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This paper investigates the potential of the intrinsically motivated reinforcement
learning (IMRL) approach for robotic drumming. For this purpose, we
implemented an IMRL-based algorithm for a drumming robot called ZRob, an
underactuated two-DoF robotic arm with flexible grippers. Two ZRob robots
were instructed to play rhythmic patterns derived from MIDI files. The RL
algorithm is based on the deep deterministic policy gradient (DDPG) method,
but instead of relying solely on extrinsic rewards, the robots are trained using
a combination of both extrinsic and intrinsic reward signals. The results of the
training experiments show that the utilization of intrinsic reward can lead to
meaningful novel rhythmic patterns, while using only extrinsic reward would
lead to predictable patterns identical to the MIDI inputs. Additionally, the
observed drumming patterns are influenced not only by the learning algorithm
but also by the robots’ physical dynamics and the drum’s constraints. This work
suggests new insights into the potential of embodied intelligence for musical
performance.
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reinforcement learning, embodied intelligence, intrinsic motivation, musical robots,
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1 Introduction

Music performance is a complex form of skilled sequential action, often with a
creative behavioural element. During practice, the musician explores the dynamics of
the instrument, their bodily actions, and physical characteristics of the environment to
achieve motor skills for playing the instrument (Godøy, 2018). The reference signals
that enable the musicians to refine their actions are derived from the musical output
of the performance. When the desired musical goal is determined from the beginning,
the reference signal is provided by an extrinsic source, e.g., sheet music. Furthermore,
exploring the dynamics of performance can lead to novel patterns and creative behaviour,
which are not necessarily the primary goal of practice. This is similar to autonomous
exploration in children, where they are not told what to learn but instead learn from
exploring the environment with curiosity (Oudeyer, 2018; Schmidhuber, 2006). Inspired
by these approaches to learning musical performance, we can develop intelligent musical
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machines, such as robots, that can performmusic autonomously and
adapt to different situations.

Utilising an extrinsic reference is similar to using ground-truth
information in a labelled dataset for supervised learning or a reward
signal provided by the environment in reinforcement learning. In this
approach, the main assumption is that the desired performance is
known. For instance, playing a specific note with a given duration in
a specific moment is an example of an extrinsic reference point. The
goal of any training process that only uses this type of information
is to achieve a result with a minimum difference from the given
reference data. Consequently, the resulting performance would be an
optimal replication of the known target. On the other hand, intrinsic
motivationcanaddanotherdimension to the trainingprocess inmusic
performance. In machine learning, the intrinsic reward refers to an
internalmeasure based on prediction and surprise factors (Sutton and
Barto,2018).Usually, thereasonforusingintrinsicrewardis todiscover
novel patterns during the training process. Inmusic performance, the
intrinsic reward can lead to finding emergent patterns.

Building on these concepts, the integration of intrinsicmotivation
into the design of intelligent musical machines presents great
potential to explore creativity.Unlike the extrinsic reference approach,
where performance targets are pre-defined, and the goal is accurate
replication, an intrinsicmotivationmodelwouldallow thesemachines
to self-direct their learning process. This could resemble a form of
artistic exploration, where the machine is not just replicating known
pieces but also creating and discovering new musical expressions.

This paper examines the possibility and potential of utilizing
intrinsic and extrinsic reward signals in a music performance
application.Animportantaspectofmusicalrobotsistheabilitytoadapt
and explore new possibilities (Weinberg et al., 2020). One solution is
to deploy different rewarding strategies for training musical robots
(Vear, 2021). The training methods have been designed and tested
for a physical drumming robot called ZRob (Figure 1). The robot is
inspiredbythehumanhandmorphology,havingaflexiblegripperwith
passive springs.Thismakes it possible to exploit the rebounding forces
in drumming, like in human drumming. Playingmultiple-stroke rolls
created by the gripper’s vibrations is an example of how embodiment
and physical constraints contribute to the drumming performance.
Multiple ZRob arms can be combined to generate complex rhythmic
patterns. We typically work with pairs of robots, emulating the way a
human would play on a drum, such as a snare drum.

