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Recently, research on human-robot communication attracts many researchers.
We believe that music is one of the important channel between human
and robot, because it can convey emotional information. In this research,
we focus on the violin performance by a robot. Building a system capable
of determining performance from a musical score will leads to better
understanding communication throughmusic. In this study, we aim to develop a
system that can automatically determine bowing parameters, such as bow speed
and bowing direction, frommusical scores for a violin-playing robot to produce
expressive sounds using reinforcement learning. We adopted Q-learning and ε-
greedy methods. In addition, we utilized a neural network to approximate the
value function. Our system uses a musical score that incorporates the sound
pressure value of each note to determine the bowing speed and direction. This
study introduces the design of this system. It also presents simulation results on
the differences in bowing parameters caused by changes in learning conditions
and sound-pressure values. Regarding learning conditions, the learning rate,
discount rate, search rate, and the number of units in the hidden layer in the
neural network were changed in the simulation. We used the last two bars of
the score and the entire four bars in the first phrase of “Go Tell Aunt Rhody.”
We determined the number of units in each layer and conducted simulations.
Additionally, we conducted an analysis by adjusting the target sound pressure
for each note in the score. As a result, negative rewards decreased and positive
rewards increased. Consequently, even with changes in target sound pressure
in both the last two bars and the entire four bars, the violin-playing robot
can automatically play from the score by improving reinforcement learning. It
has become clear that achieving an expressive performance using this method
is possible.

KEYWORDS

reinforcement learning, humanoid, violin-playing robot, hidden layer, target sound
pressure, total-reward
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1 Introduction

1.1 Unique trends in this research

Communications research has become increasingly active
worldwide in recent years. Robots are being developed and used
to enable communication between humans and other robots.
Examples include industrial robots working in factories, nursing
care robots working in hospitals and elderly care facilities, robots
that communicate directly with humans through voice, and robots
that play musical instruments. These robots can move in ways
similar to humans and animals, performing tasks that humans
cannot do. Consequently, they have the potential to collaborate and
communicate with humans, supporting and enriching people’s lives
in various ways.

Research on robots playing musical instruments has been
ongoing for a long time. For example, there are organ-playing
robots by Kato et al. (1987), MUBOT by Kajitani (1989), guitar-
playing robots (Sobh et al., 2003), bagpipe-playing robots (Solis
and Ng, 2011), marimba-playing robots (Bretan and Weinberg,
2019), performance robots (Petersen et al., 2010), and saxophone
performance robots (Lin et al., 2019), which have become popular.
In addition, organ-playing robots (Sugano et al., 1986) have been
studied using algorithms that automatically determine performance
movements based on musical scores. This study focuses on violins,
whose sounds are determined by bowing.

Regarding violin-playing robots, (Kuwabara et al., 2006), and
(Min et al., 2013) developed mechanisms and control systems for
robot arms and hands. In addition, Toyota Motor Corporation
developed a humanoid violin-playing robot (Kusuda, 2008), but
no academic research has been conducted on it. This study aims
to construct a process for determining playing movements from
musical scores as academic research using a violin-playing robot that
operates with two humanoid arms (Shibuya et al., 2020a).

Shibuya et al. (2020b) constructed an algorithm to determine
the performance motion based on data obtained by analyzing the
parameters of bow movement when producing a tone based on
the performance of a human violinist. However, this approach
applies only to a specific piece of music and not to various
pieces, necessitating changes in performance design each time
the piece of music changes. Therefore, to improve efficiency,
we aim to generate performance sounds according to the target
sound pressure using a value function approximation with a
reinforcement learning neural network and automate bowing
decisions (Shibuya et al., 2020a; Shibuya et al., 2022).

In Shibuya et al. (2020a), only the discount rate γwas considered,
whereas in Shibuya et al. (2022), both the discount rate γ and
the search rate ε were considered. However, in both studies
(Shibuya et al., 2020a; Shibuya et al., 2022b), differences in bowing
parameters owing to changes in themaximum andminimum values
of the reward, the number of bars in the score, number of units in
the hidden layer (middle layer), and target soundpressure valuewere
not considered. Therefore, in this study, we used the analysis results
to examine the differences in bowing parameters owing to changes
in the maximum and minimum reward values, number of bars in
the score, number of units in the hidden layer (middle layer), and
target sound pressure value. This approach aimed to address these
variations effectively.

FIGURE 1
Violin-playing robot.

1.2 Violin-playing robot

Figure 1 shows the violin-playing robot that is the subject of
this study.

