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Effective weedmanagement is a significant challenge in agronomic crops which
necessitates innovative solutions to reduce negative environmental impacts
and minimize crop damage. Traditional methods often rely on indiscriminate
herbicide application, which lacks precision and sustainability. To address this
critical need, this study demonstrated an AI-enabled robotic system, Weeding
robot, designed for targeted weed management. Palmer amaranth (Amaranthus
palmeri S. Watson) was selected as it is the most troublesome weed in Nebraska.
We developed the full stack (vision, hardware, software, robotic platform, and AI
model) for precision spraying using YOLOv7, a state-of-the-art object detection
deep learning technique. The Weeding robot achieved an average of 60.4%
precision and 62% recall in real-time weed identification and spot spraying with
the developed gantry-based sprayer system. The Weeding robot successfully
identified Palmer amaranth across diverse growth stages in controlled outdoor
conditions. This study demonstrates the potential of AI-enabled robotic systems
for targeted weed management, offering a more precise and sustainable
alternative to traditional herbicide application methods.

KEYWORDS

weed management, robotics and automation in agriculture, machine vision, artificial
intelligence, targeted spraying, real time, deep learning, YOLOv7

1 Introduction

With the anticipated global population increase exceeding 9.7 billion by 2050, the
need to increase food production by 102% is becoming increasingly significant (Fukase
and Martin, 2020). These unavoidable circumstances arise due to the upcoming challenges
of ensuring food security amidst an exploding population, highlighting the criticality
of addressing biotic constraints which hamper agricultural productivity. Among these
challenges, weeds, pathogens, and animal pests stand out as the major factors exerting
significant adverse impacts on crop cultivation across developed and developing nations
(Ghersa, 2013). Weeds are a major challenge to agricultural productivity, as they compete
with crops for vital resources, creating suitable environments for the growth of harmful
insects and pathogens. This dual impact poses a significant threat to crop health
and yields (Oerke, 2006). Furthermore, the unchecked spread of weeds disturbs native
ecosystems, placing indigenous flora and fauna at risk. This complex relationship between
weeds, agricultural systems, and ecological balance underscores the critical need for effective
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weed management strategies to safeguard agricultural sustainability
and biodiversity conservation.

Palmer amaranth (Amaranthus palmeri S. Watson), also known
as Palmer pigweed or careless weed, is an annual broadleaf weed
originating from the deserts in the southwest United States and
northern Mexico (Borgato, et al., 2024). This invasive weed has
spread rapidly across the United States, significantly impacting
various crops, including corn and soybeans, crucial to Nebraska’s
agricultural economy. It is ranked as the most troublesome
weed in corn, cotton, peanuts, sorghum, and soybean as surveys
conducted by the Weed Science Society of America (Van Wychen,
2020; Van Wychen, 2022). Palmer amaranth has unique biological
characteristics such as quick growth, higher seed production,
wider emergence window, dioecious reproduction, adaptability to
broader environmental conditions, and ability to evolve resistance
to multiple herbicides, which contributes to its aggressivity, rapid
dispersal, and troublesome nature (Borgato, et al., 2024; Ward et al.,
2013). It can grow two to three inches daily (USDA-NRCS, 2017).
It has an extended germination and emergence period, with
several cohorts emerging after planting the main crop, such as
corn and soybean (Jha and Norsworthy, 2009). This advantage of
multiple cohorts, coupled with its rapid growth, allows the Palmer
amaranth to outcompete most crops, leading to yield losses of up to
91% in corn (Massinga et al., 2001).

