
TYPE Methods
PUBLISHED 10 February 2025
DOI 10.3389/frobt.2024.1444188

OPEN ACCESS

EDITED BY

Giovanni Iacca,
University of Trento, Italy

REVIEWED BY

Önder Tutsoy,
Adana Science and Technology
University, Türkiye
Erdi Sayar,
Technical University of Munich, Germany

*CORRESPONDENCE

Luigi Berducci,
luigi.berducci@tuwien.ac.at

†These authors have contributed equally to

this work and share first authorship

RECEIVED 05 June 2024
ACCEPTED 23 December 2024
PUBLISHED 10 February 2025

CITATION

Berducci L, Aguilar EA, Ničković D and
Grosu R (2025) HPRS: hierarchical
potential-based reward shaping from task
specifications.
Front. Robot. AI 11:1444188.
doi: 10.3389/frobt.2024.1444188

COPYRIGHT

© 2025 Berducci, Aguilar, Ničković and Grosu.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

HPRS: hierarchical
potential-based reward shaping
from task specifications

Luigi Berducci1*†, Edgar A. Aguilar2†, Dejan Ničković2 and
Radu Grosu1

1Cyber-Physical Systems Group, Computer Engineering, TU Wien, Vienna, Austria, 2Center for Digital
Safety and Security, AIT Austrian Institute of Technology GmbH, Vienna, Austria

The automatic synthesis of policies for robotics systems through reinforcement
learning relies upon, and is intimately guided by, a reward signal. Consequently,
this signal should faithfully reflect the designer’s intentions, which are often
expressed as a collection of high-level requirements. Several works have been
developing automated reward definitions from formal requirements, but they
show limitations in producing a signal which is both effective in training and
able to fulfill multiple heterogeneous requirements. In this paper, we define
a task as a partially ordered set of safety, target, and comfort requirements
and introduce an automated methodology to enforce a natural order among
requirements into the reward signal. We perform this by automatically translating
the requirements into a sum of safety, target, and comfort rewards, where
the target reward is a function of the safety reward and the comfort
reward is a function of the safety and target rewards. Using a potential-
based formulation, we enhance sparse to dense rewards and formally prove
this to maintain policy optimality. We call our novel approach hierarchical,
potential-based reward shaping (HPRS). Our experiments on eight robotics
benchmarks demonstrate that HPRS is able to generate policies satisfying
complex hierarchical requirements. Moreover, compared with the state of the
art, HPRS achieves faster convergence and superior performance with respect
to the rank-preserving policy-assessment metric. By automatically balancing
competing requirements, HPRS produces task-satisfying policies with improved
comfort and without manual parameter tuning. Through ablation studies, we
analyze the impact of individual requirement classes on emergent behavior. Our
experiments show that HPRS benefits from comfort requirements when aligned
with the target and safety and ignores them when in conflict with the safety
or target requirements. Finally, we validate the practical usability of HPRS in
real-world robotics applications, including two sim-to-real experiments using
F1TENTH vehicles. These experiments show that a hierarchical design of task
specifications facilitates the sim-to-real transfer without any domain adaptation.

KEYWORDS

robotics, robot learning, reinforcement learning, reward shaping, formal specifications

1 Introduction

Reinforcement learning (RL) is an increasingly popular method for training
autonomous agents to solve complex tasks in sophisticated environments (Mnih et al.,
2015; Lillicrap et al., 2016; Silver et al., 2017). At the core of RL lies the reward function,

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2024.1444188
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2024.1444188&domain=pdf&date_stamp=2025-02-08
mailto:luigi.berducci@tuwien.ac.at
mailto:luigi.berducci@tuwien.ac.at
https://doi.org/10.3389/frobt.2024.1444188
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2024.1444188/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1444188/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1444188/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Berducci et al. 10.3389/frobt.2024.1444188

a user-provided signal that guides the learning process by rewarding
or penalizing the agent’s actions. As autonomous agents become
increasingly capable and are expected to operate in real-world
environments, they are asked to solve tasks with a growing number
of requirements, each with different levels of importance and
sometimes opposing objectives. Since the reward function must
capture all the desired aspects of the agent’s behavior, significant
research effort has been invested in reward shaping over the past
years (Ng et al., 1999; Laud and DeJong, 2003).

There are two major challenges in defining meaningful rewards,
which are best illustrated with an autonomous-driving (AD)
application. The first arises from mapping numerous requirements
into a single scalar reward signal. In AD, there are more than
200 rules that need to be considered when assessing the course
of action (Censi et al., 2019). The second challenge stems from the
highly non-trivial task of determining the relative importance of
these different requirements. In this realm, there are a plethora of
regulations ranging from safety and traffic rules to performance,
comfort, legal, and ethical considerations.

In order to address these challenges and train the policy to
tackle tasks composed by many heterogeneous requirements, we
introduce a novel frameworkwhich automatically defines the reward
function from the user-defined formal requirements in a systematic
fashion. Although former approaches based on formal languages
define a task as the combination of safety and liveness formulas
(Jothimurugan et al., 2019; Icarte et al., 2018), we introduce a
specification language to describe a task as a composition of
safety, target, and comfort requirements. This formulation captures
a broad class of problems and induces a natural ordering among
requirements, according to the class of membership: safety has the
highest priority, followed by target that guides goal achievement and,
finally, comfort, which are secondary and optional requirements.

In contrast to existing reward design approaches that rely on
manual tuning or learning of reward models (Christiano et al.,
2017), we propose a fully automated approach based on formal
task specifications. In particular, we leverage the partial order
of requirements and the quantitative evaluation of each of
them to derive a reward function that inherently captures
the interdependence between different classes of requirements.
Unlike multi-objective approaches that produce Pareto-optimal
solutions, the proposed requirement class prioritization induces
an unambiguous trajectory ranking. The HPRS shaping optimizes
all the requirements simultaneously by combining them in one
multivariate multiplicative objective. Moreover, we characterize
the proposed reward function as a potential-based signal, which
allows us to provide theoretical guarantees on HPRS soundness
(Ng et al., 1999). Finally, in contrast to logic-based approaches,
which adopt robustness to compute the reward on complete or
partial transition sequences (Li et al., 2017; 2018; Balakrishnan and
Deshmukh, 2019), we provide a dense reward signal. In thismanner,
HPRS avoids delaying reward computation over time and mitigates
the temporal credit-assignment problem, where a deferred reward
is not efficiently propagated to the preceding transitions.

Our approach builds on top of the following four major
components:

• An expressive formal specification language capturing classes of
requirements that often occur in control tasks.

• An additional specification layer, allowing to group sets of
requirements and define priorities among them.

• An automatic procedure for generating a reward, following the
order relation among the different requirements.

• A training pipeline with integrated domain adaptation to
mitigate sim-to-real transfer.

The advantage of our approach is the seamless passage from
task specifications to learning optimal control policies that satisfy
the associated requirements while relieving the engineer from the
burden of manually shaping rewards.

In the experimental evaluation, we investigate the following
research questions (RQs):

• RQ1: How does HPRS compare with existing logic-based and
multi-objective shaping approaches in producing an effective
training signal for reinforcement learning?

• RQ2: How do policies trainedwithHPRS effectively capture the
hierarchical structure of task requirements?

• RQ3: What is the influence of HPRS’s hierarchical structure
on the emergent behavior, particularly concerning the less
prioritized comfort requirements?

• RQ4: How does HPRS demonstrate practical usefulness in real-
world robotics applications?

We answer the RQs by evaluating HPRS on four continuous-
control benchmarks (cart-pole, lunar lander, bipedal walker classic,
and hardcore) and four physics-simulated environments consisting
of two autonomous driving scenarios (stand-alone and follow the
leader) and two robot locomotion tasks (ant and humanoid). Our
experiments show competitive results compared to state-of-the-
art approaches, outperforming logic-based approaches in terms of
training efficiency and alignment with the intended behavior and
multi-objective approaches in terms of generality and robustness
to different parameterizations. Moreover, we deploy the trained
policies on F1TENTH racecars (O’Kelly et al., 2020), demonstrating
the practical usability of the proposed approach in non-trivial real-
world robotics systems.

1.1 Contributions

In this paper, we introduce HPRS for RL from a set of formal
requirements, proposing a learning pipeline to produce control
policies amenable to real-world robotics applications. An initial
draft of HPRS appeared in Berducci et al. (2021) and was used as
background material in Berducci and Grosu (2022).

Here, we extend the HPRS theory, implementation,
experimental evaluation, and applicability as follows:

1. We reframe the HPRS theory and associated proofs to general
unconstrained MDP, including theorems and proofs of the
main results.

2. We implement HPRS in auto-shaping, the first library for
reward shaping from hierarchical formal task specifications,
which is integrated with state-of-the-art frameworks
(Raffin et al., 2019) and monitoring tools (Ničković and
Yamaguchi, 2020).

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2024.1444188
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Berducci et al. 10.3389/frobt.2024.1444188

FIGURE 1
Proposed optimization pipeline: the process begins with human experts formalizing the task requirements as a set of formal specifications. These
requirements are processed through an automatic procedure to define an MDP with a dense and informative reward signal that reflects the prioritized
hierarchy of requirements. This shaped MDP can then be used with any reinforcement learning algorithm to train an agent capable of performing the
prescribed task while adhering to the specified priorities.

3. We evaluate HPRS on a broader set of simulated tasks
with a large number of comfort requirements, presenting an
extended evaluation and ablation studies of the proposed
approach.

4. We present a training pipeline with domain adaptation
to deal with real-world uncertainties and added two real-
world experiments using F1TENTH racecars to showcase the
practical applicability.

The proposed framework in Figure 1 requires minimal
user intervention in the specification phase and automates the
problem definition and policy optimization. To support the
robust transfer of the learned policy to real-world applications,
we integrate a domain randomization module (Tobin et al.,
2017), which generates a diverse but plausible set of training
environments. The approach is proven to be effective in various
benchmarks and capable of handling the transfer to real-world
applications.

1.2 Motivating example

We motivate our work with an autonomous-driving task: a
car drives around a track delimited by walls by controlling
its speed and steering angle. The car is considered to have
completed a lap when it drives around the track and reaches its
starting position.

The task has seven requirements: (1) the car shall never collide
against the walls; (2) the car shall complete one lap in bounded
time; (3) the car shall drive in the center of the track; (4) the car
shall maintain a speed above a minimum value; (5) the car shall
maintain a speed below amaximumvalue; (6) the car shall drivewith
a comfortable steering angle; (7) the car shall send smooth control
commands to the actuators.

A moment of thought reveals that these requirements might
interfere with each other. For example, a car always driving
above the minimum speed (requirement 4) while steering below
the maximum angle (requirement 6) would have a limited turn
curvature. Any track layout containing a turn with a curvature
larger than this limit would result in a collision, thus violating
requirement 2. Furthermore, if the policy drives with high-
frequency saturated actuation only (i.e., bang–bang), the resulting
behavior is uncomfortable for the passengers and not transferable to

FIGURE 2
Ranking of behaviors for the driving example: the task is defined by
safety, target, and comfort requirements, which together induce a
ranking of trajectories: (red) the car crashes into the wall, violating the
safety requirement. (blue) The car safely progresses toward lap
completion but exhibits unnecessary jerk, resulting in poor comfort.
(green) The car satisfies both safety and target requirements while
also optimizing comfort. This illustrates the natural ranking based on
the requirements’ classes, with safety taking the highest priority,
followed by target achievement and, lastly, comfort.

real hardware because of actuator limitations. Figure 2 shows various
intended and unintended behaviors.

