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Incremental learning of
humanoid robot behavior from
natural interaction and large
language models

Leonard Bärmann*, Rainer Kartmann, Fabian Peller-Konrad,
Jan Niehues, Alex Waibel and Tamim Asfour

Institute for Anthropomatics and Robotics (IAR), Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany

Natural-language dialog is key for an intuitive human–robot interaction. It
can be used not only to express humans’ intents but also to communicate
instructions for improvement if a robot does not understand a command
correctly. It is of great importance to let robots learn from such interaction
experiences in an incremental way to allow them to improve their behaviors
or avoid mistakes in the future. In this paper, we propose a system to
achieve such incremental learning of complex high-level behavior from natural
interaction and demonstrate its implementation on a humanoid robot. Our
system deploys large language models (LLMs) for high-level orchestration of
the robot’s behavior based on the idea of enabling the LLM to generate Python
statements in an interactive console to invoke both robot perception and action.
Human instructions, environment observations, and execution results are fed
back to the LLM, thus informing the generation of the next statement. Since an
LLM can misunderstand (potentially ambiguous) user instructions, we introduce
incremental learning from the interaction, which enables the system to learn
from its mistakes. For that purpose, the LLM can call another LLM responsible for
code-level improvements in the current interaction based on human feedback.
Subsequently, we store the improved interaction in the robot’s memory so that it
can later be retrieved on semantically similar requests.We integrate the system in
the robot cognitive architecture of the humanoid robot ARMAR-6 and evaluate
our methods both quantitatively (in simulation) and qualitatively (in simulation
and real-world) by demonstrating generalized incrementally learned knowledge.

KEYWORDS

incremental learning, human–robot interaction, cognitive modeling, knowledge
representation for robots, humanoid robots, large language models

1 Introduction

Humans can easily communicate tasks and goals to a robot via language. Such a
natural-language interface is key for achieving a truly intuitive human–robot interaction
(HRI). However, the robot’s interpretation of such commands, and thus the resulting
execution, might be sub-optimal, incomplete, or wrong. In such cases, it is desirable
for the human to give further instructions to correct or improve the robot’s behavior.
Furthermore, the robot should memorize the improvement strategy given by the human
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FIGURE 1
ARMAR-6 incrementally learns behavior from natural interactions. Demonstration videos can be found at https://lbaermann.github.io/interactive-
incremental-robot-behavior-learning/.

to incrementally learn from them and thus avoid the same
mistake in the future. For instance, consider the interaction
depicted in Figure 1. First, the user instructs the robot to help him
clean the top of the fridge (1). The robot then executes several
actions to hand over a sponge to the human (2). The user observes
this insufficient result and gives instructions for improvement (“I
also need a ladder”) (3), whereupon the robot performs corrective
actions (4). If the desired goal is achieved, the user can reconfirm
the correction (5), which leads to the robot updating its memory
appropriately (6), thus incrementally learning new behavior based
on language instructions.

In this paper, we present a system to achieve such behavior
and describe its implementation on the humanoid robot ARMAR-6
(Asfour et al., 2018). We build on the capabilities of large language
models (LLMs) (Brown et al., 2020; Touvron et al., 2023; OpenAI,
2023a; OpenAI, 2023b) emerging from massive-scale next token
prediction pre-training, and aim to transfer their success toHRI.The
goal is to utilize the rich world knowledge contained in LLMs for an
embodied natural language dialog, thus enhancing the capabilities of
the LLMby integrating robot perception and action. In the cognitive
architecture of our humanoid robot (Peller-Konrad et al., 2023),
this means the LLM will be in charge of high-level planning and
decision-making. Recent works like SayCan (Ahn et al., 2022) and
Code as Policies (CaP) (Liang et al., 2023) already demonstrate the
usefulness of applying LLMs to orchestrate robot abilities, enabling
high-level task understanding, planning, and generalization. Going
a step further, inner monologue (Huang et al., 2022b) feeds back
execution results and observations into the LLM, thus involving the
LLM in a closed-loop interaction.

Inspired by these works, we propose to utilize the code-
writing capabilities of LLMs to directly integrate it into closed-
loop orchestration of a humanoid robot. This is achieved by
simulating an interactive (Python) console in the prompt and
letting the LLM produce the next statement, given the previous
execution history, including results returned or exceptions thrown
by previous function calls. Thus, the LLM can dynamically respond
to unexpected situations such as execution errors or wrong
assumptions while still leveraging the power of a code-based

interaction such as storing results in intermediate variables or
defining new functions.