Conventional herbicide spraying practices frequently encounter
inefficiencies due to indiscriminate usage. For example, broadcast
applications waste herbicide by spraying at locations where
the weeds are not present. Building upon the achievements of
conventional herbicide application practices, our methodology
underscores the advantages of spot-spraying techniques to address
these challenges.Thewidespread adoption of chemical weed control
through herbicides revolutionized agriculture in many regions.This
led to the significant reduction of labor costs and dependence on
mechanical methods. However, over reliance on herbicides for weed
control led to the development of herbicide resistance in weeds.This
concern of weeds developing herbicide resistance poses the risk of
reverting farmers to tillage practices, and this shift jeopardizes the
advancements made in soil conservation through the adoption
of no-till farming methods (Clay, 2021). Instead of broadcast
application, our approach targets specific areas, where the weeds
are detected, maximizing efficacy while minimizing environmental
impact. In this study, by focusing on precision application, we
aim to optimize herbicide use, reduce wastage, and mitigate off-
target effects. Through this refined strategy, we seek to enhance
weed control practices, promoting sustainable agricultural systems
that balance efficacy with environmental protection. Research has
demonstrated that spot spraying technology can reduce herbicide
volume usage by 20%–60% compared to broadcast application
methods (Ball and Bennett, 2008; Fischer et al., 2020; Young et al.,
2008).The spot-spraying techniques have the potential to slow down
the development of herbicide-resistance in weeds (Genna et al.,
2021). The augmentation of precise weed mapping and species
identification methodologies has enhanced the ability to identify
and manage invasive species more effectively, promoting enhanced
biodiversity and ecosystem health. Moreover, this strategic
application increases farmer productivity while mitigating human
and environmental exposure to harmful chemicals.

Agricultural robots show potential in implementing intelligent
weed management strategies, which could lead to improved
efficiencies and higher crop yields. This potential has encouraged
the application of robotics and Artificial Intelligence to accurately
identify and control weeds (Upadhyay et al., 2024b). A recent
study by Upadhyay et al. (2024a) demonstrated a smart sprayer
system for site specific weed management in row crop agriculture.
The designed system features three nozzles, each separated by 20
inches with an approximate overlap of 50%. The system works by
activating a specific nozzle when it detects a weed within its 20-
inch coverage area. Another similar study by Partel et al. (2019)
demonstrated a low-cost smart sprayer technology which leverages
the power of Artificial Intelligence to perform precision weed
management. Researchers and the farming community are excited
about the possibilities these technologies offer for more precise and
sustainable agricultural practices specifically for site specific weed
management.

In summary, the main contributions of this study were to:

• Generate a labelled image dataset of Palmer amaranth weed
over a window of 45 days post-planting in a simulated corn field
for training a weed detection model using YOLOv7.

• Build a one-degree-of-freedom automated gantry sprayer
which can precisely spray detected weeds and integrate this
gantry system onto a mobile robotic platform.

• Evaluate the developed system in a controlled outdoor
environment with greenhouse-grown corn rows and
randomized Palmer amaranth in tubs (30 days post-planting).

2 Materials and methods

2.1 Data collection and dataset preparation

For the purpose of training a deep learning model aimed
at targeted spraying of weeds, a comprehensive dataset of
Palmer amaranth images was curated. To simulate authentic field
conditions, a controlled environment was established within a
greenhouse, utilizing five rectangular tubs (610 mm wide, 914 mm
long, 305 mm deep) and eighteen pots (305 mm diameter, 305 mm
deep), planted with sterilized soil. The tubs were sown with corn
in two rows, spaced 381 mm (15 inches) apart (see Figure 1B),
while Palmer amaranth seeds were broadcasted across the surface.
Out of the eighteen pots, twelve pots contained Palmer amaranth,
whereas the other six were plantedwith corn. Over a span of 45 days,
images were systematically captured using a standard smartphone
(Model: Pixel 7, Google, Mountain View, California), the images
were taken using a range of angles and heights to document the
plants’ growth stages. This periodical image collection yielded
a dataset comprising a total of 660 photographs obtained from
both rectangular tubs and pots (with an original resolution of
2268 × 4032).

The images were meticulously annotated using the “labelImg”
tool, resulting in text label files that provided 8,462 labels across two
classes: “corn” and “palmer”. The dataset was divided into training,
validation, and testing subsets in an 8:1:1 ratio for model training.
This stratified sampling ensured a robust and comprehensive dataset,
which included various developmental stages of the plants. The
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FIGURE 1
(A) Preparing the soil bed for planting corn and Palmer amaranth. (B) Sowing the corn in rows and broadcasting palmer amaranth seeds. (C) Capturing
images of palmer amaranth and corn after germination (D) Irrigating the crops (E) Tubs arranged on a concrete pavement with two rows of corn and
randomized palmer amaranth simulating field-like conditions.

resulting dataset and annotations were foundational for developing
and validating deep learning models to distinguish corn from
Palmer amaranth.