In this example, it also becomes evident that some requirements
must have precedence over others.We consider safety as one of those
requirements that fundamentally constrain the policy behavior,
such as a catastrophic collision against the walls. Therefore, we
interpret a safety violation as one compromising the validity of the
entire episode. Lap completion (requirement 2) is also a unique
requirement that represents the agent’smain objective, or target, and,
in essence, its whole reason to be. After the safety requirement, this
comes next in the hierarchy of importance. Explicitly, it means that
we are willing to sacrifice the rest of the requirements (requirements
3–7) in order to complete a collision-free lap around the track.
These requirements are, therefore, soft constraints that should be
optimized as long as they do not interfere with safety and the target.
We call them comfort.

In summary, we pose the following research question in this
paper: is there a principled way to shape an effective reward
that takes into account all the task requirements in the order
of importance mentioned above? In the rest of this paper, we
will illustrate the necessary steps leading to a positive answer,
considering the motivating example.

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2024.1444188
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Berducci et al. 10.3389/frobt.2024.1444188

2 Related work

RL has emerged as a powerful framework for decision-
making across diverse domains, including robotics. The design
and specification of reward functions are critical for ensuring
that RL agents achieve the desired outcomes efficiently and safely.
Consequently, a reward design has been extensively studied across
various research communities. This section provides an overview
of key research directions addressing this challenge, including
reward shaping, RL with temporal logic, multi-objective RL, and
formalization of hierarchically structured requirements. Moreover,
we highlight how our approach differs from the existing literature in
these areas.

2.1 Reward shaping

Specifying reward functions for decision-making algorithms
is a long-studied problem in the RL community. A poorly
designed reward might not capture the actual objective and result
in problematic or inefficient behaviors (Amodei et al., 2016).
Therefore, shaping the reward helps in effectively steering the
RL agent toward favorable behaviors (Ng et al., 1999; Laud and
DeJong, 2003). Reward shaping aims in improving the training
efficiency of reinforcement learning by modifying the reward
function (Eschmann, 2021; Devidze et al., 2021). A particularly
notable approach, which will be central in this work, is potential-
based reward shaping (PBRS) (Ng et al., 1999). PBRS modifies
the original reward using the difference of potential functions
to accelerate learning. The characterization of potential as state-
dependent functions leads to preserving policy optimality (Ng et al.,
1999), and it has been later connected to the initialization of
Q-values (Wiewiora, 2003). PBRS continues to be particularly
effective in environments with sparse or delayed rewards, improving
convergence rates in tasks such as robotic control (Duan et al.,
2016), and it represents a fundamental result of reinforcement
learning theory (Sutton, 2018), based on which we are going to
develop our methodology.

2.2 RL with temporal logic

Temporal logic (TL) is a well-suited formalism for
specifying complex temporal behaviors in an unambiguous
way. For this reason, several works adopt TL to specify reward
functions in RL. Although some works focus on multitasking
specifications, advancing techniques for task decomposition
(Jothimurugan et al., 2021; Toro Icarte et al., 2018; Camacho et al.,
2017; Jothimurugan et al., 2019), or study formulations that are
tailored for formally specified tasks (Fu and Topcu, 2014; Jones et al.,
2015; Icarte et al., 2018; Li et al., 2018), we consider the body
of research closer to the problem of reward shaping from formal
task specification. The main works develop methods to exploit the
quantitative semantics of signal temporal logic (STL) and its variants
to systematically derive a reward. STL quantitative semantics (Maler
and Nickovic, 2004) are traditionally non-cumulative and non-
Markovian since the evaluation depends on the entire trajectory.

This makes them difficult to integrate with contemporary RL
algorithms, which are developed under these assumptions. For
these reasons, approaches that delay the credit assignment to
evaluate the complete (Li et al., 2017) or partial sequences of
transitions (Balakrishnan and Deshmukh, 2019) have only partially
mitigated the underlying problems. The specification of the task
as a monolithic formula and the use of quantitative semantics
suffer from poor usability in RL due to locality and masking of
competing terms (Mehdipour et al., 2019). To overcome these
issues, we define a task as the composition of different requirements
and develop an automatic methodology to provide a dense reward
at every step. This approach is more in line with cumulative RL
formulations used in robotics and completely agnostic to the
learning algorithm.

2.3 Multi-objective RL

Multi-objective RL (MORL) studies reinforce learning
algorithms to optimize multiple and often conflicting objectives
(Roijers et al., 2013; Hayes et al., 2022). Several algorithms have
been proposed to learn single or multiple policies (Liu et al.,
2015; Tutsoy, 2021). There exist several techniques to combine
multiple rewards into a single scalar value via scalarization, such
as linear or non-linear projections (Natarajan and Tadepalli, 2005;
Barrett and Narayanan, 2008; Van Moffaert et al., 2013). Other
approaches formulate structured rewards by imposing or assuming
a preference ranking on the objectives and finding an equilibrium
among them (Gábor et al., 1998; Shelton, 2001; Zhao et al., 2010;
Abels et al., 2019; Mehdipour et al., 2020). However, the problem
of specifying preferences and studying the tradeoff among different
classes of requirements remain a challenge. To overcome this issue,
we exploit the natural interpretation of the requirement classes to
impose an unambiguous interpretation of task satisfaction without
the need to deal with Pareto-optimal solutions. From this task
semantics, we propose an automatic reward-shaping methodology
that enforces it into a scalar reward without requiring tedious
tuning of weights. Compared to widely adopted linear scalarizations
(Mehdipour et al., 2020; Brys et al., 2014), we adopt a multivariate
formulation to combine individual requirements in a multiplicative
way (Russell andNorvig, 2020) to capture the inter-class dependence
of requirements. Therefore, instead of relying on the arbitrary
choice of weights for each requirement, we define a systematic
methodology to produce a reward signal. For completeness, in
the experimental phase, we compare our approach to various
instances of the multi-objective method adopted in Brys et al.
(2014) and show the impact of having an arbitrary choice of
static weights.

2.4 Hierarchically structured requirements

Partial ordering of requirements into a hierarchy has been
proposed before in different settings. In this context, hierarchical
refers to the structure of the task itself, where requirements are
prioritized based on their importance, and it differs from the
meaning that hierarchical has in the literature on hierarchical

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2024.1444188
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Berducci et al. 10.3389/frobt.2024.1444188

control framework (Barto and Mahadevan, 2003). The rulebook
formalism uses a hierarchy of requirements for evaluating behaviors
produced by a planner (Censi et al., 2019) without addressing
the problem of learning a control policy from it. More recent
works propose to synthesize a policy with optimal control and
enforce hard constraints through CBF (Xiao et al., 2021) or with
receding horizon planning (Veer et al., 2023). However, although
they assume perfect knowledge of the environment dynamics
and focus on planning for autonomous driving, our work, to
the best of our knowledge, is the first to use hierarchical task
specifications with model-free reinforcement learning for robotics
control. Complementary approaches use hierarchical specifications
with inverse RL (Puranic et al., 2021), learning dependencies among
formal requirements from demonstrations. However, although they
learn dependencies from data, we infer them from requirement
classes and use them in reward shaping.

3 Methods

In this section, we present our main contribution: A method
for automatically generating a reward-shaping function from a plant
definition and a set of safety, target, and comfort requirements. In
order to make this method accessible, we first introduce a formal
language allowing formulation of the requirements mentioned
above. Our method performs the following steps:

• Step 1: infers the priority among different requirements based
on the class of membership and formulates a task as a partially
ordered set of requirements.

• Step 2: extends the plant definition to an MDP by adding a
sparse-reward signal to reflect task satisfaction and the episode
termination conditions.

• Step 3: enrich the reward with a continuous HPRS signal by
hierarchically evaluating the individual requirements.

The resulting training signal can then be used by any RL
algorithm and integrated with domain adaptation to deal with sim-
to-real transfer. We discuss and demonstrate its applicability in the
experimental section.

3.1 Requirement specification language

We formally define a set of expressive operators to
capture requirements that often occur in control problems.
Considering atomic predicates p ≐ f(s)  ≥ 0 over observable
states s ∈ S, we extend existing task-specification languages
(e.g., SpectRL (Jothimurugan et al., 2021)) and define the
requirements as follows:

φ ≐ achieve p |conquer p |ensure p |encourage p.

Commonly, a task can be defined as a set of requirements from
three basic classes: safety, target, and comfort. Safety requirements,
of the form ensure p, are associated with an invariant condition
p. Target requirements, of the form achieve p or conquer p,

TABLE 1 Formalized requirements for driving example: the task is
formalized as a set of formulas. Req1 ensures that a minimum distance
from walls is maintained; Req2 specifies completing a lap; Req3
encourages tracking the center-line within tolerance; Req4–5
encourage maintaining a velocity within limits; Req6–7 encourage
comfortable controls with small steering angles and smooth changes.

Req id Formula id Formula

Req1 φ1 ensure dwalls(s) > 0

Req2 φ2 achieve L(s) = 1.0

Req3 φ3 encourage dcenter(s) ≤ dcomf

Req4 φ4 encourage v ≥ vmin

Req5 φ5 encourage v ≤ vmax

Req6 φ6 encourage |α| ≤ αcomf

Req7 φ7 encourage |a| ≤ Δa

formalize the one-time or the persistent achievement of a goal
within an episode, respectively. Finally, comfort requirements, of the
form encouragep, introduce the soft satisfaction of p, as often as
possible, without compromising task satisfaction.

Let τ = (s0,a1, s1,a2,…) denote an episode of |τ| = t steps, and let
𝕋 be the set of all such traces. Each requirement φ induces a Boolean
function σ: 𝕋 → 𝔹, evaluating whether an episode τ ∈ 𝕋
satisfies the requirement φ. We define the requirement satisfaction
function σ as follows:

σ (achieve p,τ) iff ∃i ≤ t s.t. f (si) ≥ 0,

σ (conquer p,τ) iff ∃i ≤ t s.t.∀j ≥ i, f (sj) ≥ 0,

σ (ensure p,τ) iff ∀i ≤ t s.t. f (si) ≥ 0,

σ (encourage p,τ) iff true.

Example: let us consider the motivating example and formally
specify its requirements. The state s = (x,y,θ,v, θ̇) consists of x,y,θ
for the car position and heading in global coordinates, and v and θ̇
are the car speed and rotational velocities, respectively. The control
action is a = (ν,α), where ν denotes the desired speed and α denotes
the steering angle.

We first define (1) dwalls:S→ℝ, a distance function that returns
the distance of the car to the closest wall; (2) L:S→ [0,1], a lap
progress function that maps the car position to the fraction of
track that has been driven from the starting position; (3) dcenter:S→
ℝ, a distance function that returns the distance of the car to the
centerline; (4) themaximumdeviation from the centerline dcomf that
we consider tolerable; (5) the maximum steering angle αcomf that
we consider being comfortable to drive straight; (6) the minimum
and maximum speed vmin,vmax that define the speed limits; (7) the
maximum tolerable change in controls Δa that we consider to be
comfortable.Then, the task can be formalized with the requirements
reported in Table 1.

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2024.1444188
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Berducci et al. 10.3389/frobt.2024.1444188

3.2 A task as a partially ordered set of
requirements

We formalize a task by a partially ordered set of formal
requirements, Φ, assuming that the target is unique and
unambiguous. Formally, Φ =ΦS ⊎ΦT ⊎ΦC, such that

ΦS ≔ {φ | φ ≐ ensure p}

ΦC ≔ {φ | φ ≐ encourage p}

ΦT ≔ {φ | φ ≐ achieve p ∨ φ ≐ conquer p}

The target requirement is required to be unique (|ΦT| = 1).
We use a very natural interpretation of importance among the

class of requirements, which considers decreasing importance from
safety, to target, and to comfort requirements.

