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Microparticles are increasingly employed as drug carriers inside the human body.
To avoid collision with environment, they reach their destination following a
predefined trajectory. However, due to the various disturbances, tracking control
of microparticles is still a challenge. In this work, we propose to use an Adaptive
Nonlinear PID (A-NPID) controller for trajectory tracking of microparticles. A-
NPID allows the gains to be continuously adjusted to satisfy the performance
requirements at different operating conditions. An in-vitro study is conducted
to verify the proposed controller where a microparticle of 100μm diameter is
put to navigate through an open fluidic reservoir with virtual obstacles. Firstly, a
collision-free trajectory is generated using a path-planning algorithm. Secondly,
the microparticle dynamic model, when moving under the influence of external
forces, is derived, and employed to design the A-NPID control law. The proposed
controller successfully allowed the particle to navigate autonomously following
the reference collision-free trajectory in presence of varying environmental
conditions. Moreover, the particle could reach its targeted position with a
minimal steady-state error of 4μm. A degradation in the performance was
observed when only a PID controller was used in the absence of adaptive terms.
The results have been verified by simulation and experimentally.
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1 Introduction

Microrobots have considerable potential to revolutionize the treatment of several
diseases that are currently considered difficult to cure (Nelson et al., 2010). Due to their
small size, they can navigate through hard-to-access regions inside the human body, and
precisely deliver drug doses to target lesions in a minimal-invasive and effective manner
Abbott et al. (2007); Sitti (2009); (Nelson et al., 2010); Khalil et al. (2012a); Scheggi and
Misra (2016). This precision delivery means that a higher concentration of the drug will
arrive at the most beneficial site, and that the risk of potential side effects is minimized
because the drug is much less likely to diffuse to the surrounding tissue. However, to reach
their destination, microparticles have to navigate through a complex network of blood
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vessels with multiple forks and narrow paths Belharet et al. (2012);
Coene et al. (2015). Steering the particle in such environment can
be realized by means of a teleoperation device i.e. joystick which
allows the operator to remotely guide the particle towards the
targeted goal. The operator can get his feedback about the particle
position through an artificial image reconstructed from the slices
obtained from MRI. However, this procedure is very difficult
and stressful even for a skilled operator, mostly because of the
reduced workspace, the high precision required, the lack of haptic
perception and the complexity induced by artificial vision feedback.
Alternatively, closed-loop control system allows microparticles to
autonomously reach their target position following an obstacle-
free trajectory without the intervention of the operator. For this
purpose, a path planning algorithm has to be firstly used to
generate a reference trajectory that avoids the collision with the
surrounding environment.Several path-planning algorithms have
been presented in the literature for autonomous navigation ofmobile
robots such as A∗ algorithm Lin et al. (2017), Dijkstra algorithm
Wang et al. (2011), RRT algorithm Gong et al. (2014), probabilistic
roadmaps (PRM) Amato and Wu (1996); Kavraki et al. (1996),
genetic algorithm Liu et al. (2004), ant colony algorithmWang et al.
(2018), and artificial potential field algorithm Qi et al. (2008).
However, navigation inside the humanbody ismore challenging task
as several constraints and physiological issues have to be considered.
For instance, the path planning algorithmmust ensure that the ratio
between the diameter of themicroparticle and the diameter of blood
vessel satisfies a specific range, and the microparticle can counteract
the reciprocal blood flowwhich is typically higher in larger diameter
blood vessels Sabra et al. (2005).

A comparative study was conducted in Sabra et al. (2005)
between a group of path planning algorithms to find the best
trajectory to be followed by a microparticle to reach a goal
in the cardiovascular system. The study took into consideration
the exclusive features of the blood circulatory system beside
the other constraints that are associated with the navigation
inside the human body. The criteria for the best algorithm were
computation time, memory usage, local minima handling, and the
capability of determining multiple paths. Among nine algorithms,
the Artificial Potential Filed (APF) was found one of the most
appropriate. Recently, another experimental comparison between
six path planning algorithms when applied to the motion control
of paramagnetic microparticles was presented in Scheggi and Misra
(2016). The comparison was conducted based on three metrics
i.e., computation time, trajectory length, and elapsed time. The
experimental results revealed equivalence between almost all the
considered planners in terms of trajectory length and completion
time while the artificial potential field and A∗ with quadtree
achieved the best performances regarding the computation time.
The APF algorithm was also presented in other several studies
as in Khalil et al. (2012a) where an untethered microrobot was
wirelessly controlled to reach its destinationwith obstacle avoidance.
Motivated by the satisfactory performance of the APF algorithm
in the previous studies, it is selected in this work to generate
a collision-free path for the microparticle while flowing in a
an open fluidic resvoir with virtual narrow vessel-like channel
and static obstacles.To ensure accurate trajectory tracking of
the microparticle, a closed-loop control system is indispensable.
Several control logarithms have been presented in the literature