Robotic drumming, in general, contains nonlinear and complex
dynamics. The physical constraints of the body of ZRob robots also
shape thedrummingdynamics.Theadvantageofusingan intrinsically
motivated learning algorithm for such robots is the possibility of
exploring the dynamics and physical constraints of the robot and the
drumtodiscovernovelpatterns.Thisapproachcanalsobeaddressedin
thecontextofembodied intelligence,meaningthat intelligentbehaviour
emerges from the interaction between an agent’s brain, body, and
environment rather than being a product of computational processes
in the brain (Gupta et al., 2021). An essential element of embodied
intelligence is the exploitation of the dynamics of the body and
the physical constraints of the environment (Roy et al., 2021). In
our proposed system, the interaction of the drum and ZRob’s body,
especially affected by the flexible gripper, plays a significant role in
learning. We have used two robots with different spring stiffness,
leading tomorediverse emergentdrummingpatterns.Theseemergent

patterns have been explored in another study without using any
learning algorithm (Karbasi et al., 2023).

The learning algorithms used in this study are based on the
deep deterministic policy gradient (DDPG) method, which has
been successfully implemented in continuous control problems in
different applications (Lillicrap et al., 2015; Sajadi et al., 2022).
DDPG is a reinforcement learning algorithm based on the actor-
critic architecture that trains a policy function for continuous action
and state spaces. We used MIDI inputs as the reference set point
to define the extrinsic reward function. The intrinsic reward signal
is calculated based on a prediction model. During training, the
prediction model is updated at each step, and the intrinsic reward
is calculated based on the improvement of the model.

An internalmodel in our system is designed to predict the sound
features given the robot’s current state and actions, which allows
the robot to understand the relationship between its movements
and the produced sound. This approach is directly inspired by the
theoretical framework presented in Schmidhuber (2010).While this
might seem like a purely predictive function, the role of intrinsic
reward lies in driving the system to seek improvements in this
prediction.The robot does not simply learn to repeat knownpatterns
but rather is artificially curious to explore the dynamics of its body
and environment to discover novel and unpredicted outcomes. This
exploration creates opportunities for the emergence of new rhythmic
variations and behaviors. The intrinsic reward is calculated based
on the surprise factor or error in the prediction model, pushing the
robot to adjust its actions inways that are not dictated by the external
reward but are shaped by its ongoing interaction with its physical
form and the drum, leading to more creative patterns.

The aim of this paper is to contribute to the development of
robotic musicianship for drumming performance by implementing
intrinsicallymotivated reinforcement learning to enable ZRob robotic
drummers to demonstrate rhythmic creativity. In particular, we
demonstrate how the robots can learn in a real-world setting
and examine the role of intrinsic rewards in making emergent
drumming patterns. In the next section, we will briefly present
the previously related works on drum robots and applications of
IMRL for robot learning.

2 Background

Musical robotics is a small but emerging field based on
interdisciplinary collaborations between several artists, researchers,
and engineers. While robotic drumming systems have been widely
explored, several other robotic systems have been developed for
playing different musical instruments, demonstrating the versatility
of robotics in artistic and creative applications. For example,
robots have been created to play the marimba, such as Shimon,
an interactive improvisation system for a robotic marimba player
(Hoffman and Weinberg, 2011). Similarly, piano-playing robots have
garnered attention, with works like (Hughes et al., 2018) creating an
anthropomorphic soft skeletonhand forpianoplaying, andWanget al.
(2022) using a data-driven simulation framework for expressive piano
performance. These developments highlight the range of musical
instruments and robotic platforms contributing to this evolving field.

In robotic drumming, exploring actuation mechanisms is a
core interest, and many different actuators have been used for
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robotic drumming systems. Solenoid-based actuation, transducers
and Variable Stiffness Actuators (VSA) have shown exciting results
in different studies (Kapur et al., 2007; Kim et al., 2014; Brown
and Topel, 2019; Berdahl et al., 2007). While each actuation
method can be controlled with different strategies, the drumming
dynamics can result in different acoustic features. For instance, VSA
motors efficiently perform multiple-stroke drum rolls with desired
frequencies (Kim et al., 2014).

