advanced version of the robot, including range sensors, stereo
cameras, and a processor with higher computational power. Figure 2
shows the structure of the hardware system. The following
subsections delve into the hardware design requirements and
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provide detailed descriptions of the design and function of each
robot component.

The frame of the robot body (Figure 1 in the Supplementary
Material) is used to support the robot’s overall structure and connect
to other systems. The frame is rigid, and two significant criteria were
considered in its design. The first criterion is the frameé’s ability to
withstand the robot’s total weight, and the stresses generated by the
robot in motion. The second criterion is that the frame should be
lightweight, and the weight of the frame should be minimized while
maintaining stability to increase the load capacity of the robot. Based
on the above design concept, we chose carbon fiber, known to have
excellent strength-to-weight ratio and rigidity, as the material for
the base plate of the robot body. The design also features a double-
layer construction with six nylon struts in the center for support.
This design increases the available space within the fuselage and
provides enhanced resistance to bending moments. The frame is
divided into three layers by a double-layered base plate, allowing the
user to configure the frame with the mission’s requisite sensing and
control systems. After experimental trials, the thickness of the base
plate was selected to be 2 mm to ensure high stiffness and low weight.

3.3 Sensing system design

We developed a posture sensing module for both the standard
and advanced version of the robot for real-time monitoring of
the robot’s posture and motion status during movements. This
configuration enables the robot to dynamically adjust its motion
strategy based on the posture data and maintain balance by
continuously evaluating its own posture. For the advanced version
of the robot, we have introduced an additional environmental
sensing system for robot perception. This system enables the robot
to detect variations in the surrounding terrain and autonomously
plan an appropriate path of travel, thus enabling the robot to
perform advanced tasks such as autonomous navigation and
obstacle avoidance.

3.3.1 Posture sensing system

The posture sensing system comprises a nine-axis IMU (LORD,
Cary, NC, United States) and six force sensors mounted on each
leg. The IMU measures the robot’s inclination, angular velocity,
and angular acceleration in pitch, yaw, and roll directions, which
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FIGURE 1
Robot CAD model. (A) The standard version of the robot. It has an IMU and force sensors for recording robot attitude and motion information. (B) The

advanced version with additional hardware includes stereo cameras, distance sensors, and the data processor. The stereo cameras are used to
generate depth images and are paired with distance sensors mounted on the second base plate.
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FIGURE 2
The architecture of the integrated robotic sensing and motion system. The system contains a posture-sensing system, an environmental sensing

system, a motion system, and two controllers.
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are used to provide feedback on the current robot posture. The
force sensors are mounted at the end of each leg, and the robot’s
gait algorithm stops when the force sensors detect that the leg has
touched the ground. The force sensor changes its resistance under
external pressure, and the controller reads the voltage of the sensor
to determine whether the robot’s foot touches the ground or not. This
design addresses the situation where part of the leg hovers above a
groove when the robot crosses it, preventing potential falls.

3.3.2 Environmental sensing system

The environmental sensing system is realized by interacting with
a LiDAR (LIVOX, Shenzhen, Guangzhou, China), three Red-Green-
Blue (RGB) cameras (FLIR, Wilsonville, OR, United States), and
three range sensors (Benewake, Beijing, China). LiDAR provides
detailed spatial data and precise ranging information with high
accuracy and long-range detection capability. However, the large
amount of data generated by LiDAR requires high computing
power and is weather-sensitive. In this case, 3D cameras are
complementary and can provide better depth perception of the scene
with faster computation. In addition, the distance sensor, with its
low cost, small size, and high efficiency, can provide instant distance
measurement, which is especially effective for obstacle avoidance
and essential object detection. This multi-sensor fusion approach
optimizes the sensing system’s overall performance, providing more
robust solutions in various environments and application scenarios.