for the position tracking of magnetically actuated microparticles.
For instance, in Khamesee et al. (2002) the PID controller was
applied to the microrobot position, but its performance was
unsatisfactory as practically, the microrobot is a complicated system
with high nonlinearity and uncertainty. In addition, at microscale,
the external disturbances and dynamic uncertainties may have a
greater influence on the motion of microparticles Jiang et al. (2022).
This makes classic linear controllers like PID inadequate for such a
control task. Thus, more advanced model-based nonlinear control
strategies have been reported to improve the position tracking
performance Piepmeier et al. (2014); Mellal et al. (2016). However,
their performance were still insufficient to achieve position tracking
due to the lack of accurate mathematical models describing the
dynamic effects Zhang et al. (2013). Other adaptive, robust and
optimal control algorithms could demonstrate ability to respect
the performance measures under high model uncertainties and
environmental disturbances Marino et al. (2014); Ma et al. (2017);
Meng et al. (2020).

In this work, an adaptive-nonlinear PID control algorithm is
proposed for trajectory tracking of microparticles. The proposed
controller allows the gains to be adjusted online in order to satisfy
the performance requirements at different operating conditions Das
and Sengupta (2018), Li and Yuan (2020). The A-NPID algorithm
has been used in the literature with various applications but to the
best of our knowledge it has never been tested with micro-sized
agents which exhibit high sensitivity to environmental variables
Liu et al. (2020); Rithirun et al. (2021). Moreover, the paramagnetic
microparticles employed in this research are magnetically driven in
a very small workspace adding an additional challenge due to the
water concave meniscus formed near the wall of the reservoir. The
proposed controller is investigated through conducting a complete
study that aims to ensure successful navigation and control of a
microparticle flowing in an open fluidic resvoir with virtual narrow
vessel-like channel and static obstacles. As such, in this study, we
achieve the following.

• Employing a path planning algorithm (i.e., Artificial Potential
Field) to generate a collision-free trajectory for the navigation
of the microparticle inside a virtual fluidic channel with static
obstacles.
• Deriving a mathematical model that describes the motion of
the microparticle when flowing in water under different types
of forces i.e., magnetic force and drag force.
• Development of a closed-loop control system based on
adaptive-nonlinear PID algorithm that allows for effective
trajectory tracking in presence of the environmental
disturbances and uncertainties.
• Evaluating the proposed motion control strategy
experimentally and by simulation.

The remainder of this article is organized as follows: Section 2
presents the description of the electromagnetic system and its
dynamic model derivation. Section 3 presents the development of
the Artificial Potential Field path planning algorithm. Section 4
presents the implementation of the adaptive-nonlinear PID
controller in addition to the simulation results. Section 5 presents
the experimental verification. Finally, section 6 concludes this article
and provides directions for future work.
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2 Materials and Methods

2.1 System description

The system consists mainly of four equally sized coils with
metal cores used to generate the magnetic field needed to move the
particle (see Figure 1). Each coil has 1,400 turns of 0.7 mm round
copper wire coated with enamel. The inner radius of the coil (ri)
is 10 mm, the outer radius (ro) is 19.8 mm, the length of the core
(lc) is 80 mm, and the axial length of the windings (lw) is 70 mm. A
schematic view of the coil is shown in Figure 2A. The coil cores are
made of ferromagnetic material i.e., low carbon steel with relative
permeability μr of around 100 Figure 2B. Many researchers in the
literature prefer employing electromagnets with air-core rather than
with ferromagnetic core to avoid the effect of magnetic hysteresis.
Air-core allows having a linear relation between the input current
to the coils and generated magnetic field. However, due the low
permeability of the air, the generated magnetic field is rather weak
whichmay restrict having a precisemotion control inside the human
body where the particle has to flow in blood-vessels with high
flow-rate. On the other side, although ferromagnetic cores have
high permeability allowing strong magnetic field, they cause the
relation between the input current and generated magnetic field to
be non-linear due to the magnetic hysteresis. It is expected that due
to the small workspace, the effect of the hysteresis will be at its
minimum. Moreover, the proposed adaptive non-linear controller
should be able to cope with such non-linear dynamics due the
hysteresis.

The average series resistance of each coil is measured to be
around 6 Ω. The dimensions of the fluidic reservoir are selected
to be 10 mm × 10 mm. However, the region of interest is about
3 mm × 3 mm to be viewable underneath the microscope, and
also to have less effect of the surface tension near the edges
of the reservoir. The microparticle is planned to be floating in
the water-to-air boundary layer (see Figure 2A). We are using
paramagnetic spherical microparticles, consisting of iron-oxide
in a poly(lactic acid) matrix (PLAParticles-M-redF-plain from
Micromod Partikeltechnologie GmbH, Rostock-Warnemuende,
Germany) with an average diameter of 100 μm. The employed
paramagnetic particle was selected over other types of ferromagnetic
microparticles tominimize the effect ofmagnetization and hystresis.
As known, paramagnetic materials become magnetized in a
magnetic field but their magnetism disappears when the field is
removed. On the other side, ferromagnetic materials can retain
their magnetic properties when the magnetic field is removed. The
particle motion is detected by a 1,000x digital microscopic camera
that is positioned properly above the target. The acquired images
are processed and the particle position is detected using the vision-
assistant toolbox of Labview. A computer-based control is adopted
to have the sufficient power of processing the acquired images
simultaneously with running the A-NPID control algorithm in real-
time. The input provided to the controller is the difference between
the current and desired position of the particle. The output of the
controllers is used to set the current through the coils.