Formally, this natural interpretation of importance defines
a (strict) partial order relation ≺ on Φ, which is defined as
follows:

φ ≺ φ′ iff (φ ∈ΦS ∧φ′ ∉ΦS) ∨ (φ ∈ΦT ∧φ′ ∈ΦC)

The resulting pair (Φ,≺) forms a partially ordered set of
requirements and defines our task. Extending the satisfaction
semantics to a set, we consider a task accomplished when all of its
requirements are satisfied, as follows:

σ (Φ,τ) iff ∀φ ∈Φ, σ(φ,τ) (1)

The priority among the class of requirements induces an
ordering on trajectories or rank (Veer et al., 2023). The intuition of
episode rank based on our requirements is the following: an episode
fully satisfying all the classes of requirements has the highest rank
(i.e., rank = 1) and an episode only satisfying safety and target has a
lower rank but is still higher than an episode only satisfying safety;
finally, an episode violating all the classes of requirements has the
lowest rank (i.e., rank = 23).

Definition 1: Given an episode τ and a task specification (Φ,≺),
where Φ =ΦS ⊎ΦT ⊎ΦC, we define the rank of the episode over N =
3 classes as follows:

rank (Φ,τ) = 2N −
N−i

∑
i=1

σ(ΦCi
,τ)

3.3 MDP formalization of a task

We assume that the plant (environment controlled by an
autonomous agent) is given as E = (S,S0,A,P), where S is the
set of states, S0 is the set of initial states, A is the set of actions, and
P(s′|s,a) is its dynamics, that is, the probability of reaching state s′

by performing action a in state s.
Given an episodic task (Φ,≺) over a bounded time horizon T,

our goal is to automatically extend the environment E to a Markov
decision process (MDP) M = (S,S0,A,P,R,T). To this end, we
define R(s,a, s′), the reward associated with the transition from state
s to s′ under action a, to satisfy (Φ,≺).

3.3.1 Episodes
An episode ends when its task satisfaction is decided either

through a safety violation, timeout, or goal achievement. The goal
achievement evaluation depends on the target operator adopted: for
achieve p, the goal is achieved when visiting at time t ≤ T, a
state st that satisfies p; for conquer p, the goal is achieved if there is
a time i ≤ T such that p is satisfied for all si, i ≤ t ≤ T.

3.3.2 Base reward
Given the task (Φ,≺), we first define a sparse reward that

incentivizes achieving the goal. Let the property of the unique target
requirement be p ≐ f(s) ≥ 0. Then,

R(s,a, s′) =
{
{
{

1 if f (s′) ≥ 0

0 otherwise

The rationale behind this choice is that we aim to teach the
policy to reach the target and stay there as often as possible.
For achieve p, R maximizes the probability of satisfying p. For
conquer p, there is an added incentive to reach the target as soon
as possible and stay there until T.

The associated MDP is, in principle, solvable with any RL
algorithm. However, although the sparse base reward R can help
solve simple tasks, where the target is easily achieved, it is completely
ineffective in more complex control tasks.

3.4 Hierarchical potential-based reward
shaping

Here, we introduce the main contribution of this work, our
hierarchical potential-based reward shaping (HPRS). Introducing a
novel design to produce a dense reward signal based on the hierarchy
of requirements, we aim to continuously provide feedback during
training, guiding the agent toward the task satisfaction.

We assume the predicates p(s)  ≐  f(s)  ≥ 0 to be not
trivially satisfied in all the states s; otherwise, they can be omitted
by the specification. Each signal is then bounded in [l,u] for l <
0 < u. We also define the negatively saturated signal f−(s)  =
 min(0, f(s)) and the two following signals:

c (p, s) ≐ 1−
f− (s)

l
, b (p, s) ≐ 1≥0 (f (s)) ,

where 1≥0(⋅) is an indicator function of non-negative numbers. Both
c and b are bounded in [0,1], where 1 denotes the satisfaction
of p and 0 denotes its largest violation. However, although c is a
continuous signal, b is discrete, with values in {0,1}.

Using the signals c and b, we now define the individual score r
for each requirement φ ∈ Φ as follows:

r(φ, s) =
{
{
{

b (p, s) if φ ∈ΦS

c (p, s) otherwise
. (2)

Definition 2: Let (Φ,≺) be a task specification. Then, the
hierarchical potential function is defined as follows:

Ψ (s) = ∑
φ∈Φ
(∏

φ′:φ′≺φ
r(φ′, s)) ⋅ r(φ, s) . (3)

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2024.1444188
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Berducci et al. 10.3389/frobt.2024.1444188

This potential function is a weighted sum over all requirement
scores r(φ, s). The weight of r(φ, s) is the product of the scores r(φ′, s)
of all the requirements φ′ that are strictly more important than φ.
A visual representation of the signals composing the reward for our
motivating example is depicted in Figure 3.

Example: let us consider the motivating example and unpack
the potential term defined in Equation 3. For each of the seven
requirements, we define the score terms, as shown in Equation 2:

r(φ1, s) , r(φ2, s) , r(φ3, s) , r(φ4, s) , r(φ5, s) , r(φ6, s) , r(φ7, s) .

Let Φ =ΦS ⊎ΦT ⊎ΦC represent the set of requirements defining
the task. We expand the inner terms of Equation 3, weighting each
score term based on the scores of higher-priority requirements:

Ψφ1
(s) = r(φ1, s) ,

Ψφ2
(s) = r(φ1, s) ⋅ r(φ2, s) ,

Ψφi
(s) = r(φ1, s) ⋅ r(φ2, s) ⋅ r(φi, s) , ∀i = 3,…,7.

Each term is weighted according to the task hierarchy semantics.
Safety is the highest priority, so the potential for φ1 is unweighted.
Target follows safety, so the potential for φ2 is weighted by
safety. Comfort is the lowest priority, so the potentials for all
comfort requirements φi (i = 3,…,7) are weighted by both safety
and target. Finally, the overall potential is defined as the sum of the
intermediate terms:

Ψ (s) = Ψφ1
(s) +Ψφ2

(s) +Ψφ3
(s) +Ψφ4

(s) +Ψφ5
(s) +Ψφ6

(s) +Ψφ7
(s) .

Thepotential is thus amultivariate signal that combines the scores
with multiplicative terms (Russell and Norvig, 2020), according to
the ordering defined in the task (Φ,≺). A linear combination of
scores, as typical in multi-objective scalarization, would assume
independence among objectives and would not be expressive
enough to capture their interdependence (Russell andNorvig, 2020).
Crucially, the weights dynamically adapt at every step as well,
according to the satisfaction degree of the requirements.

Corollary 1: The optimal policy for the MDP M′, where its reward
R′ is defined with HPRS as

R′ (s,a, s′) = R(s,a, s′) +Ψ(s′) −Ψ (s) (4)

is also an optimal policy for the MDP M with reward R.
This corollary shows that HPRS preserves the policy optimality

for the considered undiscounted episodic setting. It follows by the
fact that Ψ:S → ℝ is a potential function that is proved to
preserve the policy optimality (Ng et al., 1999). For completeness,
we report the proof of this standard result in the following.

Proof: consider the MDP M = (S,S0,A,P,R,T), and let
M′ be the MDP obtained by transforming the reward with the
hierarchical potential shaping described in Equation 4.

Let π⋆M denote the optimal policy for M, which maximizes the
optimal action-value function Q⋆M as follows:

π⋆M (s) ∈ arg max
a∈A

Q⋆M (s,a) .

The optimal action-value function Q⋆M satisfies the Bellman
equation, which, for the undiscounted episodic MDP considered in
this work (i.e., discount γ = 1), can be written as follows:

Q⋆M (s,a) = 𝔼s′∼P(⋅|s,a) [R(s,a, s
′) +maxa′∈AQ⋆M (s

′,a′)] .

We can manipulate the expression to recover a new action-value
function that we define as Q̂(s,a):

Q̂ (s,a) = Q⋆M (s,a) −Ψ (s)

= 𝔼s′∼P(⋅|s,a) [R(s,a, s
′) −Ψ (s) +maxa′∈AQ⋆M (s

′,a′)]

= 𝔼s′∼P(⋅|s,a) [R(s,a, s
′) +Ψ(s′) −Ψ(s′) −Ψ (s) +maxa′∈AQ⋆M (s

′,a′)]

= 𝔼s′∼P(⋅|s,a) [R(s,a, s
′) +Ψ(s′) −Ψ (s) +maxa′∈A (Q

⋆
M (s
′,a′) −Ψ(s′))] (5)

= 𝔼s′∼P(⋅|s,a) [R
′ (s,a, s′) +maxa′∈A (Q⋆M (s

′,a′) −Ψ(s′))]

= 𝔼s′∼P(⋅|s,a) [R
′ (s,a, s′) +maxa′∈A (Q̂(s′,a′))] .

The final result turns out to be the Bellman equation of M′, and
by the uniqueness of the optimal action-value function Q⋆M′ , we can
now prove that the optimal policy of M′ is still optimal for M.

π⋆M′ (s) ∈ argmax
a∈A

Q⋆M′ (s,a) = argmax
a∈A

Q⋆M (s,a) −Ψ (s) .

Since Ψ(s) only depends on the state s, it does not affect the
action selection, thus completing the proof.

3.5 Rank-preserving policy-assessment
metric

Comparing the performance and behaviors emergent by
training with different rewards needs an external, unbiased
assessment metric because each reward formulation has its own
scale. To this end, we introduce a rank-preserving policy-assessment
metric (PAM) F, capturing the logical satisfaction of various
requirements and evaluating the episode according to the task
satisfaction.

The rank defined in Definition 1 does not capture any
preferences between episodes satisfying the same class of
requirements. According to our task semantics, we prefer
the episode with more frequent satisfaction of the comfort
requirements. We formalize it in the definition of the PAM F
that we use to monitor the learning process and compare HPRS
to state-of-the-art approaches.

Let Φ =ΦS ⊎ΦT ⊎ΦC be the set of requirements defining the
task. Then, we define F as follows:

F (Φ,τ) = σ(ΦS,τ) +
1
2
σ (ΦT,τ) +

1
4
σavg (ΦC,τ) , (6)

where σ(Φ,τ)  ∈ {0,1} is the satisfaction function evaluated over
Φ and τ. We also define a time-averaged version for any comfort
requirement φ = encourage f(s) ≥ 0 as follows:

σavg (φ,τ) =
|τ|

∑
i=1

1≥0 (f (si))
|τ|
. (7)

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2024.1444188
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Berducci et al. 10.3389/frobt.2024.1444188

FIGURE 3
Hierarchical potential-based reward shaping: Simulation of a car driving a full lap (H) showing trajectory (dashed line) and key timesteps (numbered
boxes): (0) approaching a turn, (1) entering a turn, (2) passing an obstacle, (3) exiting a turn, and (4) final straight. (A–C) Robustness signals for the (A)
safety, (B) target, and (C) comfort requirements. (D–F) Potentials using the hierarchical weights based on membership class. (G) Sum of rewards for
sparse and our HPRS reward. The following patterns emerge: safety is consistently maintained at 1. Target is incrementally achieved. Comfort is
satisfied as long as it does not conflict with safety and target. The comfort signal decreases near turns and obstacles, and its contribution in the reward
increases with target. The overall training signal is much more dense than the sparse base reward.