This robot is a humanoid dual-armed robot that has joints with
7 degrees of freedom in both arms and is driven by DC motors.
The violin performance of this robot consists of bowing with the
right arm, fingering with the left hand, and holding the instrument.
Furthermore, the bow movement of the right arm can be divided
into bow speed, bow pressure, sounding point, and direction of bow
movement, as shown in Figure 2.

1.3 Performance movement plan

It is possible to design the bow speed and bowing direction
according to the designated sound pressure without reinforcement
learning. However, when including other parameters such as
the bow force, fingering, or use of different musical pieces, the
complexity of the performance design is greatly increase. In our
system, we used reinforcement learning to avoid such issues.

We aim to develop a robot that can automatically determine
performance actions based on the piece being played, similar to a
human violinist, to achieve an expressive performance. Moreover,
we aim to design a robots that can effectively communicate with
people through music.

Regarding the motion generation system and its determination
of performance motions, we discuss how generated performances
differ depending on performance skill, the impact on the
sound and audience, and the ability to perform musically
regardless of circumstances. These decisions are made from the
perspective of the specialized content of mechanical systems
engineering.

From the perspective of playing techniques, themain actions are
“bowing with the right arm” and “fingering with the left hand.” The
ability to adjust bow speed (the speed atwhich the bow is played) and
bow pressure (the force applied to the bow string) varies depending
on the performer. In addition, during left-hand fingering, the ability

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2024.1439629
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Horigome and Shibuya 10.3389/frobt.2024.1439629

FIGURE 2
Parameters of right arm bowing in violin performance.

to adjust the force of the fingers when pressing the strings and the
accuracy of the pitch also differ depending on the performer. Based
on this premise, when generating motions for a short and simple
musical score, we can determine how different the performance
motions are depending on the bowing and fingering conditions and
whether the performance is musical based on the evaluation of the
performance sound.

Given that the main body of the violin-playing
robot, shown in Figure 1, has been completed as hardware, future
work will adopt reinforcement learning to quickly respond to
specified sound conditions by adjusting the strength, volume,
and other characteristics of the sound. We will develop a system
that determines the movement of the bow using the robot’s right
arm and improve the system so that the robot can automatically
determine the performance motion from the musical score. Simply
improving the robot’s hardware has its limitations in determining the
robot’s performancemovements frommusical score data.Therefore,
reinforcement learning (a part of machine learning) has been
adopted to maximize the total reward.

Rhythm, tone, and note length are also important parameters
that should be considered. However, in this study, we focus only
on sound pressure for the sake of simplicity. We hypothesize that
by following the sound pressure levels of a human violinist, a more
human-like performance will be achieved.

2 Methods

2.1 General explanation of Q-learning

In this section, we briefly explain the concept of Q-learning.
In the following discussion, let t be the episode (number of trials).
First, the agent (machine itself) receives the state St, information
about the environment (surroundings), and generates the existing
value V. Immediately after the agent performs action at, which
is decided by the agent based on the existing value V, the agent
obtains reward rt+1, thereby updating the new value V from the
existing value V. This task is repeated for the designated number
of trials while maximizing the cumulative reward (total reward).

Based on this framework, the Q value is calculated according
to Equation 1.

Q(St ,at) = Q(St ,at) + α(rt+1 + γ ·maxQ(St+1,at+1) −Q(St ,at))
(1)

Here, Q(St,at) calculates the Q value, which is used to measure
the optimality of the action selection of the robot; α is the learning
rate, which is used to adjust the learning speed; and γ is the
discount rate, which is used to determine the present value of future
rewards. In addition, the ε-greedy method is used as a strategy
to obtain the Q value. The ε-greedy method is used to randomly
select an action from all actions with probability 1− ε and select
a high-value action with the remaining probability ε. The larger
the probability ε, the higher the probability that the machine itself
will explore an action. Conversely, the smaller the probability ε,
the higher the probability that the machine itself will increase the
value of the action. In Equation 1, the sum of the product of the
maximum state-action value of the next episode and the discount
rate is determined, and the reward is defined as the revenue. As the
calculation progresses, the error between the revenue and the state-
action value of the previous episode approaches zero. The learning
momentum ismeasured using the learning rate, and the state-action
value is updated.