In order to reduce the coupling effect between the coils, the
current direction in all coils should be the same. Having different
directions of the current showed that the coupling effect significantly
reduces the generated magnetic field.

FIGURE 1
Electromagnetic system for autonomous navigation and control of
microparticles. The setup consists of four lateral coils placed in a
symmetrical perpendicular configuration. A microscopic camera is
positioned properly above the workspace to detect the
particle position.

2.2 Motion equation

Microparticles move in the fluid under the influence of two
main forces; the external magnetic force, and drag force. Firstly, the
formula of each of these two forces are found. Then, the equation
that governs the motion of the particle is derived.

The magnetic force (Fm) exerted on a paramagnetic
microparticle can be calculated using the following
equation Mathieu and Martel (2010):

Fm = ∇ (m ⋅B) (1)

where m is the magnetic moment of the particle and B is the
applied magnetic field. For a paramagnetic microparticle, m can be
expressed as,

m =
χm
μ
VpB (2)

where Vp is the volume of the particle, χm is the magnetic
susceptibility constant McNeil et al. (1995) [χm = 0.17 for our
magnetic microparticle Khalil et al. (2012b)], and μ is the
permeability coefficient given by μ0 (1+ χm). Furthermore, μ0 is
the permeability of vacuum (μ0 = 4π× 10

−7T.m/A). Assuming the
particle has a perfect spherical shape with a radius rp, then Vp =
4
3
πr3p. By substitute in Equation 2 yields

m = 4
3
πr3p

χm
μ0 (1+ χm)

B (3)
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FIGURE 2
Schematic of the employed electromagnetic coil showing its dimensions and number of turns. (A) The microparticle is allowed to move within a
workspace of 10 × 10 mm yet the region of interest is only about 3 × 3 mm. (B) A cross-section view of the coil shows number of turns in lateral and
axial directions.

Combining Equation 1 and Equation 3 results in:

Fm =
4
3
πr3p

χm
μ0 (1+ χm)

∇(B2) (4)

The magnetic field B is linearly proportional to the applied current
I. If we consider the contribution of a single electromagnet
on the particle assuming the magnetic field has only one
component in the axial direction of the coil, then the magnetic
field can be expressed as following:

B = (Bx) x̂ = B̃I (5)

where Bx is the x-component of the magnetic field i.e. the axial
direction of the coil, B̃ is a one-dimensional vector with amagnitude
that depends on the distance at which themagnetic field ismeasured

and I is a scalar value of the applied current.Therefore, ∇(B2) can be
computed using the magnetic field gradient as follows:

∇(B2) = ∂B̃
2

∂x
I2 (6)

Substituting Equation 6 in Equation 4 yields

Fm =
4
3
πr3p

χm
μ0 (1+ χm)

∂B̃2

∂x
I2 (7)

Assuming the windings of our coil are perfectly stacked, the field-
current relation can be theoretically found by the following formula:

B =(
μ0μr
2

m

∑
i=1

n

∑
j=1

(rs + j∗ dw)
2

((rs + j∗ dw)
2 + (x+ i∗ dw)

2)
3
2

) I (8)
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FIGURE 3
(A) The magnetic field B generated by the coil in the axial direction due to the flowing of DC current of 0.8 A. (B) The gradient of the magnetic field
∇(B). (C) The gradient of the magnetic field squared ∇(B2).

where x is the distance from the side of the coil to a point on the
axis, rs is the radius of the smallest winding on the axis and dw
is the diameter of the wire Figure 2B. The iterator j represents the
number of windings in the radial direction and iterator i represents
the number of windings in the axial direction. Figure 3A shows
the magnetic field B generated by the coil in the axial direction
due to the flowing of DC current of 0.8 A using the formula
of Equation 8. Figures 3B, C show the gradient of the magnetic
field ∇(B) and the gradient of the magnetic field squared ∇(B2)
respectively.

The term multiplied by the current I in Equation 8 is equivalent
to B̃ in Equation 5. This term is firstly used to find ∂B̃2

∂x
at different

values of x. Then, the obtained results are imported into the curve
fitting tool box of MATLAB to be represented by an equivalent
polynomial. A satisfactory representation could be achieved by a 3rd
order polynomial (see Equation 9). Figure 4 shows the result of the
curve fitting operation.