Its set-wise extension computes the set-based average.

Theorem 1: Given a task (Φ,≺), the defined metric F preserves the
episode rank such that

rank (Φ,τ1) < rank (Φ,τ2) ⇒ F (Φ,τ1) > F (Φ,τ2) .

Proof: To prove that the metric F is a rank-
preserving function (Veer et al., 2023), let us consider any episodes
τ1,τ2, for which rank(Φ,τ1) < rank(Φ,τ2) with respect to the task
specification (Φ,≺).

Let k be the first class of requirement, for which σ(ΦCk
,τ1) >

σ(ΦCk
,τ2). We can decompose the episode evaluations in Equation

6 as follows:

F (Φ,τ1) = r0 +
1
2

k−1
+ r1,

F (Φ,τ2) = r0 + 0+ r2,

where r0, r1, r2 are non-negative constants. The decomposition
considers that all the classes before k are evaluated in the same
way for τ1 and τ2, summing up to a constant term r0; the k-th
class is evaluated 1 for τ1 and 0 for τ2, and all successive classes of
requirements account r1 and r2 for τ1 and τ2, respectively.

Removing the common term r0, it remains to prove that

r2 <
1
2

k−1
+ r1.

Weuse the fact that for any τ, σ(Φ, ⋅) ∈ [0,1] and σavg(Φ, ⋅) ∈ [0,1]
to upperbound r2 as follows:

r2 =
N−1

∑
i=k+1

1
2

i−1
σ(ΦCi
,τ2) +

1
2

N−1
σavg (ΦC,τ2) <

N

∑
i=k+1

1
2

i−1
.

Finally, we expand the geometric series as follows:

N

∑
i=k+1

1
2

i−1
=

1
2
k − 1

2
N

1− 1
2

= 1
2

k−1
(1− 1

2
N
) < 1

2
k−1
,

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2024.1444188
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Berducci et al. 10.3389/frobt.2024.1444188

FIGURE 4
Policy assessment metric: example of a learning curve evaluated using the policy assessment metric (PAM). The curve is divided into three distinct
intervals, each corresponding to different levels of task satisfaction: safety only, safety with target but poor comfort, and safety with target and
maximum comfort. We use PAM as the evaluation metric because it effectively captures and distinguishes the quality of agent behavior across multiple
objectives.

where the last step follows by the fact that (1− 1
2
N) < 1,

fulfilling the proof.
Since this metric is going to be adopted in the subsequent

experimental section, we depict the levels of requirements’
satisfaction in Figure 4 to highlight the rank-preserving nature of
PAM. Moreover, the following corollary formalizes the quantitative
relations that follow from the construction of the PAM F and the
semantics of the task satisfaction defined in Equation 1.

Corollary 2: Consider a task (Φ,≺) and an episode τ. Then, the
following relations hold for F:

F (Φ,τ) ≥ 1.0↔ σ(ΦS,τ) ,

F (Φ,τ) ≥ 1.5↔ σ (Φ,τ) .

4 Auto-shaping library

We implemented the proposed HPRS in the auto-shaping
library. The library is implemented in Python for automatic
reward generation based on declarative task specifications. It
wraps the given environment to calculate rewards by evaluating
the task requirements, according to the defined hierarchy. The
library, depicted in Figure 5, comprises three components: (1)
the task specification, (2) a frontend to parse the specification
and monitor the environment, and (3) a backend that computes
the reward.

4.1 Task specification

The task is specified using the declarative language
described in Section 3.2. The users define a list of requirements,
variables (V) and constants (C), and the partially ordered sets are
inferred from their classes. Specifications for standard environments
are provided as YAML files.

4.2 Parsing and online preprocessing

We use Lark to translate the task specification from textual form
to a parse tree, according to the specified requirement grammar.
During each step of the environment, the task monitor computes
the variables defined in the task specification from the simulation
state. These observable quantities are then passed to the backend for
reward signal computation.

4.3 Shaping library

The backend component evaluates requirement specifications
based on defined semantics and is responsible for computing the
reward signal. The library incorporates various automatic shaping
methods derived from formal task specifications, including those
described in the experimental phase.

For methods based on STL monitoring, the library uses the
RTAMT monitoring tool (Ničković and Yamaguchi, 2020), which

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2024.1444188
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Berducci et al. 10.3389/frobt.2024.1444188

FIGURE 5
Auto-shaping library: architecture of auto-shaping, a software library designed for automatic reward shaping from hierarchical task specifications.
The library accepts the environment and a formal task specification, which define the operational context and the desired behavior. It consists of a
parser to interpret task specifications, a monitor to track agent performance, and various shaping techniques, including the proposed HPRS. The library
adopts standard RL interfaces for easy integration with existing training libraries, facilitating automatic reward shaping for formal task specifications.

implements infinity-norm and filtering quantitative semantics. The
library design focused on usability and compatibility with existing
RL frameworks. It is implemented as a wrapper compatible with the
gymnasium API (Towers et al., 2023) and follows the standardized
interaction between the agent and the environment. This design
choice ensures compatibility with various RL frameworks and access
to state-of-the-art algorithm implementations without requiring
custom implementations. Examples are provided using stable-
baselines3 (Raffin et al., 2019) and CleanRL (Huang et al.,
2022). We believe that this library simplifies the process of
generating reward signals in RL by automating the evaluation
of hierarchical requirements from formal task specification. Its
compatibility with popular RL frameworks enhances its usability
and applicability, standing out as the first library providing a
unified framework for reward shaping from hierarchical task
specifications.

5 Experimental results

5.1 Experimental setup

To evaluate HPRS, we employ state-of-the-art implementations
of RL algorithms on eight use cases: the cart-pole with an obstacle;
the lunar lander with an obstacle; the bipedal walker both in the
classic and hardcore versions; two customs driving tasks with single

and multiple cars, respectively; and two locomotion tasks with ant
and humanoid legged-robots. In each use case, we formalize a set of
requirements Φ =ΦS ⊎ΦT ⊎ΦP and derive their partially ordered
set (Φ,≺).

To demonstrate that our reward-shapingmethodology is general
and completely agnostic by the underlying training algorithm,
we conduct experiments using SAC from Raffin et al. (2019)
and PPO from Mittal et al. (2023), which are two stable and widely
adopted implementations.

For SAC, we tune the algorithm hyperparameters under the
original environment and reward, starting from the configuration
in rl-zoo3 (Raffin, 2020). For PPO, we use the hyperparameters
as reported in Mittal et al. (2023) because they were already
tuned for the tasks used in the experiments. We adopt the
same configuration for each environment, and during training,
we evaluate the performance of the policy at fixed intervals with
respect to the aggregated PAM F and scores for each individual
class. The details regarding the training and specific algorithm’s
hyperparameters are reported in Table 2.

5.2 Use cases

In the remainder of the presentation, we organize the
experiments based on the type of environments into classic-
control environments and physics-simulated environments. Here, we

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2024.1444188
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Berducci et al. 10.3389/frobt.2024.1444188

TABLE 2 Training configuration and hyperparameters for the simulated environments.

CP LL BW BW (hardcore)

Training and evaluation configuration

Episode timeout 400 600 500 500

Total steps 1e6 1.5e6 2e6 3e6

Evaluation frequency 1e4 1e4 1e4 1e4

Number of evaluation episodes 10 10 10 10

Hyperparameters

Algorithm SAC SAC SAC SAC

Discount γ 0.99 0.99 0.99 0.99

Learning rate 0.0003 0.0003 0.0003 0.0003

Buffer size 5e4 3e5 1e6 1e6

Learning starts 1e2 1e4 1e2 1e2

Batch size 64 256 256 256

Soft-update coefficient τ 0.005 0.01 0.005 0.005

Critic architecture [256,256] [400,300] [256,256] [256,256]

Policy-network architecture [256,256] [400,300] [256,256] [256,256]

SD FLV ANT HUM

Training and evaluation configuration

Episode timeout 300 300 960 960

Total steps 1e6 1e6 1.3e8 2.6e8

Evaluation frequency 1e4 1e4 8e6 8e6

Number of evaluation episodes 10 10 30 30

Hyperparameters

Algorithm SAC SAC PPO PPO

Discount γ 0.99 0.99 0.99 0.99

Learning rate 0.0003 0.0003 0.0005 0.0005

Buffer size 3e5 3e5 1.3e5 1.3e5

Learning starts 1e2 1e2 - -

Batch size 256 256 32e3 32e3

Soft-update coefficient τ 0.005 0.005 - -

Critic architecture [256,256] [256,256] [400,200,100] [400,200,100]

Policy-network architecture [256,256] [64,64] [400,200,100] [400,200,100]

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2024.1444188
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Berducci et al. 10.3389/frobt.2024.1444188

TABLE 3 Formalized requirements for all the tasks.

Task Req id Formula id Formula

CP

Req1 φ1 conquer d(s,G) = 0

Req2 φ2 ensure |x| ≤ xlim

Req3 φ3 ensure |θ| ≤ θfall

Req4 φ4 ensure d(s,O) > 0

Req5 φ5 encourage |θ| ≤ θbalance

LL

Req1 φ1 conquer d(s,G) = 0

Req2 φ2 ensure d(s,O) ≥ 0

Req3 φ3 ensure |x| ≤ xlim

Req4 φ4 encourage |θ| ≤ θcomf

Req5 φ5 encourage |θ̇| ≤ θ̇comf

BW

Req1 φ1 achieve d(s,G) = 0

Req2 φ2 ensure d(s,O) > 0

Req3 φ3 encourage |θ| ≤ θcomf

Req4 φ4 encourage |θ̇| ≤ θ̇comf

Req5 φ5 encourage |ẋ| ≥ vmin

Req6 φ6 encourage |ẏ| ≤ ẏcomf

SD

Req1 φ1 ensure dwalls(s) > 0

Req2 φ2 achieve L(s) = 1.0

Req3 φ3 encourage dcenter(s) ≤ dcomf

Req4 φ4 encourage v ≥ vmin

Req5 φ5 encourage v ≤ vmax

Req6 φ6 encourage |α| ≤ αcomf

Req7 φ7 encourage |a| ≤ Δa

(Continued on the following page)

describe the benchmark tasks we used to conduct the experimental
evaluation following this organization.

5.2.1 Classic-control environments
We present the tasks defined over standard classic-control

benchmarks. Table 3 reports all the requirements formalized in the
proposed specification language for each of the use cases.

5.2.1.1 Cart-pole (CP) with obstacle
A pole is attached to a cart that moves between a left and a right

limit within a flat and frictionless environment. Additionally, the
environment has a target area within the limits and a static obstacle
standing above the track. The system is controlled by applying a

TABLE 3 (Continued) Formalized requirements for all the tasks.

Task Req id Formula id Formula

FLV

Req1 φ1 achieve L(s) = 1.0

Req2 φ2 ensure dwalls(s) > 0

Req3 φ3 ensure dlead(s) > 0

Req4 φ4 encourage dlead(s) ≥ d
lead
min,comf

Req5 φ5 encourage dlead(s) ≤ d
lead
max,comf

Req6 φ6 encourage |α| ≤ αcomf

Req7 φ7 encourage |a| ≤ Δa

ANT

Req1 φ1 achieve d(s,G) = 0

Req2 φ2 ensure hbody > hmin

Req3 φ3 encourage v ≥ vmin

Req4 φ4 encourage |θgoal| ≤ θcomf

Req5 φ5 encourage ‖a‖2 ≤ acomf

Req6 φ6 encourage pjoint ≤ plim

HUM

Req1 φ1 achieve d(s,G) = 0

Req2 φ2 ensure hbody > hmin

Req3 φ3 encourage v ≥ vmin

Req4 φ4 encourage |θgoal| ≤ θcomf

Req5 φ5 encourage ‖a‖2 ≤ acomf

Req6 φ6 encourage pjoint ≤ plim

Req7 φ7 encourage gvert ≥ tup

continuous force to the cart, allowing the left and right movements
of the cart-pole with different velocities. In order to reach the goal
and satisfy the target requirement, the cart-pole must perform an
uncomfortable and potentially unsafe maneuver: since moving a
perfectly balanced pole would result in a collision with the obstacle,
the cart-pole must lose balancing and pass below it.