The control of drumming robots has been investigated by
researchers for different tasks (Murphy et al., 2012; Van Rooyen,
2018; Su et al., 2019). One of the most advanced robotic drumming
systems developed in recent years is a robotic prosthesis which is
controlled by electromyography (EMG) signals to play drum rolls
(Gopinath and Weinberg, 2016; Bretan et al., 2016; Yang et al.,
2021). Most of the mentioned works have focused on optimizing
drumming tasks by control design or data-driven models. In
addition, reinforcement learning is used for controlling drumming
robots to optimize single-stroke movements (Okui et al., 2022).
Moreover, training an internal model through interaction is also
suggested in Wu et al. (2017), Liu et al. (2018) to produce a desired
single-stroke drumming sound.

The concept of embodied intelligence, where behaviour emerges
from the interaction between a robot’s physical form and its
environment, is well-aligned with musical robotics. Recent work in
this area includes the study on coordinating upper limbs for piano
playing through neuro-musculoskeletal modeling, which similarly
emphasizes the robot-environment interaction to achieve complex
behaviour (Wang et al., 2023). This connection between physicality
and task performance underpins the role of reinforcement learning
in robotic drumming.

Intrinsically Motivated Reinforcement Learning (IMRL) has
become a powerful tool in the field of robotics, particularly for
the tasks that require exploration and creativity (Oudeyer, 2018;
Oudeyer et al., 2007; Barto et al., 2004). IMRL essentially works by
providing a system with internal rewards for novel or informative
actions independent of external goals or tasks. This approach is
particularly effective when external rewards are sparse or difficult
to define. IMRL has been used in robotics to encourage robots
to explore their environments autonomously (Sharma et al., 2019;
Sharma et al., 2020). This is crucial for developing robots adapting
to new or unpredictable situations. For instance, robots have been
trained to navigate a cluttered room ormanipulate unfamiliar objects,
drivenby intrinsic rewards fordiscoveringnewstrategiesor improving
their proficiency (Oudeyer et al., 2013). When applied to musical
context, IMRL holds the potential for investigating creativity and
dynamic interaction, proposing new forms of musical expression and
educational tools (Schmidhuber, 2010). The integration of IMRL in
musical robotics is still an emerging field, and ongoing research will
likely uncover even more innovative applications.

ZRob has been used previously for studying different aspects
of robotic drumming (Karbasi et al., 2021a; Karbasi et al., 2022;
Karbasi et al., 2021b; Karbasi et al., 2023). In Karbasi et al.
(2022) by using one Zrob, the effect of the flexible gripper with
passive springs on drum rolls is investigated by changing the
control variables of the robot. The study’s results suggest that the
stiffness of the gripper limits the timing features of the drum
rolls in different ranges of frequency and amplitude of the motion.
Furthermore, in Karbasi et al. (2023) using two ZRobs with different

FIGURE 1
ZRob robots are drumming arms that are actuated by a servo motor
and have a flexible gripper. In this photo, four ZRobs are shown.
Different springs are used for each arm.

FIGURE 2
ZRob morphology; an example of Pendubot.

stiffness ratios, the dynamical characteristics of the robots are used
to explore emergent rhythmic patterns in drum rolls. While the
previous studies on ZRob do not contain any learning process, the
main contribution of this paper compared to the previous studies is
the implementation of the learning algorithm in a real-world setting
where the robots are trained to play specific patterns. Overall, the
previous studies onZRob focused onunique features in the body and
control for drumming, which are utilized in the learning framework
proposed in the current study.

3 Materials and methods

3.1 ZRob: dynamics and control

The mechanical design and dynamics of ZRob are described in
detail in Karbasi et al. (2023). ZRob is a 2-DoF robotic arm with a
flexible joint. ZRob is underactuated and is similar to the Pendubot
with passive springs connected to the second joint (Spong et al.,

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2024.1450097
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Karbasi et al. 10.3389/frobt.2024.1450097

FIGURE 3
Chaotic response of the drumstick motion with slight parameter
changes in simulation. As a result, the drumming patterns alter
significantly based on high sensitivity to: (A) changes in the frequency
of motion, (B) changes in spring stiffness, (C) or changes in the rest
angle of the gripper.