2.2 Reinforcement learning for a
violin-playing robot

Unlike supervised and unsupervised learning, reinforcement
learning does not require data to be input to the robot, and the robot
can output data by taking an action while automatically acquiring
data. Q-learning is a form of reinforcement learning, and unlike
dynamic programming, it does not require a completemodelwith prior
knowledgeof the environment.Learningcanproceedbyapproximating
the value function via experience gained from state-action interactions.
In addition, unlike the actor-critic method, it can update the value of
both the state and action simultaneously. Furthermore, unlike the Sarsa
method, it can select the action with the greatest value in the next state.
Therefore, we used Q-learning in the proposed system.
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FIGURE 3
Value function approximation in reinforcement learning neural networks.

FIGURE 4
Musical score used for analysis.

In this study, we used reinforcement learning to determine the
performance motions of a violin-playing robot. For state S, the
coordinates of the hand were set to S1 [mm], sound length was set
to S2 [s], and target sound pressure was set to S3 [dB]. For action
a, the bow speed was set to a1 [mm/s], and the direction of the
bow movement was set to a2. As shown in Figure 3, we adopted
Q-learning and ε-greedy method. The state S and action a were
the input, the value function approximation was performed by Q-
learning in a neural network via a hidden layer, and the Q-value
was the output. Although a simple state-space model can be used,
if the score becomes long, the number of Q values that must be
set increases. Therefore, in this study, we decided to employ a value
function approximation using a neural network.

To determine the bow speed such that the output sound pressure
Vo approaches the target sound pressure Vi, it is necessary to derive
the relationship between the output sound pressure and bow speed.
This relationship is given by Equation 2, whereVo [dB] is the output
sound pressure and v [mm/s] is the bow speed.

Vo = −0.0015v
2 + 0.3286v + 57.704 (2)

In addition, the reward is given by Equation 3, where r is the
reward, k is a constant, Vi [dB] is the target sound pressure, and Vo
[dB] is the output sound pressure.

r = k
|V i −Vo|

(3)

Here, the value of the constant k is set to 1. If the bow motion
generation is successful, the upper limit of the reward r for one
note is set to 1. If the bow motion generation fails, r is set to −1,
regardless of Equation 3.

TABLE 1 Number of units in the hidden layer.

Order 1 2 3 4 5 6

h1 10 10 10 30 30 30

h2 5 10 15 25 30 35

We created a program code in C++ for the last two measures
and all four measures of the musical score shown in Figure 4,
and reinforcement learning analysis was performed with 300
performance trials. The numbers 1 to 20 shown in Figure 4 are
assigned to each note in order from left to right.

In the reinforcement learning parameters, we set the search rate
ε to 0.05, learning rate α to 0.5, and discount rate γ to 0.5. In previous
research, which used only one hidden layer, the number of units in
the hidden layer was set to 15. In this study, two hidden layers were
used, with the number of units h1 in the first hidden layer and h2 in
the second hidden layer changing based on Table 1.

As the number of hidden layers and their units increases,
the calculation time required to approximate the value function
increases significantly, and the time required for learning increases
accordingly. In some cases, the computational load may make
learning impossible. Therefore, the number of hidden layers was set
to two, and the number of units was limited to a maximum of 35.

We next consider the number of units. Specifically, when only
one hidden layer was used and the number of units was varied, it
was determined that 10 or 30 units is suitable for learning. Based on
this finding, the number of units used for two hidden layers was set
as shown in Table 1.
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TABLE 2 Target sound pressure values used for analysis.

Note number Previous research
[dB]

This research [dB]

1 67.74 66.74

2 73.14 67.00

3 76.00 67.14

4 68.78 67.78

5 66.97 67.97

6 74.77 68.36

7 75.36 68.77

8 69.04 68.99

9 75.99 69.30

10 71.30 70.04

11 72.06 70.06

12 66.54 70.54

13 73.56 71.56

14 74.00 71.00

15 72.60 70.00

16 69.87 69.87

17 72.00 68.00

18 67.79 67.79

19 73.97 66.97

20 66.56 66.56

For the target sound pressure of each note in the musical score
shown in Figure 4, previous research set sound pressure values
based on measurements from actual human violin performances.
We determined the target sound pressure level based on the
performance experiment reported in (Shibuya et al., 2020a), in
which a music college student majoring in violin participated. We
subtracted 11 dB from the human data to ensure that the robot
produced the target sound pressure. In this study, the sound pressure
was set to increase in the first half of the song and decrease in
the second half. This pattern is one of many variations in sound
pressure. Table 2 presents the target sound pressure of each note in
the previous and present studies.