For utilizing the few- and zero-shot capabilities of LLMs, it
is crucial to design (a set of) prompts to properly bias the LLM
toward the desired output. All of the above works use a predefined,
manually written set of prompts tuned for their respective use case.
However, no LLM or prompting scheme will always interpret each
user instruction correctly, especially since natural language can be
ambiguous and correct executionmight depend on user preferences.
Therefore, we propose a novel, self-extending prompting method
to allow incremental learning of new behaviors and adaptation of
existing high-level behaviors. To this end, our system dynamically
constructs prompts based on a set of interaction examples populated
from the robot’s prior knowledge and previously learned behavior.
Given a user instruction, we rank all such interaction examples
by semantic similarity to the input and select the top-k entries
to construct the actual prompt to the LLM. Crucially, the robot’s
prior knowledge contains specific examples involving the user
complaining about mistakes and correcting the robot or instructing
it on how to improve its behavior. Therefore, when the system
fails to correctly execute a task and the user gives such corrective
instructions, the LLM is biased to invoke code that inspects the
current execution history and forwards it to another, few-shot-
prompted LLM. This LLM can inspect the complete interaction,
including all user inputs, performed actions, and observed results,
represented as the transcript of an interactive Python console. It
then spots themistakes and produces an improved interaction using
chain-of-thought (CoT) prompting (Wei et al., 2022). Finally, the
improved transcript will be added to the interaction examples, thus
enabling the system to perform better the next time a similar task is
requested.

Our method is explained in detail in Section 3. We evaluate our
system quantitatively on the scenarios defined in CaP (Liang et al.,
2023) to show the effectiveness of our proposed approach in
Section 4. Furthermore, Section 5 demonstrates the capabilities of
incremental learning from natural-language interactions on a real-
world humanoid robot. Our code can be found at https://github.
com/lbaermann/interactive-incremental-robot-behavior-learning.
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2 Related work

We start by reviewing works on understanding and learning
from natural language in robotics. Subsequently, we present works
using LLMs for high-level orchestration of robot abilities. Finally, we
focus on dynamic creation of prompts for LLMs.

2.1 Understanding and learning from
natural language

Understanding and performing tasks specified in natural
language has been a long-standing challenge in robotics
(Tellex et al., 2020). Grounding the words of natural-language
sentences in the robot’s perception and action is a major challenge
known as the signal-to-symbol gap (Krüger et al., 2011). Many
works have focused on the grounding of expressions referring
to objects, places, and robot actions based on graphical models
(Tellex et al., 2011; Misra et al., 2016), language generation
(Forbes et al., 2015), or spatial relations (Guadarrama et al., 2013),
especially for ambiguity resolution (Fasola and Matarić, 2013;
Shridhar et al., 2020). Pramanick et al. (2020) focused on resolving
task dependencies to generate execution plans from complex
instructions. However, in these works, the robot does not explicitly
learn from language-based interactions. In contrast, Walter et al.
(2013) enriched the robot’s semantic environment map from
language, and Bao et al. (2016) syntactically parsed daily human
instructions to learn attributes of new objects. In Kartmann and
Asfour (2023), the robot asked for a demonstration if its current
understanding of a spatial relation is insufficient to perform
a given instruction. Other works go further by learning on
the task level. Mohan and Laird (2014) learned symbolic task
representations from a language interaction using explanation-
based learning. Nicolescu et al. (2019) learned executable task
representations encoding sequential, non-ordering, or alternative
paths of execution from verbal instructions for interactive teaching
by demonstration. Weigelt et al. (2020) considered the general
problem of programming new functions on code level via natural
language. Although our goal is similar to that of these works, we
leverage LLMs for task-level reasoning and learning.