The effective detection range of the LIDAR is a cylindrical space
with a diameter of 20 m, with the installation height as the upper
surface, excluding a cone with a top angle of 32°. The bottom surface
of this cone does not exceed the projection of the base plate on the
ground, so the LIDAR’s detection range is extensive enough for the
robot. The camera used in this study features a diagonal field of
view (FoV) of 94°, a horizontal FoV of 82.9° and a vertical FoV of
66.5°. The base plate of the robot’s standard version was designed
with three sets of camera mounting slots, each vertically offset
downward by 20°. Additionally, the angle between each set is 60°.
This arrangement enables the integration of the three camera sets
to create a semi-panoramic image of the robot’s surroundings. This
composite imaging capability facilitates the precise identification
and labeling of obstacles and distinctive terrain features, enhancing
the robot’s operational effectiveness in diverse environments. The
range sensor has a measurement range of 20-200 cm and is used in
conjunction with the LiDAR and cameras for obstacle detection.

3.4 Control system design

The control system consists of a motion controller and a data
processor. The motion controller is the OpenRB-150 (ROBOTIS,
Lake Forest, CA, United States), which supports programming
with the Arduino IDE. Since the robot needs to process images
and point cloud information generated by the camera and LiDAR,
the amount of data is quite large and requires a processor with
high computing power. Therefore, we have chosen the Jetson nano
(NVIDIA, Santa Clara, CA, United States), which is lightweight and
has high computational power for applications that require real-time
processing of complex algorithms in the field.
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FIGURE 3

The exploded view of the whole leg. The robot's legs contain three
servos, a 3D-printed leg skeleton, pressure sensors, and rubber pads
to increase friction.

3.5 Motion system design

The design idea of the motion system is to form a leg with
three servos and three connectors. The servo in the hip joint has
horizontal rotational degrees of freedom to control the forward
and backward motion of the leg. The knee and ankle joints are
equipped with servos with vertical rotational freedom to control
the up-and-down motion of the leg. Since the design goal of the
robot is to cross potential obstacles in agricultural fields, we designed
the leg as a support bar with a 27 cm long support rod with a 30-
degree curvature to cross obstacles more easily. The servos used are
Dynamixel MX-106T (ROBOTIS, Lake Forest, CA, United States),
which has a rated voltage of 12 V and a rated torque of 8.4 N-m. This
high-performance servo provides powerful torque to increase the
robot’s payload. The connecting parts that require high strength are
made of aluminum alloys using CNC machining methods, and the
non-stressed parts are manufactured using 3D printing technology.
An exploded view of the entire leg is shown in Figure 3.

4 Locomotion model

In this study, we developed a Terrain-Adaptive gait (TA gait)
based on the traditional tripod gait (Duan et al., 2009) to optimize
the robot trajectory. Previously commonly used robot motion
control is usually optimized with a fixed clearance (Coelho et al.,
2021). In agricultural applications, this gait is not well adapted
because of the inconsistent heights of obstacles. In contrast, our
proposed terrain-adaptive gait enables the robot to vary its clearance
to cross the barriers more efficiently and with less energy. Thus, it is
more suitable for applications in agricultural scenarios.
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FIGURE 4

these two modes, which are 6 and 18 cm, respectively.

Comparison of the clearance when the robot is in marching and step-over modes. The a and b in the figure represent the clearance of the robot in

4.1 Terrain-Adaptive gait

The TA gait is categorized into two modes. The first mode is a
marching mode with lower clearance and lower energy consumption
(Figure 4A), while the second mode is a step-over mode with higher
clearance (Figure 4B). Both modes combine three basic motions of
the robot’s single leg, and these motions include striding motion,
dragging motion, and clearance change motion. Striding motion is
the process of lifting the leg from a decent position, moving it to
the target position and then stepping back to the ground. Dragging
motion is defined as the process in which the leg stays in contact
with the ground and pulls the robot’s body forward by friction. As
the robot moves, its six legs repeat the striding and dragging motions
at intervals to ensure that at least three legs are in contact with the
ground at any given moment and that the center of gravity of the
robot falls within the area formed by the contact points. The logic
flow of the robot in accomplishing the task is shown in Figure 5.

The marching mode of this robot consists of a leg-spanning
motion and a dragging motion. During the spanning phase, the
robot’s foot is lifted and moves along an arc on the sagittal plane,
transitioning from the rear pole position to the front pole position.
On the other hand, the drag motion involves the robots body
being propelled forward through friction while the foot maintains
contact with the ground at the front pole position. The robot
advances one step forward by completing two sets of spanning
and dragging motion cycles. The leg movement process and foot
trajectory 3D plot for the marching mode and step-over mode
are shown in Figures 6A, B.