We formulate three safety requirements and one target and
one comfort requirement, which are defined using the following
constants: (1) G—the coordinates of the goal, (2) O—the area
that is occupied by the obstacle, (3) xlim—the limit of the world,
(4) θ fall—the limit of the angle of the pole, and (5) θbalance—the
maximum angle that we consider as balancing.

5.2.1.2 Lunar lander (LL) with obstacle
It consists of a variation in the original lunar lander

environment, where the agent controls a lander with the objective
to land at the pad with coordinates (0,0). We add an obstacle to the
environment in the vicinity of the landing pad, which makes the
landing task harder because, during the navigation, the agent has to

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2024.1444188
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Berducci et al. 10.3389/frobt.2024.1444188

avoid it to reach the pad. Landing outside of the pad is also possible
but at the cost of not achieving the task.We allow continuous actions
to control the lander engine.

We formulate two safety, one target, and two comfort
requirements, which are defined using the following constants:
(1) G—the coordinates of the landing area, (2) O—the area that
is occupied by the static obstacle, (3) xlim—the limit of the world,
(4) θcomf—the maximum comfortable angle, and (5) θ̇comf—the
maximum comfortable angular velocity.

5.2.1.3 Bipedal walker (BW)
The robot’s objective is to move forward toward the end of the

field without falling. We consider two variants of this case study: the
classical one with the flat terrain and the hardcore one with holes
and obstacles.

We consider the same task specification for both the versions,
consisting of one safety, one target, and four comfort requirements
to encourage keeping the hull balance and avoiding oscillations.
To formalize the task described, we define the following constants:
(1) O—the set of coordinates occupied by the static obstacle, (2)
θcomf—the maximum comfortable angle, (3) θ̇comf—the maximum
comfortable angular velocity, and (4) ẏcomf—the maximum
comfortable vertical velocity.

5.2.2 Physics-simulated environments
We present the tasks defined over environments using advanced

physics-based simulators. In particular, we simulated driving tasks
in PyBullet (Erwin and Yunfei, 2016) and robotics locomotion tasks
in Isaac-Sim (NVIDIA, 2023). Table 3 reports all the requirements
formalized in the proposed specification language for each of
the use cases.

5.2.2.1 Safe driving (SD)
The task consists of a car driving in a closed-loop track by end-

to-end control of the speed and steering angle.The details of this use
case are presented as a motivating example in Section 1.2.

5.2.2.2 Follow leading vehicle (FLV)
It consists of the extension with a non-controllable leading

vehicle, which the car aims to safely follow, keeping a comfortable
distance to it. The agent does not access the full state but only the
most-recent observations from LiDAR, noisy velocity estimates, and
previous controls. The safety requirements are extended to consider
the collision with the leading vehicle, and the comfort requirements
consider the control requirements and encourage the car to keep a
comfortable distance without any constraints on the car speed.

We formulate two safety, one target, and four comfort
requirements. To specify them, we build on the quantities
introduced in the safe driving task and the one described in
the example. We additionally defined the following comfort
requirements: encouraging a small steering angle (α), smooth
controls (|a|), and the agent to keep a distance between
[dlead

min,comf ,d
lead
max,comf].

5.2.2.3 Ant (ANT)
The robot is a four-legged robot that moves in a plane. The goal

consists of reaching a goal position, and the ant has control of its
eight joints to efficiently walk forward while maintaining stability.

We formulate one safety, one target, and four comfort
requirements, using the following constants: (1) G—the coordinates
of the goal, (2) hmin—the minimum height of the torso under which
the robot is considered to fall down, (3) vmin—the desiredminimum
speed in the direction of the goal, (4) θcomf—the tolerable deviation
of the robot heading to the goal, (5) acomf—the upperbound on the
action norm to encourage energy-efficient gaits, and (6) plim—the
limit in joint position.

5.2.2.4 Humanoid (HUM)
The task is the same as the ant, but the robot is a more complex

bipedal robot that resembles a human figure. The goal is to control
the torque applied to 17 joints to walk toward a target while
maintaining balance.

We formulate one safety, one target, and five comfort
requirements. In addition to the quantities introduced in the ant,
we defined a comfort requirement on gvert, which is the projection
of the base up vector onto the vertical axis. To encourage an upright
posture, we reward it to be above tup.

5.3 Reward baselines

We implemented HPRS as in Equation 4. To answer RQ1 and
RQ2, we compared it with the original reward defined by experts
in each environment, which is indicated as Shaped, and three
additional baselines from state-of-the-art work:

• TLTL (Li et al., 2017) specifies tasks in a bounded (truncated)
LTL variant equipped with an infinity-norm quantitative
semantics (Maler and Nickovic, 2004). The task specification
is a conjunction of the task requirements, and its quantitative
evaluation of the episode is used as an episodic return.
We employ the state-of-the-art RTAMT monitoring tool to
compute the episode robustness (Ničković and Yamaguchi,
2020). We choose this baseline because it represents the most
natural way to adopt formal task specifications to shape a
reward signal, directly adopting logic quantitative semantics
as a return.

• BHNR (Balakrishnan and Deshmukh, 2019) specifies tasks
in a fragment of signal temporal logic (STL) consisting of
safety and liveness formulas. However, since the infinity-
norm quantitative semantics adopted in STL and TLTL faces
locality and masking (Mehdipour et al., 2020) due to episodic
evaluation and min/max operators, respectively, the authors
propose an alternative formulation. BHNR adopts a filtering
semantics (Rodionova et al., 2016) and uses a sliding-window
approach to produce more frequent feedback to the agent.
At each step, it uses the quantitative semantics to evaluate a
sequence of H states. We choose this baseline because it still
adopts a formal language to specify the task while mitigating
some of the limitations of prior logic-based approaches.

• MORL (Brys et al., 2014) implements the multi-objectivization
of the task and solves the multi-objective problem by linear
scalarization. Treating each requirement as an objective, it
independently evaluates them and linearly combines the
individual rewards. We choose this baseline to benchmark
against a standard multi-objective approach, and it allows us

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2024.1444188
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Berducci et al. 10.3389/frobt.2024.1444188

to analyze the impact of using the adaptive weighting scheme
proposed inHPRS. To further assess the sensitivity to the choice
of weights, we consider two variants: uniform weights MORL
(unif.), where we use a unit weight for each requirement (i.e.,
w = 1), and decreasing weights MORL (decr.), where safety is
more important than the target and the target ismore important
than comfort. In the latter, we decrease the weight by halving
them for each class (i.e., w = 1.0 for safety, w = 0.5 for target,
and w = 0.25 for comfort).

5.4 Experimental evaluation

5.4.1 Comparison with baselines
We compare HPRS with the above baselines to answer RQ1.

We empirically assess the training performance in terms of training
efficiency and alignment with the desired requirements.

For a sound and unbiased comparison and for accounting to
the different reward ranges of the baselines, we use the PAM F
defined in Section 3.5. F allows categorizing each episode τ as (1)
satisfying safety if F(Φ,τ)  ≥ 1, (2) satisfying safety and target
if F(Φ,τ)  ≥ 1.5, and (3) additionally maximizing comfort if
F(Φ,τ) is close to 1.75. We emphasize that F is not used for training.
Hence, it should not be used to evaluate the convergence of the RL
algorithm in the training process.

Figures 6, 7 show that HPRS has superior performance,
as indicated by faster convergence to task-satisfying policies
reaching the same (and often better) level of performance of the
shaped reward in all the tasks. The other approaches are not
competitive to learn a policy for tasks with a high number of
requirements.

5.4.2 Offline evaluation of the learned behaviors
Regardless of the utility of a custom sound evaluation metric,

capturing complex behaviors and evaluating the satisfaction of
the hierarchical structure of requirements with a single scalar
remains challenging. For this reason, to answer RQ2, we perform
an extensive offline evaluation by comparing the policies (agents)
trained with HPRS against those trained by using the other
baseline rewards. Furthermore, we provide evidence of the emergent
behaviors in the submitted video.

We evaluate each trained policy in 50 randomepisodes for a total
of 500 episodes for each task. Table 4 reports the success rate for
incremental sets of safety (S), safety and target (S + T), and safety,
target, and comfort (S + T + C).

The results show that policies learned with HPRS consistently
complete the task in most evaluations, proving their ability in
trading-off the different requirements and reaching the same level
of performance of handcrafted rewards despite being automatically
derived from declarative specifications. Although other baselines
struggle in capturing the correct objective and do not show
consistent performance across different domains, we highlight
that HPRS is < 5% close to the best-performing approach in
all the tasks.

Logic-based approaches, such as TLTL and BHNR, consider
the task as a unique specification and result in policies that either
eagerly maximize the progress toward the target, resulting in unsafe
behaviors, or converge to an over-conservative behavior that never

achieves task completion. This observation highlights the weakness
of these approaches when dealing with many requirements because
the dominant requirement could mask out the others, even if
normalized adequately to the signal domain.

Multi-objective approaches are confirmed to be sensitive to
weight selection. Their performance is competitive in some of the
tasks, but they perform poorly in more complex tasks, such as the
bipedal walker.

Finally, the shaped reward results in policies capturing the
desired behavior, confirming the good reward shaping proposed
in the original environments. However, considering the current
training budget, HPRS produces a more effective learning signal,
resulting in better-performing policies. Although logic-based
shaping approaches, such as TLTL and BHNR, consistently
underperformed compared to shaped rewards and multi-objective
shaping (MORL) demonstrates decreasing performance in tasks
with long horizons, our proposed HPRS method consistently
demonstrates stable performance across all specified tasks.

5.4.3 Ablation study on the hierarchical task
structure

We evaluate the impact of individual requirements on the
hierarchical structure of HPRS to understand their contribution on
the emergent behavior and answer RQ3.

We focus on the comfort requirements that have the least
priority and, thus, the minor influence on the value of the
final reward. Specifically, we study how the comfort requirements
improve the observed comfort. We set up an ablation experiment on
them and compare the performance of the resulting policies.

Table 5 reports the evaluation for policies trained with
(+comfort) and without (-comfort) comfort requirements.

As in the offline evaluation, we collect 50 episodes for
each seed and compute the ratio of satisfaction of comfort
requirements over each episode, according to the time-average
defined in Equation 7.

In all the tasks, introducing comfort requirements positively
impacts the evaluation. Although some of the requirements are
almost always satisfied by both configurations, the satisfaction of
other requirements significantly improves once comfort rules are
introduced, which is denoted by an increase in themean satisfaction
and a reduction in its standard deviation. In particular, in the driving
tasks, the smaller steering magnitude and smoother transition
between consecutive controls make the policy amenable to transfer
to real-world, as demonstrated in the next section.