2020).The Pendubot is a double pendulumwhich is only actuated by
one motor in the first joint. In our case, ZRob has an actuator in the
first joint and passive springs in the second joint tomake the gripper
flexible and effective during dynamic interactions with the drum
membrane (see Figure 2). The dynamic equations are of the form

M(θ,φ)[

[

̈θ

φ̈
]

]
+C(θ,φ, θ̇, φ̇)[

[

θ̇

φ̇
]

]
= τ (1)

FIGURE 4
The Trajectories generated by the Arduino to move the robots. Each
function is configured by variables such as frequency and amplitude of
the movement.

TABLE 1 ZRob trajectory input variables.

Input Variable Range

single-stroke function

Frequency fi [1–12] Hz

Amplitude Ai [π/8 - π/4] rad

Vertical shift Bi [0 - π/6] rad

roll function

Frequency fr, fl [1–15] Hz

Amplitude Ar, Al [π/8 - π/4] rad

Vertical shift Br, Bl [0 - π/6] rad

Phase shift ϕ [0 - 2π] rad

Duration T [0–30] sec

In Equation 1M(θ,φ) is the inertiamatrix,C(θ,φ, θ̇, φ̇) is the Coriolis
matrix and τ is the torque vector.

The actuator of the robot is a quasi-direct drive servomotor with
a low transmission ratio (1:6) that enables the controller to precisely
adjust the torque according to the angle and velocity set points. It is
driven by an internal PID controller with 3 control modes (position,
velocity, torque).

In this work, we use the combination of position and velocity
control modes of the motor to produce the desired trajectory. The
trajectories are generated by an Arduino board communicating with
the motors through the CAN-BUS protocol. As a result, we can
assume that the angle of the motor θ is an independent controlled
variable. Therefore, the first dynamical equation of the robot can be
ignored, and the motion of the second joint will follow the dynamic
of the form

τ2 = (δ+ βcos(φ)) ̈θ+ δφ̈+ βθ̇
2 (2)
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FIGURE 5
The experimental setup for training the robots.

FIGURE 6
The Reinforcement Learning agent and trajectory controller implementation for the training experiments.
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FIGURE 7
The DDPG algorithm architecture, and the internal model used for calculating the intrinsic reward based on the improvement of the predictions.

where

δ = I+mr22 (3)

β =mL1r2 (4)

τ2 = τext + τk − τd − τgrav (5)

In Equations 2–5, τk is the torque generated by the passive
springs, τd is the damping torque, τgrav is the torque caused by gravity,
τext is the torque caused by interaction between the drummembrane
and the drumstick and I is the inertia of the drumstick.

In our previous study (Karbasi et al., 2023), we showed that the
resulting dynamic of the robot can lead to chaotic behaviour, and
we tried to exploit the natural uncertainty of two ZRobs to create
emergent drumming patterns. The chaotic behaviour of the robot
can be observed using simulation (Figure 3).The robot’s behaviour is
highly sensitive to slight changes in the stiffness of the spring, initial
conditions, and positional trajectory of the actuator. The sensitivity
analysis of the robots is out of the scope of this study. However, the
chaotic nature of the robot’s dynamics is a key element affecting the
learning process.

3.2 Drumming functions

The trajectory generator algorithm uses different functions
with adjustable parameters. The functions are sinusoidal trajectory
generators sent to the robots to play a drum stroke or roll with
desirable parameters. The details of the trajectory generators are
described in Karbasi et al. (2023). In Figure 4, an example of a drum

roll trajectory with the desired frequency, amplitude, phase shift and
vertical shift is illustrated.

Using sinusoidal waveforms enables the robot controller to
adjust the motion characteristics such as amplitude and frequency
with minimum number of parameters. This is important since
increasing the learning parameters would result in a longer duration
of training. Additionally, since the robots are underactuated, the
motion of the drumstick is mostly affected by the natural response
of the flexible joints and using different waveforms can complicate
the control of the robot. However, studying the trajectory waveforms
can be a topic of further research.