The step-over mode of the robot is similar to the marching
mode, but the knee servo has an angle that is greater than 90° and a
larger clearance. The ankle joints are contracted inward during the
movement, so more considerable obstacles can be crossed.

In Figures 6A, B, 1, L, represent the forward distances, 1; and
1, denote the lateral extension distances of the foot, and 1,; and 1,
indicate the height of the leg lift. In the marching mode, each leg
is rotated at an angle of 30° and the height of the leg lifted is a
fixed value of about 3 cm, so that the foot trajectory projected on
the ground is a minor arc with an angle of 30° and a radius of the
length of the leg contracted up.

In the step-over mode, the angle of rotation of each leg and the
height of lifting depends on the size of the obstacle, and the value
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FIGURE 5
The flowchart of robot switching motion modes.

of each parameter can be inverted by the foot trajectory. In our
robot, the trajectory is set as a minor arc that precisely envelopes
the obstacle.
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A) (8)
FIGURE 6
3D plot of the foot's trajectory. These figures show the trajectory of the end of the leg as it takes a step, where |y, I, is the step length, L, L, is the
furthest distance outward and l,;, L, is the height at which the leg is raised. (A). The trajectory of the end of the leg in marching mode. (B). The
trajectory of the end of the leg in step-over mode.

4.2 Leg trajectory control model

In this paper, leg trajectory control is optimized based on the
traditional tripod gait algorithm. Traditional trajectory control,
such as pendulum trajectory control (Yin etal., 2023), requires
computing the landing point of the robot’s foot end at each
step and using inverse kinematics to control the angle of each
servo. This approach generates many complex computations,
requires long computation time and energy consumption, and is
not conducive to the longer endurance required in agricultural
scenarios. Furthermore, the end of the foot makes a greater
angle contact with the ground, resulting in a more profound
impact. Therefore, we propose a computationally efficient trajectory
control algorithm. Previous studies have explored similar curve-
fitting and periodic oscillation control methods and validated their
effectiveness in achieving adaptive motion (Coelho etal., 2021;
Saranli et al., 2001; Iida et al., 2008). Building on these fundamental
studies, our approach introduces gait switching and adjustable robot
spacing, addressing the problematic leg of previous gaits that cannot
adaptively cope with obstacles of different heights.

The following Equations 1-3 define the trajectory control of the

robot leg:
6, = 6° +1;sin(2) (1)
9?2 + llz[cos(4t) +1] ifcos(26)>0
91'2 = 2 (2
b otherwise
1
5+ —l[cos(4t)+ 1] ifcos(2)>0
6,=1 " 2" )
5 otherwise
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where 0, is the angle of the hip servo, 0, is the angle of the knee

servo, and 65 is the angle of the ankle servo. The letter i identifies
which leg of the robot this is. Symbols with a superscript of 0 represent
the angle of each joint at initialization (moment t = 0). The symbols1,,
1,, and 1; indicate the angle of the hip, knee, and ankle joints need to be
rotated. These parameters can be solved by the kinematics mentioned
in Section 4.1. Specifically, they can be solved by forward kinematics
(Equation 4) and inverse kinematics (Equation 5):

X sinl;  coslysinl,  coslysinl, ][ a
y|=|cosl, cosl,cosl; coslycosl ||b (4)
z 0 sin [, —sin c
I, = sin”! - —
z+csinly ©)

10~ gt
= s Z25801)
bsinl, -z

()

where x, y, z represents the position of the foot landing point in

Ly

22

the forward direction, horizontal direction and vertical direction
respectively. Letter g, b, ¢ indicate the distances between the hip and
knee joints, the knee and ankle joints, and the ankle and the foot
respectively.