6 Real-world demonstration

In this section, we answer RQ4 and describe the real-world
experiments conducted to validate the usability of HPRS on robotics
systems. Specifically, we trained driving policies with HPRS and
evaluated their performance in a real-world setting using 1/10th-
scaled vehicles of the F1TENTH series (O’Kelly et al., 2020).
F1TENTH provides an affordable yet sophisticated platform for
development, encompassing all the necessary hardware and software
components of an autonomous driving car.

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2024.1444188
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Berducci et al. 10.3389/frobt.2024.1444188

FIGURE 6
Training in classic-control environments: performance for various reward-shaping techniques, including logic-based (TLTL, BHNR, and HPRS),
multi-objective (MORL(unif.) and MORL(dec.)), and engineered design (shaped). We report (row 1) the rank-preserving PAM, (rows 2–4) the scores for
individual classes of requirements, and (row 5) the success rate of the overall task. Performance are reported as mean (solid curve) and the standard
deviation (shadow) over 10 seeds.

Frontiers in Robotics and AI 15 frontiersin.org

https://doi.org/10.3389/frobt.2024.1444188
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Berducci et al. 10.3389/frobt.2024.1444188

FIGURE 7
Training in physics-simulated environments: performance for various reward-shaping techniques, including logic-based (TLTL, BHNR, and HPRS),
multi-objective (MORL(unif.) and MORL(dec.)), and engineered design (shaped). We report (row 1) the rank-preserving PAM, (rows 2–4) the scores for
individual classes of requirements, and (row 5) the success rate of the overall task. Performance are reported as mean (solid curve) and the standard
deviation (shadow) over 10 seeds.

Frontiers in Robotics and AI 16 frontiersin.org

https://doi.org/10.3389/frobt.2024.1444188
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Berducci et al. 10.3389/frobt.2024.1444188

TABLE 4 Offline evaluation of trained agents: we evaluate the agents trained with different reward-shaping techniques, collecting 50 different
simulations for each agent, starting from the same initial conditions. We report (S) the rate of episodes with all safety requirements satisfied, (S + T) the
rate of episodes where both safety and target requirements are met, and (S + T + C) the rate for safety and target weighted by the satisfaction of comfort
requirements. Results within < 5% of the best-performing reward shaping are marked, indicating comparable performance.

Environment Reward S S + T S + T + C

Succ.Rate (%) Succ.Rate (%) Succ.Rate (%)

Cart-pole

Shaped 0.87 0.78 0.75

TLTL 0.31 0.00 0.00

BHNR 0.00 0.00 0.00

MORL (unif.) 0.94 0.90 0.87

MORL (decr.) 0.88 0.78 0.75

HPRS(ours) 0.92 0.87 0.84

Lunar lander

Shaped 0.98 0.72 0.72

TLTL 0.92 0.00 0.00

BHNR 0.51 0.49 0.49

MORL (unif.) 0.91 0.91 0.90

MORL (decr.) 0.94 0.91 0.91

HPRS(ours) 0.91 0.91 0.89

Bipedal walker

Shaped 0.99 0.99 0.51

TLTL 0.96 0.45 0.27

BHNR 0.21 0.00 0.00

MORL (unif.) 0.40 0.40 0.19

MORL (decr.) 0.43 0.43 0.20

HPRS(ours) 0.96 0.96 0.48

Bipedal walker (hardcore)

Shaped 0.84 0.29 0.17

TLTL 0.98 0.00 0.00

BHNR 0.55 0.00 0.00

MORL (unif.) 0.07 0.03 0.02

MORL (decr.) 0.06 0.03 0.02

HPRS(ours) 0.85 0.85 0.44

Safe driving

Shaped 0.74 0.74 0.20

TLTL 0.38 0.32 0.10

BHNR 0.00 0.00 0.00

MORL (unif.) 0.99 0.69 0.32

MORL (decr.) 0.96 0.75 0.35

HPRS(ours) 0.97 0.73 0.33

(Continued on the following page)

Frontiers in Robotics and AI 17 frontiersin.org

https://doi.org/10.3389/frobt.2024.1444188
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Berducci et al. 10.3389/frobt.2024.1444188

TABLE 4 (Continued) Offline evaluation of trained agents: we evaluate the agents trained with different reward-shaping techniques, collecting 50
different simulations for each agent, starting from the same initial conditions. We report (S) the rate of episodes with all safety requirements satisfied, (S
+ T) the rate of episodes where both safety and target requirements are met, and (S + T + C) the rate for safety and target weighted by the satisfaction of
comfort requirements. Results within < 5% of the best-performing reward shaping are marked, indicating comparable performance.

Environment Reward S S + T S + T + C

Succ.Rate (%) Succ.Rate (%) Succ.Rate (%)

Follow leading vehicle

Shaped 0.97 0.97 0.34

TLTL 0.94 0.12 0.06

BHNR 0.31 0.00 0.00

MORL (unif.) 0.74 0.73 0.35

MORL (decr.) 0.82 0.81 0.37

HPRS(ours) 1.00 0.99 0.46

Ant

Shaped 0.96 0.96 0.23

TLTL 0.97 0.0 0.00

BHNR 0.43 0.0 0.00

MORL (unif.) 0.85 0.73 0.44

MORL (decr.) 0.94 0.07 0.05

HPRS (ours) 0.90 0.90 0.44

Humanoid

Shaped 0.99 0.99 0.23

TLTL 0.99 0.00 0.00

BHNR 0.0 0.00 0.00

MORL (unif.) 0.88 0.00 0.00

MORL (decr.) 0.95 0.00 0.00

HPRS (ours) 0.99 0.74 0.28

6.1 Training

To train the driving policies, we used the racecar_gym

environment (Brunnbauer et al., 2022), which builds on the Bullet
physics simulator (Erwin and Yunfei, 2016). The environment
provides a realistic 3D simulation of the F1TENTH vehicles,
including their sensor suite and actuation capabilities. In particular,
the agent observes sensor readings from LiDAR and velocity and
controls the car by setting a target velocity and steering angle. To
account for the lack of full-state observability, we stacked the most
recent k observations and actions (k = 3).The training tracks, shown
in Figure 8, were physically created at our laboratory facilities. The
tracks were then mapped with Cartographer SLAM (Hess et al.,
2016) and imported into the simulator to closely mimic the real-
world environment.

For the safe driving task, we trained the policy on both the
GM (21.25,m) and TRT (51.65,m) tracks and deployed it in the
GM track. The GM track is a narrow track with multiple tight

turns, resembling the (scaled) layout of the track used in the head-
to-head final of the F1TENTH Autonomous Grand-Prix 2021 in
Prague. The TRT track, on the other hand, is characterized by long
straightaways and 90-degree curves, and we keep it as a reference
from the simulation environment (Brunnbauer et al., 2022). By
training on both tracks, we enforce robustness to variations in
track design and layout. For the follow lead vehicle task, we trained
and deployed the policy on the GM-C (13.50,m) track, which is a
modified version of the GM track that includes a lead vehicle for the
ego vehicle to follow.

During training, we sampled the track and the car pose at
random. To train a policy that was robust to environmental
mismatch between simulation and real-world settings, we
performed domain randomization (Tobin et al., 2017) of the
simulation parameters. This involved randomizing the values of
various simulation parameters, including the noise characteristics
of the sensors and the gains of the actuators. The randomization
intervals are reported in Table 6. This approach helped the policy

Frontiers in Robotics and AI 18 frontiersin.org

https://doi.org/10.3389/frobt.2024.1444188
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Berducci et al. 10.3389/frobt.2024.1444188

TABLE 5 Ablation on comfort requirements: we evaluate the agents
trained with HPRS using the full hierarchy of requirements (+Comfort)
and the hierarchy excluding comfort (-Comfort). The satisfaction of
comfort requirements uses the time-averaged satisfaction (Equation 5).
The results report mean and standard deviation over 50 evaluation
episodes for each agent.

+Comfort -Comfort

Cart-pole σavg σavg

Keep the balance 1.00± 0.00 1.00± 0.00

Lunar lander

Hull angle 0.99± 0.05 0.99± 0.02

Hull angular velocity 0.97± 0.07 0.98± 0.05

Bipedal walker

Hull angle 0.80± 0.17 0.33± 0.27

Hull angular velocity 1.00± 0.00 0.99± 0.01

Vertical oscillation 0.98± 0.01 0.91± 0.11

Horizontal velocity 0.95± 0.01 0.92± 0.03

Bipedal walker hardcore

Hull angle 0.70± 0.13 0.29± 0.14

Hull angular velocity 1.00± 0.00 0.99± 0.01

Vertical oscillation 0.83± 0.06 0.75± 0.09

Horizontal velocity 0.94± 0.05 0.81± 0.10

Safe driving σavg σavg

Keep the center 0.39± 0.12 0.33± 0.10

Min velocity 0.48± 0.21 0.89± 0.06

Max velocity 0.99± 0.01 0.36± 0.14

Comfortable steering 0.27± 0.08 0.08± 0.04

Smooth control 0.70± 0.07 0.32± 0.07

Follow leading vehicle

Min distance 0.55± 0.22 0.85± 0.16

Max distance 0.90± 0.08 0.61± 0.18

Comfortable steering 0.23± 0.05 0.15± 0.04

Smooth control 0.78± 0.09 0.41± 0.11

Ant

Forward velocity 0.00± 0.00 0.04± 0.06

Heading to target 0.62± 0.23 0.27± 0.20

Action norm 0.59± 0.21 0.02± 0.02

Joints within limits 0.55± 0.20 0.01± 0.01

(Continued on the following page)

TABLE 5 (Continued) Ablation on comfort requirements: we evaluate
the agents trained with HPRS using the full hierarchy of requirements
(+comfort) and the hierarchy excluding comfort (-comfort). The
satisfaction of comfort requirements uses the time-averaged
satisfaction (Equation 5). The results report mean and standard deviation
over 50 evaluation episodes for each agent.

+Comfort -Comfort

Humanoid

Forward velocity 0.01± 0.03 0.0± 0.0

Heading to target 0.65± 0.23 0.37± 0.32

Upright posture 0.50± 0.20 0.35± 0.31

Action norm 0.76± 0.22 0.42± 0.22

Joints within limits 0.10± 0.09 0.0± 0.0

generalize well to real-world settings, where the exact values of these
parameters may differ from those in the simulator.

6.2 Deployment

To validate the performance of our trained policies in a
real-world setting, we used 1/10th-scaled vehicles from the
F1TENTH series (O’Kelly et al., 2020). The hardware platform
consisted of an off-the-shelf Traxxas Ford Fiesta ST race car chassis,
which was actuated by a brushless DC electric motor and controlled
by a VESC 6 MkIV electronic speed controller. We used a Hokuyo
UST-10LX 2D LiDAR sensor to sense distances to surrounding
obstacles and walls. This sensor has a field of view of 270° and
can scan up to 10 m with high precision. We also read a noisy
estimate of the vehicle’s velocity directly from the VESC. All model
inputs, including the LiDAR scan, VESC data, and last actions, were
normalized to lie within the range ±1.

We integrated the trained agent into a ROS node within the
F1TENTH software setup, with speed and steering commands
passed to the auxiliary nodes from the F1TENTH software stack.
These nodes automatically computed the motor RPM and servo
position. To account for differences in sensor rates and policy
inference between the simulated and real-world environments, we
ran a control loop at a frequency of 10 Hz on an NVIDIA Jetson
Xavier NX embedded computing platform. At each iteration, we
collected the most recent readings from the sensors, prepared the
data, and performed inference.

We tested the performance of our trained policies by deploying
them in real-world scenarios. Figure 9 shows a successful
deployment of our safe-driving task, where the car smoothly drives
along the track. We also demonstrate the car’s ability to safely follow
a leading vehicle while maintaining a comfortable distance. The
video attached to this submission shows these behaviors in action.