2.2 Code generation and interaction with
LLMs

Generating code from natural-language specifications is a large
area of active research. For instance, LLMs tuned specifically on code
(Chen et al., 2021; Nijkamp et al., 2023) perform well in common
code-generation benchmarks. Madaan et al. (2022b) showed that
code-based models have more structured representations, thus
aiding structured (e.g., graph-based) tasks. Training code-LLMs
can also benefit from using an interpreter in the optimization
loop (Le et al., 2022; Haluptzok et al., 2023). We refer the
reader to recent surveys (Zheng et al., 2024; Ahmed et al., 2023;
Dehaerne et al., 2022; Wang and Chen, 2023) for a more in-depth
discussion.

Another recent trend is to use LLMs in an interactive, chat-
style format. This became popular through OpenAI’s models

(OpenAI, 2023a,b) and is typically powered by fine-tuning on
alignment data using reinforcement learning from human feedback
(Ouyang et al., 2022). In a code-based setting, such an interaction
can, for instance, assist software development (Lahiri et al., 2023;
Google, 2023). Furthermore, many recent works utilize interactive
coding strategies to deploy LLMs as agents (Yang et al., 2024). For
instance, Voyager (Wang G. et al., 2024) iteratively learns to master
the game of Minecraft by letting an LLM code functions, and
InterCode (Yang et al., 2023) connects an LLM to a Bash shell to
solve a file system task, similar to our use of an interactive Python
console. Recent benchmarks (Liu et al., 2024; Wang X. et al., 2024)
will further catalyze this development.We deploy such an interactive
coding strategy to real-world humanoid robotics and enrich it with
incremental learning from natural interactions.

2.3 Orchestrating robot behavior with
LLMs

Recently, many works extended the capabilities of LLMs by
giving them access to externalmodels, tools, andAPIs (Mialon et al.,
2023; Parisi et al., 2022; Qin et al., 2023; Wang et al., 2023). Tool
usage can also be combined with reasoning techniques such as
CoT prompting (Wei et al., 2022) to significantly improve planning
(Yao et al., 2023). In particular, orchestrating robot behavior and
thus interacting with the physical environment can be seen as an
embodied special case of LLM tool usage. Huang et al. (2022a)
initially proposed the idea to utilize world knowledge from LLM
pre-training to map high-level tasks to executable mid-level action
sequences. SayCan (Ahn et al., 2022) fuses LLM output probabilities
with pre-trained affordance functions to choose a feasible plan,
given a natural language command. Socratic models (Zeng et al.,
2023) combine visual and textual LLMs to generate instructions in
the form of API calls, which are then executed by a pre-trained
language-conditioned robot policy. Both Code as Policies (CaP)
(Liang et al., 2023) and ProgPrompt (Singh et al., 2023) demonstrate
the usefulness of a code-generating LLM for robot orchestration
as they convert user commands to (optionally, recursively defined)
policy code grounded in predefined atomic API calls. Although
the generated policies can react to the robot’s perception, these
approaches do not directly involve the LLM in the online execution
of a multi-step task after the policy has been generated. In contrast,
Inner Monologue (Huang et al., 2022b) feeds back execution results
and observations into the LLM, but it does not rely on code-
writing, thus missing its combinatorial power. KnowNo (Ren et al.,
2023) iteratively asks the LLM for a set of possible next steps,
determines the LLM’s confidence in each possibility using its
output token distribution in a multiple-choice setup, and then uses
conformal prediction to decide whether the system is sure how to
proceed or should ask the user for help. AutoGPT+P (Birr et al.,
2024) combines an LLM with a symbolic planner. Recent technical
reports (Vemprala et al., 2023; Wake et al., 2023) provide guidance
on utilizing ChatGPT (OpenAI, 2023a) for robot orchestration.
Meanwhile, TidyBot (Wu et al., 2023) uses GPT-3 (Brown et al.,
2020) in a similar way to generate high-level plans for tidying
up a cluttered real-world environment, but the authors focus on
personalization by summarizing and thereby generalizing individual
object placement rules.
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FIGURE 2
Comparison of Code as Policies (Liang et al., 2023), HELPER (Sarch et al., 2023), DROC (Zha et al., 2023), and our method, focusing on information flow
from user input, observations, prompts, and memories to LLM modules to robot execution, and how the methods learn from user interactions. Building
on the interactive Python console prompting scheme, our method realizes incremental learning from natural interactions in a conceptually simple way.