The value cos(4t) denotes the frequency of joint rotation,
embodied in the period of the robot motion, which is the velocity.
The value cos(2t) determines the rotation mode of the robot’s knee
joint. The equations consider the joints’ initial angle, rotational
speed, and the time-dependent sinusoidal modulation factor. When
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FIGURE 7

itself from a grove with one leg stuck.
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Simulation of a robot traveling uphill and downhill on a 15° inclined surface. The robot is capable of traveling steadily through slopes and can extricate

cos (2t) is positive, it indicates that the leg is still in the forward-
spanning phase. Otherwise, it indicates that the foot has moved to
the anterior and posterior poles and should be in the dragging mode.
Various motion modes can be achieved by adjusting the algorithm
variables. To achieve stable movement in a straight line of the robot,
the rotational directions of adjacent hip joints are set to alternate in
opposite directions, and the rotation of the knee joints has a phase
difference of half a cycle to maintain dynamic balance. The robot
can also be oriented by rotating the hip joints in the same direction.
When a passable obstacle is detected, the robot automatically
adjusts the height of the base to ensure effective passage. During
clearance elevation, the leg servos follow the following dynamics
Equations 6-8:

O = 6?1 (©)
Ay T1
0i2:6?2+7sm[ﬁ t—to)] (7)
Az . [ 1
9,-3:6?3+7sm[ﬁ(t—t0)] (8)

where Ay and Az refer to the angle of the knee and ankle joints
that need to be rotated, T refers to the period of the robot traveling
further, and t; refers to the moment at which it starts lifting
the ground.

The algorithm’s complexity can be significantly reduced by using
the sinusoidal modulation factor and time as inputs to the motion
function. Compared to traditional robot motion algorithms such as
tripod gait, this approach eliminates the need for inverse kinematics
to compute the position of the leg, thus allowing faster and more
efficient computations.
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5 Experiments and results

The TA gait allows the robot to adaptively adjust its base height,
enabling it to directly cross obstacles by lifting the base instead of
navigating around them. Consequently, in complex environments,
robots employing the TA gait complete tasks more quickly and
efficiently than those using traditional algorithms. To verify this, we
conducted simulations and field tests to assess the stability of the
robot’s motion in various terrain types. Additionally, field tests were
carried out to evaluate energy consumption.

5.1 Performance criteria

The dimensionless cost of transportation (CoT) is a widely
used metric for evaluating the energy efliciency of ground robots
(Bjelonic et al., 2018). It is defined as following Equations 9, 10:

Ul

CoT = — 9)
mgv
LS
CoT=—=1 — (10)
At

where U is the battery’s voltage, I is the instantaneous current
output from the battery, m is the mass, v is the robot’s speed, and
At is the time required to move the distance Ax. The total power
consumption calculated by CoT based on the voltage and current
of the power supply includes the power of the motors, the power of
the data processor, the power of the sensors, and other losses such
as friction. It can be seen that energy efficiency is highly dependent
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FIGURE 8
The maximum slope the robot system can travel. When the slope increases to 17°, the robot gets an unstable center of gravity and flips over.

2 801: @ ©) ® ® 6 ® @
= 40] VR 7
g . / \\ 7 r'\ i A
g 00 : eri—i Yy, Iy,
8
S 4.0
A

-8.0

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0

Time (s)

FIGURE 9

Simulation results demonstrate the legged robot’s ability to cross obstacles, navigate furrows, and climb bars. Top: Sequential simulation snapshots
showcasing a legged robot navigating through a challenging obstacle course with varying terrains and obstructions. Bottom: Graphical representation
of the robot's vertical displacement over time, indicating its stability and agility during the obstacle course navigation.
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FIGURE 10
Two ways for a robot to cross an obstacle on a flat surface. (A). The robot used the TA algorithm to lift the clearance to cross the obstacle. It took 10.7 s
with an average CoT of 25.3. (B). The robot used a conventional algorithm to avoid obstacles. It took 12.5 s with an average CoT of 30.2.
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FIGURE 11
Variation in robot’s pitch angle during slope ascent, fluctuating between —2.3° and 4.6°, indicating stable attitude throughout the climb.
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FIGURE 12
Variation in pitch angle as the robot navigates grassy terrain, ranging from —2.9° to 4.6°. This demonstrates the robot's ability to maintain stability on

deformable ground.
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Variation of the pitch angle of the robot as it walks through a complex grassy field and crosses an obstacle. Under various ground conditions, the robot
shakes considerably sometimes in the process, and the pitch angle varies from —11.5° to 8.6°. The results indicate that the robot can successfully pass
through complex fields.
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TABLE 2 Mean, standard deviation, and root mean square error of pitch angle for robot moving on 12° slopes, grass field, and complex grass field with

obstacles.