This study demonstrated domain adaptation. With the images
captured from the greenhouse setting, the generated dataset may
introduce biases when compared to field-grown crops. In the field,
weed emergence is often unpredictable, with weeds appearing either
in clusters or widely dispersed. Real field conditions were simulated
by randomly broadcasting Palmer amaranth seeds. Additionally,
images captured in the greenhouse were taken under consistent
lighting, whereas outdoor images under natural sunlight vary in
illumination, shadow, as well as the plants might sway in the wind,
and overall image quality, contributing to potential discrepancies
between domains.

2.2 Weed detection model

YOLOv7 was one of the best state-of-the-art deep learning
models for object detection at the time of the investigation
(Narayana and Ramana, 2023; Wang et al., 2022). YOLOv7 is a
powerful detector that can detect various objects if the model is
trained with a particular image dataset. YOLOv7 achieves a better
balance between detection speed and accuracy (Boesch, 2023). In
addition, studies have shown YOLOv7 outperforms earlier YOLO
versions and other models like Faster R-CNN in weed detection
tasks, with higher precision and recall rates (Narayana and Ramana,
2023). This study used the YOLOv7 P5 model to train with our
customweeddataset composed ofRGB images.Themodel identified
corn, and the Palmer amaranth weed, generating bounding boxes
around them. The detector output consisted of the coordinates for
the bounding boxes relative to the image frame, which was then
used for targeted spot spraying. The YOLOv7 model was trained in
a Dell Precision 7,670 mobile workstation (12th Gen Intel Core i9-
12950HX, 32GB RAM, NVidia RTX A4500 16 GB), using PyTorch
framework.

2.3 Robot platform

For this study, the Amiga robot platform (Model: Amiga, farm-
ng,Watsonville, California) was selected as the deployment platform
due to its versatility and suitability for agricultural applications. As
shown in Figure 2A, theAmiga is an electric 4-wheel drive skid-steer
micro tractor with an NVIDIA Jetson Xavier NX serving as its on-
board computing unit (Amiga’s brain), which hosts RobotOperating
System (ROS)Noetic (Farm-ng, 2024). It comprises four 250–500 W
sealed brushlessDC geared hubmotors, eachmotor generating has a
peak torque of 140 Nm. It generates a maximum of 2000 W (2.7hp)
of motor power. The IP65 waterproof rating on the robot ensures
protection against liquid and dust, making it ideal for outdoor farm
environments.

The base platform weighs about 145 kg (320 lbs) and is designed
to handle a payload of 454 kg (1,000 lbs). Its speed range of
0.18–9.1 km/h accommodates both precise operations and efficient
field traversal. Two discrete, hot-swappable 44VDC lithium-ion
batteries with a total capacity of 15 Ah were used to power the
robot. Using the batteries with full charge, the robot can provide
a runtime of between 3 and 8 h, depending on the usage, payload,
and terrain (Farm-ng, 2024). High draft applications such as
towing, tilling, and soil engaging applications will consume more
power and reduce the runtime down to approximately 2–3 h.
On the other hand, light-duty applications like hauling materials,
data collection, etc., extend the runtime to approximately 6–7 h
continuously (Farm-ng, 2024). The Amiga’s integration of robust
hardware, advanced computing capabilities, and farm-specific
design features provides a comprehensive solution for exploring
automated farming techniques in real-world conditions.

2.4 Automated gantry sprayer mechanism

An automated single-nozzle sprayer gantry was designed and
mounted on the Weeding robot to meet the requirements of this
study, as shown in Figure 2B. The sprayer gantry on the Weeding
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FIGURE 2
(A) The Amiga robot from Farm Ng consists of four hub motors, structural beams, a display, and a controller (B) The Amiga robot after it was integrated
with the components developed for this research (Weeding robot).

FIGURE 3
Process flow of the Weeding robot with all the components integrated. The YOLOv7 will generate bounding boxes of palmer and corn from the images
captured from the camera and send the coordinates of the detected palmer to the ECU (Arduino UNO) and actuates the stepper motor and the
solenoid valve to spray at each of the detected palmer.

robot consisted of a 1,000 mm long, 20 × 40 mm cross-section T-
slot aluminum extrusion profile with extruded linear rail guide,
a 6 mm timing belt, a belt straighten tensioner, a 60 × 80 mm
gantry plate with six V-type pullies, a NEMA 17 stepper motor
with motor mounting plate, an Arduino UNO microcontroller,
and a TB6600 stepper motor driver. A 13-gallon liquid tank with
a rated 1 GPM (Gallon per minute) pump was installed on the
Weeding robot to store and spray the herbicide. The gantry carries
a nozzle and solenoid valve to control the spray tank outlet. The
Arduino UNO controls the stepper motor for positioning the
nozzle and the solenoid valve via a relay to turn the nozzle on
and off (see Figure 3). An independent 12 V lead acid battery
powered the spraying mechanism and controller. The electronics
were enclosed in a weatherproof box.