̃f(x) = ∂B̃
2

∂x
= −17.15x3 + 1264x2 − 31360x+ 267100 (9)

Substituting Equation 9 in Equation 7 yields

Fm =
4
3
πr3p

χm
μ0 (1+ χm)

̃f(x)I2 (10)

It can be shown from Equation 10 that the generated force is
a function of the microparticle size and geometry, the distance
between the particle and the coil, and the applied current. The
force current map Equation 10 is used to determine whether the
generated magnetic force would overcome the viscous drag force
(Fd) generated due to the motion of the microparticle inside the
fluid. In order to determine the drag force on the particle, we firstly
determine the Reynolds number, Equation 11

Re =
2ρvrp
η

(11)

where v, η and ρ are the microparticle velocity, fluid dynamic
viscosity (1 mPa.s) and density (998.2 kg/m3), respectively.
Assuming that vwill not exceed 1 mm/s, Reynolds number turns out
to be less than 0.1.Therefore, we can assume laminar flow condition
and use Stokes law to find the magnitude of the drag force (Fd),

Fd = 6πηrpv (12)

Following the derivation presented in Khalil et al. (2012b), the
motion equation of the microparticle can be given as following:

Fm − Fd =map, (13)
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FIGURE 4
The estimated gradient of the squared magnetic field in x direction is represented using a polynomial of third order system obtained from curve fitting

operation. ∂B̃
2

∂x
= − 17.15x3 + 1264x2 −31360x+267100

where m and ap are the mass and acceleration of the microparticle,
respectively. Substitute with Equation 10 and Equation 12 in
Equation 13, one obtains Equation 14:

4
3
πr3p

χm
μ0 (1+ χm)

f(x)I2 − 6πηrpv =map, (14)

2.3 Remarks

• The microparticle is assumed to be submerged in the
fluid whereas it is actually floating in the water-to-air
boundary layer.
• The study is conducted using an open fluidic reservoir
augmented with a virtual fluidic-channel with static obstacles
inspired from blood vessels with embolus. As such, the
dynamics associated with the navigation through real blood
vessels such as wall effects and non-Newtonian nonlinearities
are not considered in the derived model.
• A digital microscopic camera is employed in our lab
experiments to detect the microparticle position. However, in
real experiments, when the particle is used inside the human
body, specialized imaging systems have to be considered. This
may add substantial challenges for real-time localization but
that it is not in the scope of this work.

2.4 Path planning using artificial potential
field

This section presents the APF algorithm that generates an
obstacle-free path through which the microparticle can reach its
destination without collision with the surrounding environment.
The microparticle is represented as a point moving under the
influence of an attractive potential field generated by the goal and
repulsive potential field generated by the obstacles. The direction of
the motion of the particle is decided based on the negative gradient

of the generated global potential field.The resultant force that drives
the particle will be the additive sum of all forces existed due to the
gradient of the potential fields. In our case, the particle is assumed to
be navigating inside a virtual fluidic channel with a set of obstacles
inspired from blood vessels with embolus as shown in Figures 5,
6. To avoid the singularity associated with the canonical form, the
attractive potential field of the goal is represented by the quadratic
form in Equation 15:

Uatt (p) =
1
2
ξd(p,pgoal)

2 (15)

whereUatt(p) is the attractive potential field of the goal, ξ is a positive
scaling factor that modulates the strength of the attractive field, and
d(p,pgoal) is the euclidean distance between the current position of
the particle p and its final destination pgoal . The euclidean distance
can be estimated using Equation 16:

d(p,pgoal) = ‖p− pgoal‖ = √(x− xgoal)
2 + (y− ygoal)

2 (16)

where x, y are the coordinates of the current position of the particle
p, and xgoal, ygoal are the coordinates of the goal position pgoal. The
attractive force acting on the particle can be obtained by finding the
gradient of the attractive potential field as following in Equation 17:

Fatt (p) = ∇Uatt (p) = ξ(p− pgoal) = ξ[
x− xgoal
y− ygoal
] (17)

On the other side, the repulsive potential field that represents
the obstacles can be estimated using the following formula of
Equation 18:

Urep (p) =
{{
{{
{

1
2
η( 1

D (p)
− 1
Q∗
)
2
, D (p) ≤ Q∗

0, D (p) > Q∗
(18)

where Urep(p) is the repulsive potential field of the obstacles, η is a
scaling factor,D(p) the distance between the particle and the closest
sensed point on the obstacle, and Q∗ is the radius of influence of
the obstacle i.e., the distance from which the robot begins to feel
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the presence of the repulsive potential. The repulsive force acting on
the particle can be obtained by finding the gradient of the repulsive
potential field as following in Equation 19:

Frep (p) =
{{
{{
{

η( 1
Q∗
− 1
D (p)
)
∇D (p)
D(p)2
, D (p) ≤ Q∗

0, D (p) > Q∗
(19)

The total potential field under which the particle is moving can
be obtained by summing the attractive potential of the goal and
repulsive potential of the obstacles as following in Equation 20:

Utot (p) = Uatt (p) +Urep (p) (20)

In our case, the equation of the total potential field has to take
into consideration the multiple repulsive potentials due to the three
circular obstacles and two edges. The new equation of the total
potential can be formulated as following in Equation 21:

Utot (p) = Uatt (p) +
n

∑
i=1

Urepi (p) +
h

∑
j=1

Uedgesj (p) (21)

where n is the number of obstacles i.e., n = 3, and h is the number of
edges i.e., h = 2.Themotion of the particle should be in the direction
of the negative gradient of the total potential field towards the lower
energy configuration. A simple way to generate the intended path
of the particle in the global potential field is the gradient descent
method as described by the following equation:

xnew = xold − α ⋅
∂Utot (p)

∂x
|xold ,

ynew = yold − α ⋅
∂Utot (p)

∂y
|yold

(22)

where xnew and ynew are the path coordinates in the new iteration,
while xold and yold are the path coordinates of the previous iteration,
and α is the step size between the iterations. The algorithm of
Equation 22will run inside awhile-loop until the difference between
the new coordinates of the path and the coordinates of the goal is
less than or equal a certain threshold ‖xnew − xgoal‖ ≤ threshold and
‖ynew − ygoal‖ ≤ threshold. Figure 6C shows the generated path from
the initial position of the particle to final destination while avoiding
the collision with the virtual obstacles or edges of the augmented
fluidic channel.

2.5 Motion control

Model Reference Adaptive Controller (MRAC) acts as a servo
system with desired performance expressed in form of a reference
model. In this work, the NPID control parameters will be adjusted
online using the model reference adaptive technique Valluru et al.
(2018); Gambier and Yunazwin Nazaruddin (2018); Sirsode et al.
(2019). Figure 7 shows the block diagram of the whole system in
presence of the proposed control scheme. The reference model is
designed such that its output satisfies the performance requirements
of our system. In real time, the difference between the ideal output
of the reference model and the actual output of the system is sent
to an adjustment mechanism that calculates the new gains of the
NPID controller as described hereafter, Shamseldin et al. (2022);

FIGURE 5
This blood vessel with embolus inspired us to assume a virtual fluidic
channel with static obstacles augmented with the open fluidic
reservoir as a working environment. (A) A vessel with embolus that can
block or affect blood circulation. Such an embolus has to be avoided
by microparticle when flowing through the blood-vessel. (B) For
autonomous control, a path planning algorithm is used to generate an
obstacle-free trajectory to be tracked by the microparticle Clinic, 2021.

Shamseldin (2023a); Shamseldin (2023b).The proposed form of the
NPID control scheme is given by Equation 23 as following:

u (t) = (kp + τn1 ⁢ (e)) ⁢ [e (t)] + (ki + τn2 ⁢ (e)) ⋅ ∫
t

0
[e (t)] ⁢dt

+ (kd + τn3 ⁢ (e)) ⋅ [
de (t)
dt
] (23)

where kp, ki and kd are the proportional, integral and derivative
gains of the linear terms of the control law Equation 23 respectively.
As depicted in Figure 7, the linear gains are estimated directly by
the adjustment mechanism and sent to the NPID controller. τn1(e),
τn2(e) and τn3(e) are the nonlinear parts of the control law. Each of
these non-linear terms is a nonlinear function of two variables; the
first variable is the error e between the reference and actual signal,
and the second variable is a weight wi estimated by the adjustment
mechanism (see Figure 7). Among several functions in the literature,
the following form was selected for its simplicity to estimate the
non-linear terms of the control law:

τni =
exp(wi ⋅ e) + exp(−wi ⋅ e)

2
(24)

Therefore, the adaptive control law Equation 23 has six adaptation
gains that have to be continuously estimated using the adjustment
mechanism namely kp, ki, kd, τn1(e), τn2(e) and τn3(e). One possible
approach to adjust the gains of the model-reference adaptive control
law is to follow theMIT rule Astrom andWittenmark (1994). In this
approach, the parameters are adjusted in such a way that the loss
function Equation 25 is minimized.

J (θ) = 1
2
em

2 (25)

where J is the loss function that we try to minimize, θ is the
adaptation parameter, and em is the error between the output y of the
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FIGURE 6
The virtual fluidic channel is represented by a field of attractive and repulsive forces using artificial potential field algorithm. (A) Graph of the repulsive
potential field. (B) 2D view of the fluidic channel and blood clots i.e., obstacles. (C) The generated collision-free path from the initial position to final
destination of the particle.

closed-loop system and the output ym of the reference model that
represents the desired closed-loop response. To make J small, it is
reasonable to change the parameter in the direction of the negative
gradient of J, that is,

dθ
dt
= −γ ∂J

∂θ
= −γem

∂em
∂θ

(26)

where γ is a constant assumed by the designer or estimated using
an optimization algorithm. When there are many parameters to
adjust as in our case i.e. six adaptation parameters, Equation 26
has to be repetitively applied after replacing θ with the parameter
of our interest. In this study, the constant γ of the derived
adaptation formulas is found using a new effective optimization
technique namely COVID-19 Shamseldin (2021). To continue with
the derivation of Equation 26, the systemmodel and referencemodel
will be formulated in form of a first order transfer function. For the
system model, Equation 14 can be represented as following:

a ⋅ bF (s) − cV (s) =msV (s) , (27)

where a = 4
3
πr3p

χm
μ0(1+χm)