Type of terrain

Standard Deviation/°

Root mean square Error/°

12° Slope 12.261 1.752 1.803
Grass Field -1.417 3.267 3.559
Complex grass field with obstacles 1.580 6.968 7.140

on the characteristics of these power-using devices. Since this work
calculates the CoT of the same robot in different environments, it is
assumed that these power-using devices remain constant during the
experiment.

Pitch angle and displacements, which measure the inclination
of the robot’s body along its longitudinal axis, are used to evaluate
the robots dynamic stability during operations (Chen et al., 2022).
These metrics are crucial for assessing the robot’s ability to maintain
balance and perform effectively across varying terrains.

5.2 Simulation test

We conducted simulation experiments in Simulink to test
the robot’s performance on various terrains, including flat terrain
with obstacles, sloping terrain, and complex terrain with multiple
obstacles and slopes.

5.2.1 Simulation model configuration

The robot simulation model consists of six parts: World Setting,
Robot Components, Contact Force, Terrain, Parameter Monitor,
and Locomotion Algorithm. The first five parts belong to the
physical modeling part, which will be introduced in this section.
The Locomotion Algorithm has been introduced in Section 4. The
World Setting part establishes the world coordinate system for the
robot and defines the ground model. The position of the robot
model with respect to the ground is also set here. In the Robot
Components section, the robot’s six legs are connected to the body
by rigid joints, and the dynamics of the three joints of each leg
are defined. Contact force contains the force between the robot
and the ground and the collision between the robot’s own parts.
Terrain sections define the position and size of the obstacles in the
environment. The parameter monitor can display curves for each
parameter of robot dynamics and kinematics over time. Details of
the entire simulation environment and each module can be found
in the Supplementary Material (Figures 2-6).

To build the robot simulation model, a 3D model (Figure 2)
of the robot designed in SolidWorks was used and imported
into Simulink through the Simscape Multibody interface. This
process enables the transition from static 3D design to dynamic
simulation, allowing detailed analysis and refinement of the robot’s
kinematic dynamics and interaction capabilities in a controlled
virtual environment. This approach improves the accuracy of
simulation results and provides a suitable framework for iterative
testing and optimization of robotic systems.

The world framework block, mechanism configuration block,
and solution configuration block are the three most critical parts
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of the world setting part. The world frame block was used to
define the world origin and coordinate system in the simulation
environment. The mechanism configuration block was used to
define the physical parameters in the simulation environment,
such as gravity was initially set to 9.8 m/s*> in the z-direction,
and the solver configuration block was used to control the
physical simulation environment. These three components build
the complete physical simulation environment. The first component
connected to the World setting part is a brick solid block with
dimensions of 20 m x 20 m x 0.01 m, which serves as the ground
in the simulation environment. To ensure that the robot can make
translational and rotational motions in three different dimensions
on the ground, a 6-DOF joint block is connected between the robot
model and the ground model. The distance between the robot’s
coordinate system and the ground was then set using the coordinate
system transformation module. The distance between the center of
our robot and the ground is 0.25 m.

In the Robot Components section, the relative positions of
the robot’s body and each leg and the relative positions of each
component of the leg are determined from the SolidWorks model
of the robot, and the Simscape Multibody plug-in automatically
generates the parameters. The simulation model of the robot leg,
which consists of three rotating joints and a number of rigid
connectors. The three rotational joints allow the leg to rotate in the
horizontal plane, around the knee joint in the vertical plane, and
the ankle joint in the vertical plane, respectively. In this paper, to
control the rotation of the joints, it is necessary to set the actuation
properties in the revolute joint block, in which the motion is being
set to be provided from the output generated by the Locomotion
Algorithm and the torque is being calculated automatically.

The subsequent phase of the simulation model configuration
entails the integration of the contact force module, which comprises
solely spatial force blocks. This module is essential for the interaction
between the robot and its environment. In particular, the spatial
force block is connected to the leg model at one end and to the
ground model at the other end. This block enables the generation
of interaction forces between predefined objects and planes, thus
ensuring that the robot model remains stable and does not penetrate
the ground in simulation.