With our proposed emulated Python console prompting, we
differ from these existing works by 1) formatting and interpreting
all interactions with the LLM as Python code, in contrast to
Ahn et al. (2022) andHuang et al. (2022b); 2) closing the interaction
loop by enabling the LLM to reason about each perception and
action outcome, in contrast to Liang et al. (2023), Singh et al.
(2023), Wake et al. (2023), Zeng et al. (2023), and Ahn et al. (2022);
3) allowing the LLM to decide when and which perception
primitives to invoke, instead of providing a predefined list of
observations (usually a list of objects in the scene) as part
of the prompt as in Zeng et al. (2023), Huang et al. (2022b);
Singh et al. (2023), Liang et al. (2023), and Wu et al. (2023); and 4)
simplifying the task for the LLM by allowing it to generate one
statement at a time, in contrast to Liang et al. (2023), Singh et al.
(2023), and Vemprala et al. (2023).

2.4 Dynamic prompt creation

When prompting an LLM to perform a task, quality and
relevance of the provided few-shot examples are key to the
performance of the system. Thus, several works propose to
dynamically select these examples (e.g., from a larger training
set) for constructing a useful prompt. Liu et al. (2022) improved
the performance in a downstream question-answering (QA) task
by selecting relevant few-shot samples via k-nearest-neighbor
search in a latent space of pre-trained sentence embeddings
(Reimers and Gurevych, 2019) representing the questions. Ye et al.
(2023) selected not only the most similar but also a diverse set
of samples. Luo et al. (2023) showed that this dynamic prompt
construction is also applicable for instruction-fine-tuned language
models (LMs) (Ouyang et al., 2022) and in combination with CoT
prompting. Song et al. (2023) used top-k retrieval for instructing an
LLM to plan robotic tasks. Similar to that approach, we apply vector
embeddings of human utterances to find the top-k examples that are
most similar to the current situation.

Other works go further by proposing to update the database
of examples by user interactions. In Madaan et al. (2022a), GPT-
3 was tasked with solving lexical and semantic natural language
processing questions few-shot by generating both an understanding
of the question and the answer. A user can then correct an erroneous
understanding to improve the answer, and such a correction is
stored in a lookup table for later retrieval on similar queries.
Similarly, user feedback can be used to improve open-ended QA
by generating an entailment chain along with the answer and
allowing the user to then correct false model beliefs in that
entailment chain (Dalvi Mishra et al., 2022). Corrections are stored
in memory and later retrieved based on their distance to a
novel question.

In our work, we also propose to store corrective user feedback
as interaction examples in the robot’s memory. However, we go
even further by 1) letting the LLM decide when such feedback
is relevant (by invoking a certain function), 2) generating new
examples of improved behavior from the human’s feedback, and
thus, 3) treating prior knowledge and instructed behavior in a
uniform way by treating both as interaction examples in the
robot’s memory. Vemprala et al. (2023) mentioned that ChatGPT
can be used to change the code based on high-level user feedback.
However, they do not combine this with incremental learning to
persist the improved behavior.

Closest to our approach are the concurrent works DROC
(Zha et al., 2023) and HELPER (Sarch et al., 2023), shown in
Figure 2. Similar to our learning from the interaction, DROC
(Zha et al., 2023) distills knowledge from problematic interactions
and retrieves it later when solving new tasks. Although the
goal and problem setting are similar, we differ by formulating
the complete interaction as code instead of separating task-level
and skill-level into natural-language- and code-level interaction,
respectively, and also by generalizing incremental learning as
code manipulation instead of explicitly memorizing task-level
natural-language constraints and skill-level variable assignments
separately. HELPER (Sarch et al., 2023) retrieves few-shot examples
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FIGURE 3
Incremental learning of robot behavior from interactions.

for the LLM’s prompt from a language-program memory similar
to our interaction example memory and learns personalized robot
behavior by extending thememory. In contrast to our approach, they
add examples only from successful episodes, and they have separate
mechanisms for normal behavior and error correction. We focus on
learning from feedback in erroneous or suboptimal episodes, andwe
treat initial and follow-up instructions uniformly using the proposed
Python console prompting.

3 Approach

In this section, we more precisely formulate the considered
problem and explain our approach to intuitive HRI and incremental
learning of humanoid robot behavior using LLMs.