, b = 0.28× 105mT2/m is the average value
of f(x) at the middle of the reservoir when x = 15mm; note that
this approximation is made because the workspace of the particle is

assumed to be within a few millimetres from the centre where there
is nomuch change in the value of f(x). F(s) is the input function and
approximated as F(s) = I, c = 6πηrp, and V(s) is the velocity of the
particle. Here is the transfer function representation of Equation 27
shown in Equation 28:

TFs (s) =
V (s)
F (s)
= ab
c+ms
=

ab
c

m
c
s+ 1
= K
Ts+ 1
, (28)

where ab
c
is the dc gain of the transfer function, while m

c
is the time

constant of the system. On the other side, the model reference is
represented by the following first order transfer where the dc gain
Km and time constant Tm are assumed such that the response of
the model reference is satisfying the requirements of the particle
tracking, Equation 29.

TFm (s) =
Km

Tms+ 1
, (29)

The error em between the output y of the closed-loop system and the
output ym of the referencemodel can be estimated as following using
Equation 30:

em = y− ym, (30)
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FIGURE 7
Block diagram of the proposed adaptive nonlinear PID control system. The gains of the A-NPID controller are continuously adjusted by the adaptation
mechanism. The equations and parameters of the adaptation mechanism are estimated based on the performance requirements represented by the
reference model.

Tofind the derivative of the adaptation gain kp based onEquation 26,
the partial derivative of the error em with respect to kp is
firstly found, Equation 31

∂em
∂kp
= K2e
Tms+ 1

(31)

Following Equation 26, the derivative of the adaptation gain
kp is given by,

dkp
dt
= −γ1em

K2e
Tms+ 1
, (32)

Similarly, we can find the adaptation gains ki and kd,

dki
dt
= −γ2em

1
s

K2e
Tms+ 1
, (33)

dkd
dt
= −γ3ems

K2e
Tms+ 1
, (34)

The adaptation weights wi of the non-linear terms Equation 24
can be also found in the same way like the adaptation gains
Equations 32–34. However, the results showed that even with fixed
values for the weights, a satisfactory performance can be achieved.
As such, the values of w1, w2, and w3 will be estimated once along
with the three constants γ1, γ2, and γ3 using the optimization
algorithm.

3 Results

3.1 Simulation results

Figure 8 shows the simulation results in which the tracking
performance of the microparticle is evaluated. Three tests are

conducted at different sets of gains and different sampling rates of
the reference data which in turn affects the average velocity of the
particle. The collision-free path generated by the artificial potential
field planning algorithm in Section 2.3 is used as a reference
trajectory. The gains of two tests were selected randomly and then
tuned manually. While the gains of the third test were obtained
using an optimization algorithm. Figure 8A shows that when the
particle ismoving fast with an average velocity of 1 mm/s neither the
position tracking nor the steady-state error are satisfying. Figure 8D
shows the particle tracking in the first test in x-axis and y-axis
where the integral of squared error (ISE) between the reference and
actual trajectory in x-axis is 0.21 mm2 ⋅ s while the ISE between the
reference and actual trajectory in y-axis is 0.31 mm2 ⋅ s. However, at
the same gains of the first test (see Figure 8A) if the sampling rate
is reduced causing the average velocity of the particle to be lesss,
the performance can be significantly enhanced. Figure 8B shows the
position tracking when the average velocity is 250μm/s. It shows
that due to the reduced average velocity, tracking was improved and
the steady state error was less as well. Figure 8E shows the particle
tracking in the second test in x-axis and y-axis where the integral
of squared error (ISE) between the reference and actual trajectory
in x-axis is 0.28 mm2 ⋅ s while the ISE between the reference and
actual trajectory in y-axis is 0.21 mm2 ⋅ s. As expected the ISE in
the second test is less than the ISE in the first test taking into
consideration that the period of the second test is four times longer
than the period of the first test. Figure 8C shows the result of
the third test where the gains were obtained using the COVID-
19 optimization algorithm. The microparticle could perfectly track
the reference trajectory without significant deviation. In addition,
the particle could reach its final position with minimal steady-
state error. Figure 8F shows the particle tracking in the third test in
x-axis and y-axis where the integral of squared error (ISE) between
the reference and actual trajectory in x-axis and y-axis is nearly zero
(about 4e−04 mm2 ⋅ s).
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FIGURE 8
The simulation results show successful navigation of microparticle at different sets of controller parameters. The performance is highly improved when
the parameters are estimated using an optimization technique: (A), (D) The parameters in this case are selected by trial and error. The time graphs of the
x and y positions are created such that the average velocity of the microparticle is 1 mm/s. (B), (E) The parameters in this case are selected by trial and
error but the average velocity was reduced to 250 μm/s which considerably enhanced the performance. (C), (F) The parameters in this case are selected
by an optimization technique which allowed the particle to perfectly track the reference trajectory while moving with an average velocity of 250 μm/s.