Finally, a terrain and parameter monitoring module is
incorporated into the model. This facilitates modifying the terrain
environment and the real-time recording of pertinent data. The
terrain configuration comprises the ground, the objects, and
the rigid transformations. Collectively, they define the physical
properties of the terrain. The position and angle of objects relative to
the center of the ground can be adjusted within the rigid transform.
Furthermore, the parameter monitor is designed to track and display
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dynamic changes in various parameters during the simulation.
This is accomplished through parameter outputs, unit conversions,
and displays that collectively present the temporal evolution of
parameter values.

In summary, in conjunction with the motion algorithms
described in Section 4, these elements constitute a comprehensive
simulation model of the robot. The model contributes to a detailed
understanding of the robot’s interaction with its environment and
provides a robust framework for further experimental validation and
refinement.

5.2.2 Moving on sloping terrain

In the simulation environment, we introduced slopes with a
gradient of 15° including uphill, downhill, and a trench, into
the terrain portion of the simulation environment. A snapshot of
the simulation outcome of the robot navigating these slopes is
presented in Figure 7. The figure illustrates the vertical displacement
of the robot’s body as it ascends and descends the slope. It is evident
that the robot’s vertical displacement remains stable, exhibiting
minimal variation along the slope. Moreover, when encountering
the trench, despite one leg becoming obstructed and the body being
inclined, the robot successfully gets out of the trench and reverts to
its original motion trajectory.

Our simulation experiments also included evaluating the robot’s
stability on various inclined surfaces to determine the maximum
slope it could go over. The experimental result shows that at an
angle of 17°, the robot encountered stability problems due to
its center of gravity moving outside of the tripod stability zone
delineated by the contact points. This situation would result in the
robot tipping over. Figure 8 illustrates the fluctuation in the vertical
displacement of the robot’s body during the simulation.

5.2.3 Moving on terrain with multiple obstacles
and slopes

We added three additional bars with cross-sectional dimensions
of 6 cm by 6 cm and 80 cm spacing between the bars to the slope
simulation environment in the previous section. A snapshot of the
simulation results of the robot passing through the entire terrain
is shown in Figure 9, which shows the vertical displacement of the
robot as it passes through the different terrains.

5.3 Field test

We conducted numerous experiments to evaluate the
performance of the previously proposed motion algorithm in terms
of energy efficiency and body stability. Videos related to robot testing

can be found in the Supplementary Material.

5.3.1 Experimental setup

To generate experimental results in different environments,
we prepared four different experimental terrains: flat ground with
obstacles, 12° slope, flat grass field, and grass field with obstacles.
The robot autonomously moved along a program-predefined route
without prior information about the environment using the motion
model described in Section 4. The robot’s pitch angle was calculated
by the IMU installed on the robot at 10 Hz.
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5.3.2 Experiments on flat terrain with obstacles

In order to evaluate our robots’ motion efficiency and energy
consumption, we conducted controlled experiments. As shown in
Figure 10, we divided the experiments into two groups. We set the
robot at the same starting point, one robot executes the traditional
tripod gait algorithm (Duan et al.,, 2009) to avoid obstacles following
the path planned by the artificial potential field algorithm (Khatib,
1985), and the other executes our TA gait. The disadvantage of the
traditional algorithm is that it can only go around obstacles and
cannot cross them from above. We would like to emphasize that
our robot can cross obstacles by lifting the clearance, thus saving
time and energy. The final results demonstrate that the robot in
the experimental group executing the TA gait completes avoiding
obstacles and reaching the endpoint in only 10.7 s, which is 1.8 s
(14.4%) less than the robot in the control group executing the
traditional obstacle avoidance algorithm. Furthermore, voltage and
current variations were directly recorded during the task, and the
average CoT was calculated. The results demonstrated that the
average CoT of robots executing the TA gait was 25.3, which was
16.2% lower than that of the traditional algorithm, which was 30.2
when obstacles of comparable size were avoided.

5.3.3 Experiments on a slope

Figure 11 shows the corresponding pitch angle variation for the
robot traveling on a 12° slope. The yellow line represents the average
pitch angle changes for the 10 runs. Upon subtracting the slope
gradient, the average pitch angle variation ranges from —0.04 to 0.08
radians or —2.3° to 4.6°. The experimental results demonstrate that
our robot can maintain stable walking on a slope precisely.