7 Discussion and limitations

We have presented a principled approach for shaping rewards
from a set of partially ordered formalized requirements and

Frontiers in Robotics and AI 19 frontiersin.org

https://doi.org/10.3389/frobt.2024.1444188
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Berducci et al. 10.3389/frobt.2024.1444188

FIGURE 8
Racing tracks used for training and deployment of the driving agent.

TABLE 6 Domain randomization parameters: randomization intervals for physical parameters were used during training to improve sim-to-real transfer
of the trained agent. For each parameter, the interval specifies the range of values sampled from the given distribution. These randomizations create
diverse training environments, enabling the agent to transfer better in real-world scenarios.

Component Physical parameter Randomization interval Units Distribution

Actuator Steering multiplier [0.5, 0.75] - Uniform

Actuator Velocity multiplier [20, 25] - Uniform

Actuator Maximum velocity [3.5, 4.0] m/s Uniform

Sensor Velocity noise (std dev) [0.01, 0.05] m/s Uniform

FIGURE 9
Real-world demonstration of deployment on an F1TENTH car: Successful deployment of a policy trained with HPRS on a real-world F1TENTH car,
completing a full lap of the racetrack. The overlay depicts the sequence of car poses, illustrating the car’s trajectory throughout the lap. The inset
image (top-left) shows the layout of the racetrack used in this experiment.

Frontiers in Robotics and AI 20 frontiersin.org

https://doi.org/10.3389/frobt.2024.1444188
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Berducci et al. 10.3389/frobt.2024.1444188

demonstrated its practical usability in simulated and real-
world applications. Here, we consider a few limitations to
the proposed approach that are worth considering for future
work.

First, the continuous potential function definition relies on
well-shaped signals in the requirements, as is usually the case in
continuous control tasks. However, in systemswith hybrid dynamics
and discrete jumps, this may not hold. Despite advancements in the
exploration strategy for RL, discrete and sparse signals inherently
complicate exploration.

Second, addressing a high number of conflicting requirements
remains an open challenge. We handle this by assigning priorities
among requirements, yielding positive results for up to seven
requirements across diverse applications. This demonstrates the
applicability of the proposed methodology, reducing the number
of design choices that must be made for each problem. However,
the problem of scalarization remains a fundamental issue in multi-
objective optimization research.

Furthermore, we validate our approach by deploying the
trained policy on hardware in two autonomous driving tasks.
However, the transfer from simulation to hardware is a well-
known challenge, extending beyond our study. To address
this, we close the simulation-to-real mismatch using a physics
simulator with realistic noisy LiDAR and velocity sensors. We
match control frequency to hardware capabilities and train a
robust policy with domain randomization of physics parameters.
Despite these efforts, sim-to-real transfer remains challenging
and requires expertise for accurate modeling of the system
parameters.

Finally, we re-implemented the baselines for compatibility with
the latest RL frameworks. When striving for fidelity to original
formulations and keeping the implementation close to the existing
codebases, the absence of a unified framework poses challenges for
full reproducibility. For this reason, we release theauto-shaping
library to promote a reusable and transparent approach to foster
research on reward design and alignment in the training of AI
technologies.

8 Conclusion

This paper introduced HPRS, a novel, hierarchical, potential-
based reward-shapingmethod and tool for tasks (Φ,≺), consisting of
a partially ordered set of safety, target, and comfort requirements.We
conducted experiments on eight continuous-control benchmarks,
comparing HPRS to many reward-shaping techniques, including
logic-based, multi-objective, and engineered solutions. In the
experiments, we show that HPRS performs well in a large variety
of tasks. Moreover, conducting extensive offline evaluation and
ablation on the hierarchy of requirements, we show that the
multivariate reward with adaptive weights based on priorities
enhances comfort without compromising the satisfaction of
safety and target requirements, unlike other approaches which
fail to capture the interdependence among different classes of
requirements. Finally, we demonstrated the real-world applicability
of HPRS through two sim-to-real experiments on driving
benchmarks using F1TENTH vehicles, showcasing smooth
autonomous vehicle control.

The idea of automatically shaping rewards from specifications
possessing an evaluation procedure is general and agnostic to the
plant and the RL algorithm adopted. We demonstrate this in the
experiments by training with different RL algorithms and showing
that HPRS, despite being automatic and based on declarative
specifications, can achieve performance comparable to engineered
solutions shaped by experts. We believe that our approach can bring
many benefits when learning policies for autonomous agents from
a set of well-defined rules with well-known priorities. There is,
nevertheless, sufficient room to consider variants of this approach.
The choice of the specification language and its semantics are
flexible, and any representation of requirements equipped with
an evaluation function for observed behaviors can be used for
hierarchical reward shaping. In this paper, we focused on unbounded
temporal operators defined over episodic tasks.

In subsequent work, we intend to consider more expressive
operators and study the formalization of requirements beyond
safety, progress, and comfort, such as the ethical, legal, and
performance objectives.

Data availability statement

Publicly available datasets were analyzed in this study.
These data can be found at: Experiments repo: https://github.
com/edalexAguilar/reward_shaping. Experiments logs: https://
zenodo.org/records/7075333. Auto-shaping Library: https://github.
com/luigiberducci/auto-shaping.

Author contributions

LB: conceptualization, formal analysis, investigation,
methodology, software, visualization, writing–original draft,
and writing–review and editing. EA: conceptualization, formal
analysis, investigation, methodology, visualization, writing–original
draft, and writing–review and editing. DN: conceptualization,
supervision, andwriting–review and editing. RG: conceptualization,
supervision, and writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work
has received funding from the EU’s Horizon 2020 research and
innovation program under grant No 956123 and from the Austrian
FFG ICT of the Future program under grant No 880811. LB was
supported by the Doctoral College Resilient Embedded Systems.
This research was partially funded by A-IQ Ready (Chips JU, grant
agreement No. 101096658).

Acknowledgments

The authors thank Axel Brunnbauer for contributing in the early
stage of this work.The authors acknowledge TUWien Bibliothek for

Frontiers in Robotics and AI 21 frontiersin.org

https://doi.org/10.3389/frobt.2024.1444188
https://github.com/edalexAguilar/reward_shaping
https://github.com/edalexAguilar/reward_shaping
https://zenodo.org/records/7075333
https://zenodo.org/records/7075333
https://github.com/luigiberducci/auto-shaping
https://github.com/luigiberducci/auto-shaping
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Berducci et al. 10.3389/frobt.2024.1444188

financial support through its Open Access Funding Program. The
authors declare that they have used generative artificial intelligence,
specifically ChatGPT (GPT-4o mini) to improve language and
readability. After using this tool, the authors reviewed and edited
the content as needed and take full responsibility for the content of
the publication. Figure 1 has been designed using resources from
Flaticon.com.

Conflict of interest

The authors declare that the research was conducted in
the absence of any commercial or financial relationships
that could be construed as a potential conflict of
interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.2024.
1444188/full#supplementary-material

References

Abels, A., Roijers, D., Lenaerts, T., Nowé, A., and Steckelmacher, D. (2019). “Dynamic
weights in multi-objective deep reinforcement learning,” in International conference on
machine learning (PMLR), 11–20.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., andMané, D. (2016).
Concrete problems in ai safety. ArXiv abs/1606.06565

Balakrishnan, A., and Deshmukh, J. V. (2019). “Structured reward
shaping using signal temporal logic specifications,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 3481–3486.
doi:10.1109/IROS40897.2019.8968254

Barrett, L., and Narayanan, S. (2008). “Learning all optimal policies with multiple
criteria,” in Proceedings of the 25th international conference on Machine learning, 41–47.

Barto, A. G., and Mahadevan, S. (2003). Recent advances in
hierarchical reinforcement learning. Discrete event Dyn. Syst. 13, 341–379.
doi:10.1023/a:1025696116075

Berducci, L., Aguilar, E. A., Ničković, D., and Grosu, R. (2021). Hierarchical
potential-based reward shaping from task specifications. arXiv preprint
arXiv:2110.02792

Berducci, L., and Grosu, R. (2022). “Safe policy improvement in constrained markov
decision processes,” in Leveraging applications of formal methods, verification and
validation. Verification principles: 11th international symposium, ISoLA 2022, rhodes,
Greece, october 22–30, 2022, proceedings, Part I (Springer), 360–381.

Brunnbauer, A., Berducci, L., Brandstaetter, A., Lechner,M., Hasani, R., Rus, D., et al.
(2022). “Latent imagination facilitates zero-shot transfer in autonomous racing,” in 2022
international conference on robotics and automation (ICRA) (IEEE Press), 7513–7520.
doi:10.1109/ICRA46639.2022.9811650

Brys, T., Harutyunyan, A., Vrancx, P., Taylor, M. E., Kudenko, D., and Nowé, A.
(2014). “Multi-objectivization of reinforcement learning problems by reward shaping,”
in 2014 international joint conference on neural networks (IJCNN) (IEEE), 2315–2322.

Camacho, A., Chen, O., Sanner, S., and McIlraith, S. A. (2017). “Non-markovian
rewards expressed in ltl: guiding search via reward shaping,” in SOCS.

Censi, A., Slutsky, K., Wongpiromsarn, T., Yershov, D. S., Pendleton, S., Fu, J. G.
M., et al. (2019). “Liability, ethics, and culture-aware behavior specification using
rulebooks,” in International Conference on Robotics and Automation, ICRA 2019,
Montreal, QC, Canada, 8536–8542. doi:10.1109/icra.2019.8794364May 20-24, 2019

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S., and Amodei, D. (2017).
Deep reinforcement learning from human preferences. Adv. neural Inf. Process. Syst. 30.

[Dataset] Jones, A., Aksaray, D., Kong, Z., Schwager, M., and Belta, C. (2015). Robust
satisfaction of temporal logic specifications via reinforcement learning

Towers,M., Terry, J. K., Kwiatkowski, A., Balis, J. U., Cola, G. d., Deleu, T., et al. (2023).
Gymnasium. doi:10.5281/zenodo.8127026

Devidze, R., Radanovic, G., Kamalaruban, P., and Singla, A. (2021). Explicable reward
design for reinforcement learning agents.Adv. neural Inf. Process. Syst. 34, 20118–20131.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel, P. (2016).
“Benchmarking deep reinforcement learning for continuous control,” in International
conference on machine learning (JMLR), 1329–1338.

Erwin, C., and Yunfei, B. (2016). Pybullet a pythonmodule for physics simulation for
games. PyBullet.

Eschmann, J. (2021). Reward function design in reinforcement learning.Reinf. Learn.
Algorithms Analysis Appl., 25–33. doi:10.1007/978-3-030-41188-6_3

Fu, J., and Topcu, U. (2014). “Probably approximately correct MDP learning and
control with temporal logic constraints,” in Robotics: science and systems X. Editors
D. Fox, L. E. Kavraki, and H. Kurniawati (Berkeley, USA: University of California).
doi:10.15607/RSS.2014.X.039July 12-16, 2014

Gábor, Z., Kalmár, Z., and Szepesvári, C. (1998). “Multi-criteria reinforcement
learning,” in Proceedings of the Fifteenth International Conference on Machine
Learning (ICML 1998), July 24-27, 1998. Editor J. W. Shavlik (Madison, Wisconsin,
USA: Morgan Kaufmann), 197–205.