3 Results

First, data were obtained by changing h1 to the number of
units in the first hidden layer and h2 to the number of units
in the second hidden layer, in the order presented in Table 1,

TABLE 3 Learning success rate and maximum positive reward in the
latter two measures of the score and two hidden layers.

h1 h2 Success rate [%] Maximum positive
reward

10 5 60.0 7.41

10 10 73.7 8.03

10 15 85.3 7.69

30 25 71.7 7.60

30 30 85.3 8.12

30 35 82.3 8.17

FIGURE 5
Correlation between episodes and total rewards when h1 = 10 and
h2 = 5 (2 bars).

FIGURE 6
Correlation between episodes and total rewards when h1 = 10 and
h2 = 10 (2 bars).

targeting the latter two measures of the score, as shown in Figure 4.
From this, we calculated the learning success rate and maximum
positive reward, as listed in Table 3. The learning success rate was
calculated as the percentage of positive reward values out of 300
reward values. In addition, the maximum positive reward value
was calculated using the highest positive reward value among the
300 reward values.
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FIGURE 7
Correlation between episodes and total rewards when h1 = 10 and
h2 = 15 (2 bars).

FIGURE 8
Correlation between episodes and total rewards when h1 = 30 and
h2 = 25 (2 bars).

From Table 3, it can be observed that the learning success rate
exceeds 80% when h1 = 10 and h2 = 15, h1 = 30 and h2 = 30, and
h1 = 30 and h2 = 35. Moreover, the learning success rate is highest
when h1 = 10 and h2 = 15 and h1 = 30 and h2 = 30, and themaximum
positive reward is highest when h1 = 30 and h2 = 35.

Figures 5–10 show the correlation between the episodes
(number of performance trials) and total rewards (sum of rewards
for each note in one episode).

From Figures 5, 6, 8, where h1 = 10 and h2 = 5, h1 = 10 and h2 =
10, or h1 = 30 and h2 = 25, it can be observed that in the latter half of
learning, the negative rewards representing failure continued while the
positive rewards representing success decreased and were minimized.

Conversely, from Figures 7, 9, 10, where h1 = 10 and h2 =
15, h1 = 30 and h2 = 30, or h1 = 30 and h2 = 35, it can be
observed that as the number of episodes increased, negative rewards
representing failure decreased while positive rewards representing
success increased and were maximized.

From the above, it became clear that, reinforcement learning is
effective when h1 = 10 and h2 = 15, h1 = 30 and h2 = 30, or h1 = 30
and h2 =35. In otherwords, it became clear that, as the violin-playing
robot succeeded in generating the bow motion, it was able to bring
the output sound pressure closer to the target sound pressure and
play the violin according to the target sound pressure.

FIGURE 9
Correlation between episodes and total rewards when h1 = 30 and
h2 = 30 (2 bars).

FIGURE 10
Correlation between episodes and total rewards when h1 = 30 and
h2 = 35 (2 bars).

TABLE 4 Learning success rate and maximum positive reward in the
entire four measures of the score and two hidden layers.

h1 h2 Success rate [%] Maximum positive
reward

10 15 70.3 15.9

30 30 76.7 16.0

30 35 71.3 15.7

Next, based on the results in Table 3 and Figures 5–10, data
were obtained by changing h1 to the number of units in the first
hidden layer and h2 to the number of units in the second hidden
layer only in the order of 3, 5, and 6 in Table 1, targeting the
entire four measures of the score shown in Figure 4. From this, we
calculated the learning success rate and maximum positive reward,
as summarized in Table 4.

From Table 4, you can observe that the highest values for
both the learning success rate and the maximum positive reward
were achieved when h1 = 30 and h2 = 30. This indicates that
throughout the 300 episodes, the negative rewards representing
failure were minimized while the positive rewards representing
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FIGURE 11
Correlation between episodes and total rewards when h1 = 10 and
h2 = 15 (4 bars).

FIGURE 12
Correlation between episodes and total rewards when h1 = 30 and
h2 = 30 (4 bars).

FIGURE 13
Correlation between episodes and total rewards when h1 = 30 and
h2 = 35 (4 bars).

success were maximized. Simultaneously, the maximum positive
reward representing success reached its highest value.

Figures 11–13 show the correlation between the episodes
(number of performance trials) and total rewards (sum of rewards
for each note in one episode).

FIGURE 14
Correlation between episodes and total rewards after changing target
sound pressure (2 bars).

FIGURE 15
Correlation between episodes and total rewards after changing target
sound pressure (4 bars).