5.3.4 Outdoor experiments on a grass field

To test the robot’s ability to walk on deformable surfaces, we
chose a grass field for the test. Figure 12 shows the corresponding
pitch angle variation for the robot walking on the grass. The yellow
line represents the average pitch angle changes for the 10 runs. It can
be seen that the average pitch angle change ranges from —0.05 to 0.08
radians or —2.9° to 4.6°. The experimental results show that our robot
can maintain stable walking on grass with consistent precision.

5.3.5 Outdoor experiments on a complex grass
field with obstacles

Based on the previous experiment, we added more complex
variations, including plants of different heights, curved paths, and
sandy and muddy fields with varying soil quality. This environment
configuration can better simulate the environment in a real
agricultural scenario. Figure 13 shows the corresponding pitch angle
change for the robot traveling through this terrain. The yellow line
represents the average of the pitch angle variation over 10 runs.
It can be seen that the average pitch angle variation ranges from
—0.20 to 0.15 radians or —11.5° to 8.6°. The pitch angle remains
relatively constant when the robot raises and lowers the clearance.
The experimental results show that our robot could maintain stable
walking in the terrain smoothly switched clearance and avoided
obstacles with impressive problem-solving skills.
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6 Conclusion and future work

In summary, we have successfully developed a hexapod
robotic system that demonstrates locomotion stability under various
environmental conditions. The system has exhibited exceptional
performance in both simulated environments and field tests. The
main contribution of this robotic system is that it solves the problem
that traditional agricultural robots are unable to traverse farmland
with a cluttered ground environment. In such environments, crops
are highly susceptible to damage. The highlight of our robot is that
it executes terrain-adaptive gait algorithms that can switch motion
modes according to different terrains, which enables it to cope with
highly complex environments. Additionally, it has adaptive clearance,
which allows it to directly cross obstacles without going around them.
We have successfully modeled the robot’s movement over various
terrains in simulation. In real-world tests, the robot performed well
on slopes with a gradient up to 17°. The fluctuation of the center of
gravity when crossing the obstacles was controlled from -2 to 2 cm.
Finally, we also completed a large number of field tests. On the flat
surface, our terrain-adaptive algorithm is more energy efficient than
traditional obstacle avoidance algorithms, saving 14.4% of energy
consumption for every obstacle crossed. In the tests on grassland,
our robot still maintains good stability, with pitch angle fluctuations
of only —11.5° to 8.6°. We provide the mean, standard deviation,
and root-mean-square error of the pitch angle of the robot while
moving over these three terrains in Table 2. The robot demonstrates
remarkable stability in performance when navigating slopes and grass
fields. Specifically, the root means square error (RMSE) of the robot’s
pitch angle is 1.803° on slopes and 3.559° on grass fields. Notably,
even under challenging conditions, such as traversing a complex grass
field with uneven terrain and multiple obstacles, the RMSE of the
robot’s pitch angle remains within an acceptable margin of error at
7.140°. Compared to previous work (Ouyang et al., 2021), our robot
can walk stably on slopes with greater angles and with less oscillation
on flat and complex terrain. However, there are still some practical
problems that need to be solved. Our subsequent research will focus
on the following three areas.

1. Improve stability: The robot’s mechanical structure and motion
model will be enhanced. For instance, the leg degrees of
freedom will be augmented to ensure that the foot end is
vertically in contact with the ground. Furthermore, artificial
intelligence methodologies can be employed to refine the
motion model.

2. Improve endurance: To extend the operational time of the
robot, it is necessary to optimize its energy consumption. This
can be achieved not only by increasing the battery capacity
and reducing the overall weight of the robot, but also by
optimizing it using bio-inspired and deep learning approaches
(Polykretis et al., 2020; Lopez-Osorio et al., 2022; Ehrlich and
Tsur, 2021; Thor and Manoonpong, 2021). By utilizing
these advanced techniques, the endurance of robots can be
significantly improved.

3. Better Further
to develop the robot’s performance in more complex

intelligence: experiments are needed

environments. We will deploy the robot in a real
environment in a farm field to test its autonomous navigation

and obstacle avoidance performance.
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