3.2 Experimental Validation

The experimental setup consists of four identical
electromagnetic coils placed in x-y plane. In order to reduce the
coupling effect between the coils, the current direction in all coils
should be the same. Having different directions of the current
showed that the coupling could significantly reduce the generated
magnetic field. Each coil has 1,400 turns of 0.7 mm round copper
wire coated with enamel. The inner radius of the coil (ri) is 10 mm,
the outer radius (ro) is 19.8 mm, the length of the core (lc) is 80 mm,
and the axial length of the windings (lw) is 70 mm.The coil cores are
made of ferromagnetic material i.e., low carbon steel with relative
permeability μr of around 100. The four coils are driven by two 2-
channels drivers of L298N model that allows maximum current of
2A as shown in Figure 9. A PC based control strategy is adopted
and the control algorithm is developed as a VI in the LABVIEW
environment. The PC used in the experiments has intel processor
of Core i7 - 8th generation. The particle position is detected using
a microscopic camera with up to 1,000x magnification level. The

camera was firstly calibrated to find a relation between the image
pixels and real dimensions in mm. The readings of the camera are
sent to the PC via USB connection with sampling rate between 25
and 30 frames per second. An arduino board of type UNO is used as
an interface between the computer and drivers. For this purpose, an
interface library was firstly to the labview to allow communication
with arduino toolkit. Figure 10 shows the flowchart of the control
algorithm as it starts by acquiring a new frame from the camera
and then image processing is applied to detect the position of the
microparticle. The A-NPID controller compares the actual position
of the particle with the reference trajectory obtained from the path
planning algorithm of artificial potential field. The control signal is
sent to the drivers through the arduino board to actuate the particle
accordingly with the electromagnets. The particle is continuously
tracked by the microscopic camera and the loop is repeated until
reaching the targeted goal.

On the right hand side of Figure 10, there exist another flowchart
about the steps of the process of the image processing. After defining
the region of interest (ROI), the acquired RGB image is converted
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FIGURE 9
The experimental setup shown in (A) has been used to test the proposed A-NPID controller practically. The setup consists of a set of electromagnets, a
microscopic camera, two 2-channels drivers,a power supply, an arduino board and PC running a labview VI representing the proposed controller. The
arduino board is used as a data acquisition card to send the control signals to the motor drivers. (B) The microscopic camera is positioned properly
over the target. (C) The microparticle is magnified while flowing on the surface of the water in the reservoir.

into a greyscale image. In the second step, a threshold value is
used to get a binary image where the contrast between the particle
and background is clear. In the third step the tiny objects that has
smaller diameters than the particle are removed along with the
shadows near the edges of the image. In the fourth step, the outer
circumference of the particle is recognized as a circle.Then, its radius
is estimated in pixels and compared with the previously known
diameter of 100 μm.This process is used to calibrate themicroscopic
camera and find a relation between the pixels of the acquired images
and real dimensions in mm. In the final step, the centroid of the
particle is determined and sent to the controller as the measured
position of the particle. Figure 11 shows the different operations

applied on the image of the particle.The proposed ANPID control
algorithmwas verified experimentally as well. Figure 12 shows some
selected frames of the microparticle while following the reference
trajectory. Three tests were conducted at three different average
velocities. The results showed that the ANPID control algorithm is
capable to achieve successful tracking in all cases as themicroparticle
could navigate without the collision with any of the obstacles till
reaching the final destination. However, the results show that the
average velocity of the particle has significant effect on the tracking
performance. For instance, in Figure 13A the particle could track the
reference trajectory and reach its goal but with multiple deviation
from the reference due to the relatively high average velocity of
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FIGURE 10
The flowchart on the left-hand side represents the closed loop control system. The controller receives the required and current positions of the
particle from the path-planning algorithm and microscopic camera respectively. A control action is taken by the A-NPID and sent to the coils to
actuate the particle. The flowchart on the right-hand side represents the operations applied on the image acquired from the microscopic camera to
detect the particle position.

FIGURE 11
The image acquired from the microscopic camera is processed to detect the particle position. Firstly, the RGB image is converted into a greyscale
image. Secondly, a threshold is used to obtain a binary image showing the particle on a black background. Afterwards, the noise is removed and the
particle center is detected.

about 58 μm/s Figure 13D shows the particle tracking in the first
test in x-axis and y-axis where the ISE between the reference and
actual trajectory in x-axis is 0.43 mm2 ⋅ s while the ISE between the
reference and actual trajectory in y-axis is 0.56 mm2 ⋅ s. The test was
repeated at lower velocities and the results showed that the lower the
velocity the better the tracking when the same set of gains are used.
Figure 13B shows the tracking of the microparticle at an average
velocity of 44 μm/s where less deviation is observed compared to the

graph of Figure 13A. Figure 13E shows the particle tracking in the
second test in x-axis and y-axis where the ISE between the reference
and actual trajectory in x-axis is 0.53 mm2 ⋅ s while the ISE between
the reference and actual trajectory in y-axis is 0.4 mm2 ⋅ s.The result
of the third test is shown in Figure 13C where the average velocity
is about 35 μm/s. The tracking in this case was highly improved due
to the reduced velocity of the particle. Figure 13F shows the particle
tracking in the third test in x-axis and y-axis where the ISE between
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FIGURE 12
Selected frames from the real experiments augmented with the generated collision-free trajectory along with the virtual fluidic channel and obstacles.
The experiment shows successful navigation and arrival at the targeted position. In this example the average velocity of the microparticle is 35 μm/s.