The microcontroller was connected to the TB6600 stepper
motor driver to drive the stepper motor. The microcontroller
accepted instructions from the host computer as serial data via USB
connection and moved the nozzle on the gantry accordingly. To
move the nozzle on the gantry, the required number of steppermotor

steps to reach each position was calculated based on Equation 1:

n = xN
W

(1)

n = no. of the stepper motor steps to the weed location,
N = Total no. of the stepper motor revolution for the full span of
the gantry,
W = width of the image (pixels),
and x = X coordinate of detected weed in the image (pixels).
In this experiment, the gantry movement was soft constrained

using the boundary width of the camera view, approximately
910 mm, as the sprayer should not spray the location where the
camera cannot see.

2.5 Host computer

The main computer was a Dell Precision 7,670 mobile
workstation (12th Gen Intel Core i9-12950HX, 32GB RAM, NVidia
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FIGURE 4
The test result of the YOLOv7 weed detector.

FIGURE 5
Precision-recall curve of the YOLOv7 weed detection model.

RTX A4500 16 GB). This computer was computationally more
powerful than the built-in NVIDIA Jetson Xavier NX on the Amiga
robot platform used in this study. The same computer was used to
train and host the deep learning models in real-time and host the
ROS to communicate with Weeding robot’s computing hardware to
control the navigation of the robot and the gantry sprayer that was
developed.

2.6 ROS bridge

The Weeding robot was developed to utilize gRPC services
for communication and control (gRPC, 2024; Farm-ng Developers,
2024). To enable direct control of the Weeding robot using
an external computer via ROS commands, a ROS bridge was
established to connect it to the Weeding robot’s brain (built-
in computing unit). Users can communicate and control the
Weeding robot’s movement by sending a twist message using
the ROS bridge via the custom ROS topics (/amiga_cmd_vel). A
twist message is a data structure comprised of linear and angular
velocities in the x, y, and z axes of the robot’s relative frame
of reference.
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FIGURE 6
Confusion matrices from the YOLOv7 model test.

TABLE 1 The outdoor experiment results, note that the TP = correctly sprayed palmer, FN =missed palmer, FP (empty) = incorrectly sprayed empty spot,
FP (corn) = incorrectly sprayed corn.

Trial TP FN FP (empty) FP (corn) Precision (%) Recall (%)

1 24 13 13 0 64.9 64.9

2 21 16 14 0 56.8 60.0

3 22 15 14 0 59.5 61.1

Average 60.4 62.0

The ROS bridge, compatible with ROS Noetic, was connected
to the robot’s gRPC services and enabled users to publish twist
messages via the robot’s drive topic (/amiga_cmd_vel). These
messages were interpreted and converted into CAN messages
to control each wheel motor accordingly. Currently, there are
three approaches to use the amiga_ros_bridge: (1) Operating
the amiga_ros_bridge (and ROS master) directly on the Amiga’s
brain, while other ROS nodes on the external computer connect
to the Amiga ROS master. (2) Operating the amiga_ros_bridge
(and ROS master) on the external computer and establishing
a connection to the Amiga CANbus service via gRPC. (3)
Operating the amiga_ros_bridge (and ROS master) on the external
computer, utilizing the mock server (Farm-ng Developers, 2024).
For this experiment, the first method, accessing the Weeding

robot’s ROS bridge via SSH, was chosen for its simplicity in
implementation.