In addition to the drum roll function, which moves two ZRobs
simultaneously, each arm is moved separately in another function,
generating a single stroke. The single-stroke function has the
same trajectory as the drum roll, but it only moves one arm and
generates only one periodic cycle of the sinusoidal function. The
inputs to the single-stroke function are frequency, amplitude, and
vertical shift. In Table 1, all the variables for the functions are
described.

3.3 Learning algorithm

The learning algorithm is based on the DDPG method. As an
extrinsic set point, the agent loads an arbitrary MIDI file. TheMIDI
file is written in a way compatible with the robots and low-level
functions executed by the Arduino board.

A MIDI (Musical Instrument Digital Interface) file is a digital
format that encodes musical performance data, allowing electronic
musical instruments, computers, and other devices to communicate
and synchronize with each other. Unlike audio files, which store
actual sound recordings, MIDI files contain information such as
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notes, timing, velocity, and control signals, which are used to trigger
the sounds on compatible instruments or software synthesizers.This
format is highly versatile, enabling musicians to edit, manipulate,
and exchange musical compositions easily without loss of quality, as
the data represents the performance rather than the audio itself. For
drumming, MIDI files can be used to provide precise instructions
for each drum hit, including its timing, duration, and intensity,
facilitating accurate and dynamic drumming performances.

We employed the DDPG algorithm, a model-free, off-policy
actor-critic method based on deterministic policy gradient that can
operate over continuous action spaces. Introduced by Lillicrap et al.
(2015), DDPG is an extension of the earlier Deterministic Policy
Gradient (DPG) algorithms, incorporating deep neural networks for
function approximation. DDPG utilizes two primary networks: the
actor and the critic. The actor network is responsible for mapping
states to a continuous action space, whereas the critic network
estimates the Q-value of the current state and action derived from
the actor network.

A key feature of DDPG is the use of target networks for both
the actor and the critic, which are slowly updated to stabilize
training. This stabilization is further aided by the employment of a
replay buffer, a finite-sized cache that stores transitions experienced
by the agent, allowing for the reuse of this data across multiple
updates. The learning process involves sampling a mini-batch from
the replay buffer to update the critic by minimizing the mean
squared error between the predicted Q-values and the target Q-
values. Subsequently, the actor is updated using the sampled policy
gradient. Importantly, DDPG also incorporates noise processes
(e.g., Ornstein-Uhlenbeck process) to the action output, promoting
exploration in the action space (Lillicrap et al., 2015).

This algorithm has demonstrated effectiveness in various
tasks requiring complex, continuous action decisions, making it
suitable for our study’s objectives to optimize agent performance
in a simulated environment with high-dimensional state and
action spaces.

At each step during training, the robots play the notes according
to the given MIDI file. The objective of the RL algorithm is to find
the best values of the variables defined in Table 1. To train the agent,
we have defined a latent space environment. Each point in the latent
space corresponds to specific values of the trajectory variables. Once
the RL agent chooses a point in the latent space, the trajectory
generator executes the drumming functionswith the given variables.
The resulting drumming sound is recorded using a microphone and
processed for calculating the reward. The schematic of the system is
shown in Figures 5, 6.

3.3.1 Audio processing and extrinsic reward
The extrinsic reward is defined by comparing the extracted

features form the recorded audio and the givenMIDI file.TheMIDI
file specifies onset time and velocity, which can be compared to the
extracted onset timings and strength from the recorded audio.

In order to detect the onsets in each audio sample, the percussive
component of the audio is extracted to remove unwanted elements
such as pitch and timbre from the audio. This would improve the
accuracy of the onset detection. Using the percussive component
of the audio sample, the onsets are extracted by detecting the local
peaks of the onset envelope. All of the audio processing steps are

Initialize actor, critic, p;

while Episode ≤ N do

 Reset memory

 while t ≤ T do

  Take an action a← π(s)

  Drum and record the sound

  Extract onsets from audio

  Update p using new observation s′

  Store all actions and observations in memory

  Calculate intrinsic reward

  r← rint +rext
  Update actor and critic networks using DDPG

 end while

 Next Episode

end while

Algorithm 1. Reinforcement Learning with Intrinsic Motivation.

implemented using the Librosa library in Python (McFee et al.,
2024). The onset detection process is shown in Figure 8.