Hayes, C. F., Rădulescu, R., Bargiacchi, E., Källström, J., Macfarlane, M., Reymond,
M., et al. (2022). A practical guide to multi-objective reinforcement learning and
planning. Aut. Agents Multi-Agent Syst. 36, 26. doi:10.1007/s10458-022-09552-y

Hess, W., Kohler, D., Rapp, H., and Andor, D. (2016). “Real-time loop closure in
2d lidar slam,” in 2016 IEEE International Conference on Robotics and Automation
(ICRA), 1271–1278.

Huang, S., Dossa, R. F. J., Ye, C., Braga, J., Chakraborty, D., Mehta, K., et al. (2022).
Cleanrl: high-quality single-file implementations of deep reinforcement learning
algorithms. J. Mach. Learn. Res. 23, 1–18.

Icarte, R. T., Klassen, T., Valenzano, R., and McIlraith, S. (2018). “Using
reward machines for high-level task specification and decomposition in
reinforcement learning,” in International Conference on Machine Learning (PMLR),
2107–2116.

Jothimurugan, K., Alur, R., and Bastani, O. (2019). “A composable specification
language for reinforcement learning tasks,”. Advances in neural information processing
systems. Editors H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and
R. Garnett (Curran Associates, Inc.), 32.

Jothimurugan, K., Bansal, S., Bastani, O., and Alur, R. (2021). Compositional
reinforcement learning from logical specifications. Corr. abs/2106, 13906.

Laud, A., and DeJong, G. (2003). “The influence of reward on the speed of
reinforcement learning: an analysis of shaping,” in Proceedings of the 20th International
Conference on Machine Learning (AAAI Press), 440–447.

Li, X., Ma, Y., and Belta, C. (2018). “A policy search method for temporal logic
specified reinforcement learning tasks,” in 2018 annual American control conference
(ACC), 240–245.

Li, X., Vasile, C.-I., and Belta, C. (2017). “Reinforcement learning with temporal logic
rewards,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 3834–3839. doi:10.1109/IROS.2017.8206234

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al.
(2016). “Continuous control with deep reinforcement learning,” in 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings. Editors Y. Bengio, and Y. LeCun

Liu, C., Xu, X., and Hu, D. (2015). Multiobjective reinforcement learning:
a comprehensive overview. IEEE Trans. Syst. Man, Cybern. Syst. 45, 385–398.
doi:10.1109/TSMC.2014.2358639

Maler, O., and Nickovic, D. (2004). “Monitoring temporal properties of continuous
signals,” in Formal techniques, modelling andAnalysis of timed and fault-tolerant systems.
Editors Y. Lakhnech, and S. Yovine (Berlin, Heidelberg: Springer Berlin Heidelberg),
152–166.

Mehdipour, N., Vasile, C.-I., and Belta, C. (2019). “Arithmetic-geometric mean
robustness for control from signal temporal logic specifications,” in 2019 American
Control Conference (ACC), 1690–1695. doi:10.23919/ACC.2019.8814487

Frontiers in Robotics and AI 22 frontiersin.org

https://doi.org/10.3389/frobt.2024.1444188
https://www.flaticon.com/
https://www.frontiersin.org/articles/10.3389/frobt.2024.1444188/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2024.1444188/full#supplementary-material
https://doi.org/10.1109/IROS40897.2019.8968254
https://doi.org/10.1023/a:1025696116075
https://doi.org/10.1109/ICRA46639.2022.9811650
https://doi.org/10.1109/icra.2019.8794364
https://doi.org/10.5281/zenodo.8127026
https://doi.org/10.1007/978-3-030-41188-6_3
https://doi.org/10.15607/RSS.2014.X.039
https://doi.org/10.1007/s10458-022-09552-y
https://doi.org/10.1109/IROS.2017.8206234
https://doi.org/10.1109/TSMC.2014.2358639
https://doi.org/10.23919/ACC.2019.8814487
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Berducci et al. 10.3389/frobt.2024.1444188

Mehdipour, N., Vasile, C.-I., and Belta, C. (2020). Specifying user preferences
using weighted signal temporal logic. IEEE Control Syst. Lett. 5, 2006–2011.
doi:10.1109/lcsys.2020.3047362

Mittal, M., Yu, C., Yu, Q., Liu, J., Rudin, N., Hoeller, D., et al. (2023). Orbit: a unified
simulation framework for interactive robot learning environments. IEEE Robotics
Automation Lett. 8, 3740–3747. doi:10.1109/LRA.2023.3270034

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
et al. (2015). Human-level control through deep reinforcement learning. nature 518,
529–533. doi:10.1038/nature14236

Natarajan, S., and Tadepalli, P. (2005). “Dynamic preferences in multi-criteria
reinforcement learning,” in Proceedings of the 22nd international conference on
Machine learning, 601–608. doi:10.1145/1102351.1102427

Ng, A. Y., Harada, D., and Russell, S. (1999). “Policy invariance under reward
transformations: theory and application to reward shaping,” in Proceedings of
the Sixteenth International Conference on Machine Learning (Morgan Kaufmann),
278–287.

Ničković, D., and Yamaguchi, T. (2020). “Rtamt: online robustness monitors from
stl,” in International symposium on automated Technology for verification and Analysis
(Springer), 564–571.

NVIDIA (2023). Isaac sim - robotics simulation and synthetic data generation.
NVIDIA.

O’Kelly, M., Zheng, H., Karthik, D., and Mangharam, R. (2020). F1tenth: an open-
source evaluation environment for continuous control and reinforcement learning.
Proc. Mach. Learn. Res. 123.

Puranic, A. G., Deshmukh, J. V., and Nikolaidis, S. (2021). Learning from
demonstrations using signal temporal logic in stochastic and continuous domains. IEEE
Robotics Automation Lett. 6, 6250–6257. doi:10.1109/LRA.2021.3092676

Raffin, A. (2020). Rl baselines3 zoo. Available at: https://github.com/DLR-RM/rl-
baselines3-zoo.

Raffin, A., Hill, A., Ernestus, M., Gleave, A., Kanervisto, A., andDormann, N. (2019).
Stable baselines3. Available at: https://github.com/DLR-RM/stable-baselines3.

Rodionova, A., Bartocci, E., Nickovic, D., and Grosu, R. (2016). “Temporal
logic as filtering,” in Proceedings of the 19th International Conference on
Hybrid Systems: Computation and Control, 11–20. doi:10.1145/2883817.
2883839

Roijers, D. M., Vamplew, P., Whiteson, S., and Dazeley, R. (2013). A survey of multi-
objective sequential decision-making. J. Artif. Int. Res. 48, 67–113. doi:10.1613/jair.3987

Russell, S., and Norvig, P. (2020). Artificial intelligence: a modern approach. 4th
Edition. Pearson.

Shelton, C. (2001). “Balancingmultiple sources of reward in reinforcement learning,”.
Advances in neural information processing systems. Editors T. Leen, T. Dietterich, and V.
Tresp (MIT Press), 13.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et al.
(2017). Mastering the game of go without human knowledge. nature 550, 354–359.
doi:10.1038/nature24270

Sutton, R. S. (2018). Reinforcement learning: an introduction. MIT Press.

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and Abbeel, P. (2017). Domain
randomization for transferring deep neural networks from simulation to the real world
in 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS)
(IEEE), 23–30.

Toro Icarte, R., Klassen, T. Q., Valenzano, R., and McIlraith, S. A. (2018). “Teaching
multiple tasks to an rl agent using ltl,” in Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems, 452–461.

Tutsoy, O. (2021). Pharmacological, non-pharmacological policies and mutation: an
artificial intelligence based multi-dimensional policy making algorithm for controlling
the casualties of the pandemic diseases. IEEE Trans. Pattern Analysis Mach. Intell. 44,
9477–9488. doi:10.1109/tpami.2021.3127674

Van Moffaert, K., Drugan, M. M., and Nowé, A. (2013). “Scalarized multi-
objective reinforcement learning: novel design techniques,” in 2013 IEEE symposium
on adaptive dynamic programming and reinforcement learning (ADPRL), 191–199.
doi:10.1109/ADPRL.2013.6615007

Veer, S., Leung, K., Cosner, R. K., Chen, Y., Karkus, P., and Pavone, M. (2023).
“Receding horizon planning with rule hierarchies for autonomous vehicles,” in IEEE
International Conference on Robotics and Automation, ICRA 2023, London, UK, May
29 - June 2, 2023 (IEEE), 1507–1513. doi:10.1109/ICRA48891.2023.10160622

Wiewiora, E. (2003). Potential-based shaping and q-value initialization are
equivalent. J. Artif. Intell. Res. 19, 205–208. doi:10.1613/jair.1190

Xiao, W., Mehdipour, N., Collin, A., Bin-Nun, A. Y., Frazzoli, E., Tebbens, R. D.,
et al. (2021). “Rule-based optimal control for autonomous driving,” in Proceedings
of the ACM/IEEE 12th International Conference on Cyber-Physical Systems,
143–154.

Zhao, Y., Chen, Q., and Hu, W. (2010). “Multi-objective reinforcement learning
algorithm for mosdmp in unknown environment,” in 2010 8th world congress
on intelligent control and automation, 3190–3194. doi:10.1109/WCICA.2010.
5553980

Frontiers in Robotics and AI 23 frontiersin.org

https://doi.org/10.3389/frobt.2024.1444188
https://doi.org/10.1109/lcsys.2020.3047362
https://doi.org/10.1109/LRA.2023.3270034
https://doi.org/10.1038/nature14236
https://doi.org/10.1145/1102351.1102427
https://doi.org/10.1109/LRA.2021.3092676
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/stable-baselines3
https://doi.org/10.1145/2883817.2883839
https://doi.org/10.1145/2883817.2883839
https://doi.org/10.1613/jair.3987
https://doi.org/10.1038/nature24270
https://doi.org/10.1109/tpami.2021.3127674
https://doi.org/10.1109/ADPRL.2013.6615007
https://doi.org/10.1109/ICRA48891.2023.10160622
https://doi.org/10.1613/jair.1190
https://doi.org/10.1109/WCICA.2010.5553980
https://doi.org/10.1109/WCICA.2010.5553980
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	1.1 Contributions
	1.2 Motivating example

	2 Related work
	2.1 Reward shaping
	2.2 RL with temporal logic
	2.3 Multi-objective RL
	2.4 Hierarchically structured requirements

	3 Methods
	3.1 Requirement specification language
	3.2 A task as a partially ordered set of requirements
	3.3 MDP formalization of a task
	3.3.1 Episodes
	3.3.2 Base reward

	3.4 Hierarchical potential-based reward shaping
	3.5 Rank-preserving policy-assessment metric

	4 Auto-shaping library
	4.1 Task specification
	4.2 Parsing and online preprocessing
	4.3 Shaping library

	5 Experimental results
	5.1 Experimental setup
	5.2 Use cases
	5.2.1 Classic-control environments
	5.2.1.1 Cart-pole (CP) with obstacle
	5.2.1.2 Lunar lander (LL) with obstacle
	5.2.1.3 Bipedal walker (BW)

	5.2.2 Physics-simulated environments
	5.2.2.1 Safe driving (SD)
	5.2.2.2 Follow leading vehicle (FLV)
	5.2.2.3 Ant (ANT)
	5.2.2.4 Humanoid (HUM)

	5.3 Reward baselines
	5.4 Experimental evaluation
	5.4.1 Comparison with baselines
	5.4.2 Offline evaluation of the learned behaviors
	5.4.3 Ablation study on the hierarchical task structure

	6 Real-world demonstration
	6.1 Training
	6.2 Deployment

	7 Discussion and limitations
	8 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