2.7 System operations for targeted
spraying

The system operation began with accessing the Weeding robot’s
terminal via SSH and initiating the ROS master. Subsequently,
the main host computer launched the weed detection node
and serial communication node. The serial node facilitated
communication with the microcontroller, which controlled the
gantry movement and the solenoid valve. The camera (Model:
Astra S 3D, ORBBEC, Troy, Michigan) captured images and
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FIGURE 7
(A) The experiment set up of the Weeding robot over the outdoor semi-realistic spot spraying experiment; (B) The detection results of the detector; (C)
the sprayer accurately spraying at the detected weed.

passed the images through the weed detection node, which used
a YOLOv7 object detection model, for generating coordinates of
detected weeds.

The host computer sent the coordinates of the detected weeds
from the weed detector to Arduino via serial communication. The
Arduino then triggered the stepper motor which rotated the timing
belt thereby moving the gantry head to the targeted position. When
the nozzle was precisely above the targeted weed, the Arduino
activated a relay to trigger the solenoid valve, resulting in the liquid
being sprayed onto the detected weed. Water was used in this
study for evaluating the targeted spraying. Throughout this process,
the pump remained continuously operating. The pump used was
self-priming and can run dry. It can shut off automatically, due
to the pressure build-up, when the solenoid valve was shut. After
spraying the liquid on all the weeds detected in an image, the
gantry headmoved back to the start position and theWeeding robot
advanced forward. The velocity and direction of the Weeding robot
were published on the drive topic (/amiga_cmd_vel). The robot
halted to capture another image, and the aforementioned process
repeated. Figure 4 presents the process flow of the Weeding robot,
integrated with the automated gantry system and weed detection
components.

2.8 Outdoor experiment

In this paper, two batches of Palmer amaranth weeds and corn
plantswere cultivated in a greenhouse.While the first batchwas used

to generate dataset for training the deep learning, a second batchwas
established using five rectangular tubs for the outdoor experiment.
The latter batch featured two rows of corn with 15-inch spacing
and randomly broadcasted Palmer amaranth, simulating corn rows
environment, specifically prepared for outdoor robotic spot spraying
trials. During outdoor trials, the tubs containing 30-day-old plants
were moved onto a concrete pavement, and they were aligned in
a straight line, extending over a total length of 4.6 m under direct
sunlight. This arrangement facilitated semi-realistic conditions
for evaluating the Weeding robot’s performance. However, the
30-day-old corn plants exceeded the clearance of the Weeding
robot platform, so the corn plants were trimmed to facilitate the
maneuverability and ensure unobstructed camera capture.

The decision to cultivate the second batch of crops and
weeds in a greenhouse was influenced by the experiment’s
timing, which commenced in March, the onset of spring in
Nebraska. During this period, farm fields were not yet ready for
planting operations, preventing the creation of a testbed in a real
agricultural environment with varying conditions. Consequently,
the greenhouse provided a controlled setting, and the sterilized
soil ensured only plants of interest to be grown to simulate field
conditions and ensure the timely progression of the research.

During the test, the rectangular tubs were arranged in a straight
line and the Weeding robot was initially positioned at one end of
the tubs.TheWeeding robot advanced a small interval at a time and
captured top-down images at each stop.The gantry was aligned such
that the camera’s field of view covered the width of the tub.
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2.9 Evaluation metric

To evaluate the system performance, mAP (Mean-Average-
Precision) was used to evaluate the palmer detection YOLOv7
model. Precision is the ratio of true positive (correct prediction) to
overall positive (sum of all detection) (Equation 2) whereas recall is
the ratio of true positive to all the truth labels (true positive and false
negative) (Equation 3). An AP (Average-Precision) is the average
precision value from varying confidence threshold of the detector.
A mAP is the mean value of the AP across all classes. In short, the
mAP is shown as below (Equation 4):

Precision = TP
TP + FP

(2)

Recall = TP
TP + FN

(3)

mAP = 1
n

n

∑
k=1

APk (4)