FIGURE 13
The experimental results verify the ability of the proposed A-NPID controller to drive the microparticle along the required trajectory at different
operating conditions. Three tests were conducted at the same set of parameters but with different sampling rate. In all cases, the particle reached its
targeted position but deviation that depends on the desired average velocity. (A), (D) The particle is moving with an average velocity of 58 μm/s as
several overshoots were observed. (B), (E) The particle is moving slightly slower with an average velocity of 44 μm/s which led to performance
enhancement. (C), (F) The particle is moving with a reduced average velocity of 35 μm/s which further improved the tracking.
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FIGURE 14
A concave meniscus occurs when the molecules of the water are attracted to those of the container. The operating conditions changes from the
middle of the reservoir than the right side of the reservoir due to the inclination of the water surface.

FIGURE 15
The A-NPID controller allowed the microparticle to reach its targeted
position with minimal steady-state error even in presence of concave
meniscus. However, in case of using the PID controller in absence of
the adaptation terms, the particle could successfully track the
trajectory but failed to reach its final destination with minimal
steady-state error due to the sudden inclination of water surface.

the reference and actual trajectory in x-axis is 0.15 mm2 ⋅ s while
the ISE between the reference and actual trajectory in y-axis is 0.19
mm2 ⋅ s. The slight incease in ISE of the second test over the ISE of
the first test is due to conducting the experiment for longer time;
four times of the first experiment causing the accumulated squared
error to be slightly increased. However, the trend of all ISE values
shows the improvement in the performance.

The same tests were repeated in absence of the adaptive terms
of the A-NPID control law as only the PID gains were left. The
results showed that the PID controller allowed the particle to
track the reference trajectory with obstacles collision avoidance
but with significant deviation and steady state error. The reason
behind such a degradation in the performance is that the final
destination is near the edge of the reservoir where the surface
of the water is not as flat as in the middle of the reservoir.

Figure 14 depicts this phenomenon of concave meniscus which
takes place due to the surface tension and adhesion force between
the water and reservoir. Such a parabolic inclination represents
different environmental conditions that requires tuning the gains
of the controller. Since the linear PID control law has fixed gains,
the performance was degraded when the particle approached the
inclined surface. Figure 15 compares the performance of both
controllers, A-NPID and PID, in terms of steady state error. The
graph shows superiority ofA-NPIDdue to its adaptationmechanism
that allows the gains to be continuously adjusted in order to satisfy
the performance requirements represented by the model reference.
It is shown that at all operating conditions, the steady-state error was
as small as 4μm.This value changes slightly within the range of 2 or
3μm when the average velocity increases. On the other side, when
the PID is used the steady state error reached in the best case to about
150μm due to the nonlinear parabolic inclination near the edge of
the reservoir.

4 Discussion and conclusions

In this work, an adaptive nonlinear PID control scheme was
proposed for autonomous navigation and control of microparticles.
The proposed controller allowed the gains to be continuously
adjusted to cope with the varying operating conditions and to
satisfy the performance requirements. The results showed that
the A-NPID was able to drive the microparticle successfully to
follow a collision-free trajectory and reach its destination with
minimal steady-state error of about 4μm. A slight increase in the
steady-state error of about 2 to 3μm and a degradation in the
tracking performancewas were observed when the required average
velocity of the microparticle increased. The reference trajectory was
generated using the artificial potential field algorithm.The proposed
A-NPID was put in comparison with the traditional PID controller
where a degradation in the performance in terms of steady-state
error was observed when the adaptive term was not used. The
reason was that the PID gains could not behave efficiently at all
operating points specially when the targeted position is placed
near a concave meniscus. In this work, a complete study was
presented. Firstly, the mathematical model of the electromagnetic
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system was derived.Then, the artificial potential field path planning
algorithm was used to generate a collision-free trajectory through
an open fluidic reservoir with virtual static obstacles. The generated
trajectory was used as a reference signal to the control system. The
derived mathematical model was then used to design the control
system and find the corresponding gains. All the results were verified
experimentally and by simulation.

5 Future work

In future studies, the motion control presented in this paper
will be put in comparison with other advanced control algorithms
such as Model Predictive Control (MPC), Fuzzy Logic Control,
or Reinforcement Learning-based controllers. This would highlight
the relative strengths and weaknesses of the proposed approach.
In addition, exploring adaptive mechanisms to further tune the
controller parameters in real-time based on the changing dynamics
of the environment should be considered. It is also necessary to
employ a variety of test scenarios formore comprehensive evaluation
of the proposed controller’s robustness.
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