3.1 Problem formulation and concept

In this work, we consider the problem of enabling a robot to
interact with a human in natural language, as depicted in Figure 3.
First, the human gives a natural-language instruction to the robot.
Then, the robot interprets the instruction and performs a sequence
of actions. However, the performed actions might be sub-optimal,
incomplete, or wrong. In that case, the human instructs the robot
how to improve or correct its behavior. The robot executes further
actions accordingly, and if the human is satisfiedwith the result, they
can confirm that the robot should memorize this behavior. Finally,
the robot must incrementally learn from the corrective instructions
and avoid similar mistakes in the future.

We formulate this problem as follows: Consider a robot with a
set of functionsF = {F1,…,Fn}. A function can be invoked to query
the robot’s perception or execute certain actions. Furthermore,
let M denote the knowledge of interactions and behaviors as
part of the episodic memory of the robot, which is initialized by
prior knowledge. Based on the initial instruction I0 and M, the
robot must perform a sequence of function invocations ( f1,…, fm),
where each invocation fi consists of the invoked function Fi with
its corresponding parameters. Executing these invocations yields
a sequence of results (r1,…, rm). Overall, performing the task

indicated by I0 results in an interaction history H of the form

H = (( f1, r1) ,…,( fm, rm)) ← perform(I0,M) . (1)

Note that we explicitly allow executing a generated invocation
right away (potentially modifying the world state W) and using
the result to inform the generation of the subsequent invocation.
Therefore, the current history Ht = (( f1, r1) ,…,( ft, rt)) is available
when generating the next invocation ft+1, i.e., for t ∈ {0,…,m− 1},

ft+1← generate(I0,Ht,M) , (2)

(rt+1,Wt+1) ← execute( ft+1,Wt) , (3)

Ht+1←Ht ◦ (( ft+1, rt+1)) , (4)

where ◦ denotes sequence concatenation. In other words,
invocations are generated auto-regressively by reasoning over
the memory, the instruction, and the previous actions and their
execution results.

To unify the subsequent notation, we define the human’s
instructions as a special case of perception, i.e., the system perceives
them as a result of invoking the function Fwait ∈ F . Using that
terminology, H0 = (( fwait, I0)), and we can drop I0 as an explicit
parameter of generate. Similarly, further instructions are handled as
part of the interaction history.

If the human gives an instruction to correct the robot’s behavior,
the robot must be able to learn from this instruction to improve its
behavior in the future. We model this capability as another function
Flearn ∈ F . Its purpose is to update the robot’s interaction knowledge
M to learn from the corrective instructions and avoid the mistake
in the future:

M← learn_from_interaction(M,Ht) , (5)

where Ht is the interaction history when Flearn is called.
To address this problem, we propose a system as

depicted in Figure 4. A humanoid robot is interacting with a human
and the scene. The robot is equipped with a multimodal memory
system containing the following information about the current scene:
first, semantic knowledge about objects, locations, and agents in
the world; second, sub-symbolic and symbolic knowledge about the
currentscene, includingobjectrelations; third, theproceduralmemory
of the robot, containing executable skills (in our case, implemented
through scriptedpolicies).Anexecution request sent to theprocedural
memory triggers physical robot actions. The set of available functions
F contains functions to query the semantic and procedural memory.
Finally, we implementM as part of the episodic memory of the robot
containing interaction histories H, i.e., short episodes of interactions
between the human and the robot, including the natural-language
inputs, the actions executed by the robot, and their results.

The interaction manager is responsible for the high-level
orchestration of the robot’s abilities. It has access to two instances
of LLMs, an interaction LLM Linteract and an improvement LLM
Limprove, as well as a Python console environment E to execute
generated function invocations. Utilizing E, we uniformly represent
all H ∈M and Ht as a textual Python console transcript, i.e.,
a sequence of function invocations fi represented as the Python
statement and return values ri converted to text using Python’s
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FIGURE 4
Conceptual view of our system. The robot’s memory system (Peller-Konrad et al., 2023) works as a mediator between the interaction manager and the
robot system. The interaction LLM acts in a Python console environment. It can invoke functions to fetch the content of the current scene (as given by
perception modules and stored in the memory) or invoke skills and thus perform robot actions. Relevant interaction examples are queried from the
memory for few-shot prompting of the LLM. Incremental learning is performed by an improvement LLM updating the interaction example memory
with new content learnt from instructions.