When the onsets are detected, the error between each onset and
the reference points given by theMIDI is calculated. In Figure 9, the
errors between the detected onsets (red lines) and the MIDI onsets
(Green lines) are illustrated. The extrinsic reward is the sum of the
calculated errors:

rext = −∑
n
(tons − tmid)

2 (6)

In Equation 6 n is the number of onsets, tons is the detected onset
(red lines), and tmid is the closest reference point to each onset
(green lines) Using only the extrinsic reward, the algorithm learns to
minimize the error between the played sound and the given MIDI.
The intrinsic reward is calculated based on a surprise factor that
indicates the improvement of an internal model during training.
A combination of intrinsic and extrinsic rewards is given to the
algorithm to update the agent. Algorithm 1 provides the details of
the training process of our system.

3.4 Internal model and intrinsic reward

To calculate the intrinsic reward for training, the agent needs to
use a prediction-basedmeasure. For this purpose, we use an internal
model that predicts the sound features of the recorded sound given
its current state and action. The intrinsic reward is a surprise factor
calculated based on the improvement of the internalmodel with new
observations.The idea of using an internal model for calculating the
surprise factor and the intrinsic reward is based on Schmidhuber
(2010). Using the intrinsic reward makes the agent explore new
patterns in the environment and improve its prediction of the results
of the dynamics of its body. Figure 7 depicts how the intrinsic reward
is calculated based on the internal model.

The surprise factor is calculated at each time step based on
how much the internal model is improved. The internal model is
continuously updated with each new observation. In each episode,
the precision of the internal model is evaluated based on the stored
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Require: Memory, p, p′

 Predict all the observations in memory using p

 Repeat the prediction with the updated model p′

 rint← (E(p′) −E(p))

Algorithm 2. Calculating Intrinsic Reward.

actions and observations at each time step before and after being
updated. Then, the intrinsic reward is the difference between the
precision of the internal model before and after taking each action.

Algorithm 2 describes how the intrinsic reward is calculated
given the memory buffer and the prediction model. In order to
calculate the precision of the internal model, we have used the error
function according to Equation 7:

E (p) = ∑
t
(p(st,at) − st+1)

2 (7)

The internal model is a neural network which uses the same
input as the critic network in the DDPG algorithm. However, the
output of the internal model is the predicted onsets while the critic
network predicts the Q-values. In other words, the internal model
predicts the onsets that will be played by the robots given the action
taken by the actor. During the training, the internalmodel is updated
using the last observation. Since the surprise factor indicates the
improvement of the internal model, it should be updated only using
the last action and the observed audio to represent the intrinsic
reward for the last action. If an action results in a better internal
model, the intrinsic reward will be positive.

We have used the same architecture for both internal model
and critic networks. The details of the hyper-parameters and
implementation of the learning algorithm are described in the
next section.

4 Result

4.1 Training in real-world setup

A big challenge in training a robotic system using RL in the
real world is the computation limitation and feasibility. Usually,
a large number of samples is needed to get optimal results using
RL. In this work, we have limited the range of exploration in
the latent space to achieve a meaningful result in a reasonable
time. Figure 10 shows the relative size of the exploration range in
real-world training. Also, the MIDI inputs we used have a short
length (1 s) to make each step short. Having a 1-s MIDI input
means that 1 s of drumming is recorded in each training step.
For comparison, we trained the robots using 5 different MIDI
inputs using only extrinsic reward and a combination of intrinsic
and extrinsic reward. The MIDI files are designed in a way to
represent different time signatures and rhythmic patterns.TheMIDI
inputs are given in Figure 11. In training, we used two ZRobs and
defined the frequency and amplitude of motion of each ZRob for
playing each note as the variables in the latent space. Therefore, the
latent space has 4 dimensions, and the number of actions for the
agent is also 4.

The models we used for the DDPG and the internal model
are feedforward neural networks. The actor-network consists of
two layers having 150 and 100 neurons in each layer, respectively.
The critic network uses a two-layer input channel for the state
with 20 neurons for each layer and a one-layer input channel
with 20 neurons for the action. The internal model uses the same
architecture as the critic network. The hyperparameters used for
training are given in Table 2.