From Figure 11, we can observe that the positive rewards,
representing success, decreased in the latter half of the learning
process when h1 the number of units in the first hidden layer, and
h2, the number of units in the second hidden layer, were set to h1 =
10 and h2 = 15.

From Figure 12, it is evident that the positive rewards increased,
and the range of increase was wide in the early stages of learning
when h1 and h2 were set to h1 = 30 and h2 = 30.

From Figure 13, we can see that the positive rewards also
increased, but the range of increase was narrower in the early stages
of learning when h1 and h2 were set to h1 = 30 and h2 = 35.

From these observations, it became clear that reinforcement
learning is effective in both the latter two measures and the entire
four measures of the musical score shown in Figure 4 when h1 and
h2 were both set to 30. This means that as the violin-playing robot
succeeded in generating the bow motion, it was able to bring the
output sound pressure closer to the target sound pressure and play
the violin according to the target sound pressure.

Finally, with both h1 and h2 set to 30, we adjusted the target
sound pressure values for each note according to Table 2 for both the
latter twomeasures and the entire fourmeasures of themusical score
shown in Figure 4. Figures 14, 15 show the correlation between the
episodes (number of performance trials) and the cumulative reward
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FIGURE 16
Work flowchart.

(sum of rewards for each note in one episode) after changing the
target sound pressure values.

As shown in Figure 14, as the number of episodes increased, the
negative rewards representing failure gradually decreased, and the
positive rewards representing success gradually increased. Similarly,
as shown inFigure 15, as thenumberof episodes increased, thenegative
rewards representing failure were not continuous, and overall, the
positive rewards representing success gradually increased.

In Figure 14, the learning success rate was 86.3%,
and the maximum positive reward was 7.43. In addition,
as shown in Figure 15, the learning success rate was 88.0%, and
the maximum positive reward was 18.3.

From the above findings, it is clear that reinforcement learning was
effective even when the number of units in each layer was changed,
and the numerical value of the target sound pressure of each note in
the score was changed for both the latter two measures and the entire
four measures of the musical score, as shown in Figure 4. In other
words, it was evident that, as the violin-playing robot succeeded in
generatingthebowmotion,itwasabletobringtheoutputsoundpressure

closer to the target sound pressure and play the violin according to
the target sound pressure.

It should be noted that increasing the number of hidden units
does not necessarily result in a higher success rate. Therefore,
the number of hidden units used in this study was determined
to be appropriate, although the understanding of this relationship
remains unclear.

4 Conclusion

In this study, we examined the number of hidden layers, number
of units in each layer, and pattern of sound pressure changes in
a piece of music with the aim of enabling a violin-playing robot
to automate its playing movements based on musical scores. Using
reinforcement learning (Q-learning), we generated a neural network
and performed value-function approximation on the network. We
carried out the analysis according to the order in Figure 16 and the
flowchart in Figure 17.
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FIGURE 17
Flowchart for the C++ coding of the learning episode.

However, from a musical perspective, the discussion above is
limited to the scores shown in Figure 4. Therefore, in the future,
we will apply other musical scores (music pieces) in addition to
those shown in Figure 4, specify the bar range of the musical score
to be subjected to reinforcement learning, perform reinforcement
learning analysis (including simulations), and examine changes in
the correlation between episodes (number of performance trials)
and the total reward (sum of rewards for each note in one episode).

In addition, from the perspective of performance movement
when playing the violin, the bow movement of the right arm of the

violin-playing robot shown in Figure 1 is limited by the bow speed
and direction of bow movement. Therefore, in the future, we will
perform reinforcement learning analysis (simulation) that considers
not only the bow pressure and sounding point of the robot’s right
arm bowingmovement but also the fingering of the robot’s left hand.
It is necessary to examine the changes in the correlation between
episodes (number of performance trials) and total rewards (sum of
rewards for each note in one episode).

Furthermore, from the perspective of musical performance
planning, the discussion has been limited to the analysis
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(simulation) of reinforcement learning, and it remains unclear
whether reinforcement learning is possible when operating a violin-
playing robot on an actual machine.

For example, when generating sounds of the same pitch,
there are multiple ways to move the bow, such as “up bow” and
“down bow.” The question is whether a violin-playing robot can
simultaneously perform bow movement and sound generation,
automatically determine the playing motion from the musical score,
and play the violin as analyzed.

Therefore, in the future, it will be necessary to operate a violin-
playingrobotonanactualmachinetoperformreinforcement learning.
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