“repr” function. Linteract is prompted by the interaction manager
with the available functions F , the current interaction history Ht,
and relevant few-shot examples retrieved from M, and it generates
function invocations f. Following the notation of Equations 2, 3,
the function generate is implemented through Linteract, while the
function execute is provided by E. By generating an invocation
of Flearn ∈ F , Linteract can trigger Equation 5. We implement the
function learn_from_interaction by few-shot prompting Limprove.
It reasons over Ht and generates an improved version of the
interaction, which is then saved to the memory M.

3.2 Procedure overview

To start, we populate thememoryMwith both prior knowledge
(i.e., predefined interaction examples) and previously learned
interaction examples. The interaction manager sets up E, including
F , and then invokes an initial Fwait = “wait_for_trigger()”
inside that environment. This call waits for dialog input and
returns when the human gives an initial instruction. The interaction
manager handles any function return value by inserting its textual
representation into the current interaction history, thus extending
Ht. Thereby, it emulates the look of a Python console (Section 3.3).
In the following, a prompt is constructed (Section 3.4) based on F ,
the most relevant examples fromM, andHt. This prompt is passed
to Linteract to produce the next command(s). The generated code
is executed within E, and both the code and its return values are
again inserted intoHt. The interaction manager repeats this process
as the high-level behavior-driving loop of the robot (see Figure 5).
Note that Linteract can listen to further user utterances by generating
“wait_for_trigger()” again. Our proposed prompt-based
incremental learning strategy (Section 3.5) is also invoked by Linteract
itself when it calls Flearn = “learn_from_interaction()”.

3.3 LLM interacting with an emulated
Python console

The left of Figure 5 shows an interaction example using our
proposed prompting scheme emulating a Python console. All

commands entered into the emulated console (lines starting
with “>>>” or “…”) are to be generated by the LLM, while
the function return values are inserted below each invocation.
The proposed syntax enables a closed interaction loop so that
the LLM can dynamically react to unexpected situations and
errors while also keeping the flexibility of coding non-trivial
statements. We achieve this by setting “>>>” to be the stop
token when prompting the LLM. This means that the LLM
can generate continuation statements (including control flow
and function definitions) by starting a new line with “…”.
Since generation stops at the beginning of the next statement,
the LLM’s output will also include the expected outcome
of its own command, which we discard for the scope of
this work.

During our experiments, we observed that it is
important for functions to provide semantically rich error
messages, including hints on how to improve. This
leads to self-correcting behavior (Skreta et al., 2023). For
instance, when calling “move_to” with an invalid or
underspecified location such as “counter,” we pass the
error message “invalid location. Use one of the

locations returned by list_locations()” to the
LLM. In this example, the error message guides the LLM
to query a list of possible locations, which are then used
to correctly ground the natural-language request to the
name “inFrontOf_mobile-kitchen-counter_0” that the
“move_to” function understands.

Analogously to Code as Policies (Liang et al., 2023), we
dynamically generate non-existing functions that the LLM tries
to use. Specifically, when Linteract generates code that refers to an
undefined function, we invoke another LLM, Lfgen, that is prompted
to define the function, given the line of code that is using it as
the context. For Lfgen, we exactly follow the method of Liang et al.
(2023), including recursive function generation. The generated
function is then inserted into the emulated Python console
before the statement that referred to the undefined function,
and then, that statement is executed. The purpose of inserting
the function definition into the execution history is that it is
thereby accessible to user feedback and can be improved upon by
incremental learning.
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FIGURE 5
Overview of our method for incremental learning of robot behavior. We use an LLM [in our experiments, GPT-4 (OpenAI, 2023b)] to control robot
perception and action, given a prompt of few-shot examples (bottom, Section 3.3). Prompts are constructed dynamically based on the similarity to the
current user request (top left, Section 3.4). The interaction example memory is initialized with prior knowledge and then incrementally enriched by
LLM-improved problematic interactions to learn from mistakes (top right, Section 3.5).