4.2 Training results

The training results show satisfying patterns. We repeated the
training experiment for eachMIDI input 10 times to have an average
performance. In Figure 12, the average episodic rewards during
training for MIDI inputs using only extrinsic reward. In Figure 12,
the average episodic rewards during training for MIDI inputs using
the combination of intrinsic and extrinsic reward. The intrinsic
reward for eachMIDI input is also shown separately. In each training
experiment, the number of episodes (N) was 200, and the number
of steps for each episode (T) was 25. With limiting the length of
the MIDI inputs and the range of exploration in the latent space,
the training lasts around 90 min each time. The critical point in the
training data is that the episodic reward increases over time, which
means that the algorithm can achieve the objectives defined in the
experiment.However, we know that the optimal answer is not always
in the range of the explored space.

In Figures 13, 14, examples of the drumming results of the
robots are shown after training. On the left side, the robots are only
trained using the extrinsic reward, and on the right side, intrinsic
reward was added. The predicted onsets are also depicted in the
figures on the right side. Interestingly, as expected, the robots learn
to play the MIDI inputs perfectly with only the extrinsic reward.
However, adding the intrinsic reward reinforces the robots to look
for emergent behaviour. In these examples, it can be seen that the
reference notes given in the MIDI input are played, and at the
same time, extra notes are also played, resulting from double and
triple strokes. In other words, the robots are reinforced to use the
rebounding effect of the flexible gripper to play the given rhythmic
pattern.This behaviour is not just a result of variation in the training
but is a natural output of exploring novel andmeaningful behaviour.
This behaviour is directly the result of the physical properties of the
robots’ bodies.

As demonstrated in Figures 13, 14, we can see similar behaviour
repeated for different inputs. Based on the results of the repeated
training experiments, we can see that the robots can meet the
objectives of the learning problem: 1) by using the extrinsic reward
the robots perform the input patterns accurately, 2) by adding the
intrinsic reward, robots can discover possible variations such as
double strokes while following the MIDI onsets to keep the pattern
accurate. The results can be evaluated from different perspectives.
Objectively, we see that the accuracy of the performance is high
using the extrinsic reward, and different variations are achieved
using the intrinsic reward. However, for more subjective evaluation
and studying the artistic value of the observed diversity, further
research is required. The results can guarantee that the potential
variations in the performance as a result of intrinsically motivated
exploration can be exploited for artistic creativity.
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FIGURE 8
The audio processing unit first extracts the percussive component of the recorded audio. Afterwards, it detects the onsets based on the onset envelope.

FIGURE 9
The error between the detected onsets and MIDI onsets is used for calculating the extrinsic reward. The green lines indicate the onsets from the MIDI
input and the red lines indicate the detected onsets.
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FIGURE 10
In real-world training, the exploration space should be limited in order to decrease the number of required samples for training and the duration of
the training.

FIGURE 11
The MIDI inputs used for training.

5 Discussion

We find that combining intrinsic and extrinsic rewards can lead
to creative behaviour in musical robots. Creativity is not the easiest

TABLE 2 Hyperparameters.

DDPG parameters

Actor learning rate 0.001

Critic learning rate 0.002

Internal model learning rate 0.0001

τ 0.005

γ 0.99

σ 0.05

quality to evaluate in robotics; however, comparing the robots’
behaviour using different training approaches can give some insights
into possible creative results. While the subjective evaluation
of creativity can be studied separately in another experiment,
we try to focus on the process of learning and interpret the
results objectively.

Training the robots using only extrinsic reward defined based
on a reference MIDI file makes the results identical to the reference.
This outcome is expected since the agent receives the highest reward
when the drumming pattern is the closest to the givenMIDI file.This
approach is suitable when the robots are supposed to play a musical
piece that is written in prior. Refining the reward function can help
to optimize the performance of the robots. For instance, changing
the weights on the timing or strength of the onsets can change the
musical accent of the rhythmic pattern.
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FIGURE 12
Training results in the real world setup using only extrinsic rewards.
Five different MIDI inputs were used for the training experiments. For
each input, the training is repeated ten times.