3 Results and discussion

3.1 Model evaluation using test dataset

TheYOLOv7model was trained with the weed dataset using 320
× 320 input resolution and over 200 epochs.When evaluated against
the test dataset of 66 images with 765 labels of palmer and 106 labels
of corn which was developed during the dataset preparation step,
as mentioned in section 2.1 with a 50% IoU threshold, the overall
mAP score reached 73.2%, with AP for Palmer amaranth and corn
classes at 90.9% and 55.5%, respectively. A collage of the test results
is shown in Figure 4. Figure 5 shows the precision-recall curve with
mAP scores of the YOLOv7 weed detector. The model correctly
identified 93% of the actual palmer (weed) as palmer while only 58%
of the corn as corn. This is due to the dataset being imbalanced,
with most of the labels being palmer. However, the success in
detecting palmer was considered more critical in this experiment
as the sprayer should not spray at the corn. Figure 6 shows the
confusion matrix of the test result, the model did not misidentify
between palmer and corn.This is due to the dataset design including
crop and weed, in this case, Corn and Palmer amaranth. By training
the YOLOv7 model with the two classes, the model “learned” the
difference andwas able to distinguish between them.This is a critical
feature of this study by preventing the weeding robot from mis-
spraying at the crop. Furthermore, the model’s positive detection of
corn plants can be improved, by increasing the number of labels of
corn plants. Additional images of corn plants will need to be taken
and properly labeled.

3.2 System evaluation with outdoor trials

To evaluate the detection model together with the spraying
mechanism, outdoor trials were conducted. The second batch
of weed and corn mentioned in section 2.8 was used to
demonstrate the robotic spot spraying operation under real

world application. The experiment was repeated three times in
which the Weeding robot passed over the same rectangular tubs
with corn rows and Palmer amaranth under the same weather
(lighting) conditions. The weed detection model and the sprayer
gantry’s performance were evaluated using the results from
the experiment.

In the best trial, the Weeding robot used 25% confidence level,
accurately identified and sprayed 24 out of 37 Palmer amaranth
plants, achieving a 64.9% recall rate (see Table 1). In the same trial,
theWeeding robot also mis-sprayed on 13 locations without Palmer
amaranth, resulting in a 64.9% precision rate. A lower confidence
level of 25% was needed due to the difference in the training data
and the real-world application, particularly the lighting conditions
where it was much brighter during field trials, demonstrating the
challenges of domain adaptation.

Overall, the Weeding robot achieved an average of 60.4%
precision and 62% recall. Notably, the detector did not incorrectly
identify corn as palmer and did not incorrectly spray at any of the
corn plants. Using a 320 × 320 pixels input size, the detector achieved
50 frames per second during real-time inference using the RTX
A4500 laptop graphic card (see Figure 7). Overall, this demonstrated
acceptable performance given the model was trained on a small
dataset and operated under different environments (greenhouse
vs. direct sunlight). While the performance of the weeding robot
did not achieve near 100% accuracy, the weeding acuracy can be
improvedwith a larger dataset withmore variety of the environment,
such as including outdoor weed images at difference time of the
day. In addition, a deeper neural network can be used to improve
the accuracy at the cost of latency. A 64.9% recall rate indicates
35.1% of Palmer not being sprayed and eliminated, and 64.9%
precision indicates 35.1% herbicide were wasted for not spraying at
the Palmer. The remaining unsprayed Palmer can negatively impact
the crop yield.

4 Conclusion and future scope

This research highlights the transformative potential of robotics
and deep learning-based models in performing autonomous
targeted weed management in agriculture. The dataset developed
in this research consisted of 660 labeled images of corn and palmer
amaranth sourced fromgreenhouse-grown crops.Using this dataset,
a custom trained YOLOv7 model was trained. It was incorporated
into a robotic platform (Weeding robot) with a gantry-based sprayer,
making it capable of identifyingPalmer amaranth among corn plants
and spot spraying the weeds in real-time.Thismethodology ensured
efficient weed targeting and spraying, leveraging advanced deep-
learning models for precise detection and robotic automation for
targeted herbicide application.The integration of these technologies
within the system demonstrated a robust approach to automated
agricultural weed management. The system achieved an average
of 60.4% precision and 62% recall. The accuracy of the Weeding
robot can be substantially enhanced by expanding the dataset with
more images of Palmer amaranth, particularly those captured under
various field conditions. This would enable the model to learn
from a wider range of features, improving its detection capabilities
in real-world agricultural environments. Expanding the object
detector to identify multiple weed species is another critical area
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of focus. By improving the system’s ability to distinguish
between different types of weeds, we can develop more targeted
and effective treatment strategies. Additionally, the gantry-
based sprayer system demonstrated a method where a single
nozzle can localize itself based on the position of the detected
weed and spray the weed. This design minimizes the number
of spray nozzles required on the boom, thereby reducing
both costs and potential points of failure associated with
spray nozzles.
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