On the other hand, adding an intrinsic reward signal forces the
robots to explore and search for novel and meaningful behaviour.
The drumming patterns have rhythmic diversity when intrinsic
reward is used during training. Looking for novelty is not a complex

objective in RL. Adding a noisy signal to the agent’s actions can
result in unseen observations. However, producing a random signal
is not particularly creative; a novel pattern needs to make sense.
A meaningful observation is usually compatible with previous
observations. Using a predictionmodel enables the agent tomeasure
whether a novel observation makes sense. When the novelty
improves the predictionmodel, the observation ismeaningful.Using
the intrinsic reward based on this concept allows the training process
to result in creativity. Especially in a musical context, prediction
models play an essential role in human perception. The theory of
predictive coding explains how internal models are fundamental in
music perception (Koelsch et al., 2019). The drumming results of
ZRob, when trained with intrinsic reward and the internal model,
suggest possible creative musical expression.

The other aspect of our study is the role of the robots’ bodies
in the training results. We know that multiple strokes drumming
is directly affected by the robots’ flexible joints and their spring’s
stiffness (Karbasi et al., 2022; Karbasi et al., 2023). During training
with intrinsic reward, the robots find novel observations when
the actions lead to multiple strokes. If the internal model learns
to predict these novelties, the model can partly understand the
dynamics of the robots’ bodies. In this way, the algorithm uses the
physical properties of the robots to achieve meaningful behaviour.
This corresponds to the embodied aspect of our robotic system.
The robots’ computational part shapes the results we observe, but

FIGURE 13
Training results in the real world setup using intrinsic and extrinsic rewards. (A) Comparing the average episodic rewards for the five MIDI inputs. (B–F)
Average intrinsic rewards and overall rewards for each MIDI input.
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FIGURE 14
Comparing the drumming results after training with and without intrinsic rewards for each MIDI input. On the left side, the green lines indicate the
input onsets set by the MIDI, and the red lines indicate the detected onsets from the audio. On the right side, the purple lines indicate the predicted
onsets estimated by the internal model. The MIDI inputs are represented by musical notation here.
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their body contributes significantly, as explained in the embodied
intelligence framework.

In summary, we have found that 1) using extrinsic or intrinsic
rewards for training drumming robots can result in optimised or
creative musical performance and 2) how the embodied aspect
of robotic drumming shapes the learning results of the system.
Implementing intrinsically motivated reinforcement learning for
drumming robots is the main contribution of our study, which has
not been present in previous research in musical robotics.

5.1 Limitations and future works

A significant limitation for training robots in the real world is the
hardware and computational resources. As mentioned previously,
not all possible actions are feasible in real life. In addition, RL
algorithms require many samples for training, which lasts for many
hours. Even for a short MIDI file, it takes a long time for the
algorithm to gather enough samples for training. Improving the RL
algorithm can accelerate the training process and make it possible
to design more complex tasks. In addition, other sound analysis
methods can suggest richer musical analysis and make it possible
to define different musical tasks for the robots. We only used
onset detection methods since this study’s objective was rhythm.
Using more sophisticated methods for analysing sound in real-
time also requires high computational resources, making the system
harder to train.

The performance results of the current study can be the topic of
qualitative research on perceived creativity in robots. Also using the
proposed approach in live performances or in an interactive setup
with other human or robotic musicians can be studied in future
works.The aim of this paper is a technical presentation of the system
and subjective evaluation and applications of our approach can be
the topic of further research.

6 Conclusion

In this study, we implemented an RL-based algorithm for training
drumming robots called ZRob. We used DDPG architecture and
intrinsic and extrinsic reward functions for training the robots. The
training results suggest how extrinsic and intrinsic rewards can be
applied to creativity and drumming performance. The developed
system is an effort towards exploring embodied intelligence formusical
performance. In future, the system can be improved by integrating pre-
trained supervisedmodels tomake the training faster. In addition, using
generative models that make MIDI files expands the capabilities of the
robots to play AI-generated music in real-time.
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