3.4 Dynamic prompt construction

We dynamically construct the prompt for Linteract depending
on the current interaction history Ht (i.e., the code statements,
execution results, and user inputs observed so far). We start
with some predefined base prompt, stating the general task and
“importing” all defined names and functions. These imports are
generated dynamically, given the symbols defined in E, i.e., the
available functions F . The second part of the prompt consists of
few-shot examples. For this, we make use of a memory M of
coding interaction examples, where each entry follows the Python
console syntax defined in Section 3.3. M is initialized with hand-
written prompts, but it is later extended dynamically, as explained
in Section 3.5. Given the current interaction history Ht, we define a
similarity measure S(H,Ht), see below, for eachH ∈M and choose
the top-k H to become part of the actual prompt. Afterward, Ht
itself is inserted into the prompt to provide the LLMwith the current
context. Finally, the prompt is completed by inserting a syntax
trigger for the LLM to correctly generate the next command, i.e.,
“>>>.” An example can be seen on the left of Figure 5.

To implement the similarity function S(H,Ht), we assume
that examples with comparable natural-language instructions are
helpful.Therefore, we extract all such instructions fromHt and each
H ∈M. In our specific Python-console-based representation, this
means that we search for function calls that trigger user interaction
(“ask,” “wait_for_trigger”) and extract their respective
return values. Let Iit with i = 1,…,N denote the N most recent
instructions in Ht (where I1t is the most recent one), and I jH with
j = 1,…,MH denote all theMH instructions found in eachH ∈M.
We make use of a pre-trained sentence-embedding model (Reimers
and Gurevych, 2019) to measure the semantic similarity sim (a,b) =
E (a) ⋅E (b) between two natural language sentences a,b by the dot
product of their latent space embeddings E (⋅). First, we compute a
latent representation of Ht as

et =
N

∑
i=1

γi−1E(Iit) , (6)

where γ = 0.6 is an empirically chosen decay factor. Then, we
determine a score α j

H for each instruction I jH of each history H ∈

M, as given by

α j
H = et ⋅E(I

j
H) . (7)

The final similarity score is given by S(H,Ht) = maxjα
j
H, and we

pick the top-k such H as the few-shot examples for the prompt.

3.5 Incremental prompt learning

To enable our system to learn new or improved behavior from
user interaction, we propose to make M itself dynamic. For this
purpose, we introduce a special function Flearn = “learn_from_
interaction().”This function is always “imported” in the base
prompt, and there are predefined code interaction examplesHlearn ∈
M involving this call. These Hlearn will be selected by dynamic
prompt construction if semantically similar situations occur. They
involve failure situations, where the user has to tell the robot what
and how to improve and that it should do better next time. Thus,
when a mistake occurs and the user complains, these examples will
be selected for the prompt, and Linteract is biased toward invoking
Flearn.

To implement learning from an erroneous interaction Ht, we
query Limprove in a CoT manner to identify and fix the problem.
Specifically, we provide Ht and first ask for a natural-language
description of the problem in this interaction. Subsequently, we
request Limprove to explain what should be improved next time.
Finally, Limprove is asked for an improved version H∗t of the
interaction (in the given Python console syntax), andH∗t is added to
the memory M. In that way, the next time a similar request occurs,
H∗t will be selected by dynamic prompt construction, and Linteract is
biased toward notmaking the samemistake again. An example LLM
transcript of such Flearn implementation can be found in Listing 1.
For robustness, there are three cases where we discard the generated
H∗t : first, we ignore the call to Flearn if it does not follow immediately
after a user utterance since we only want to learn from explicit
human feedback. Second, we abort the learning if the response to the
first CoT request is that there is no problem. Third, ifH∗t is equal to
the input interaction Ht, we discard it.
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Listing 1. Example of the LLM-transcript generated by a “learn_from_interaction()” call. The parts starting with “LLM” are generated by the
LLM, while the “Prompt” parts are fixed prompts (and the input code snippet to improve). A full prompt including few-shot examples is
provided in Supplementary Appendix G.

4 Simulated evaluation

4.1 Experimental setup

To quantitatively assess the performance of our method, we
utilize the evaluation protocol from Code as Policies (Liang et al.,
2023), involving a simulated tabletop environment with a UR5e
arm and Robotiq 2F85 gripper manipulating a set of blocks and
bowls of 10 different colors. We use their seven seen and six
unseen instructions (SI/UI), where each instruction is a task with
placeholders that are filled with attributes (e.g., “pick up the
<block> and place it on the <corner> ”). The set of possible
attribute values is also split into seen and unseen attributes (SA/UA).
For more details, refer to Liang et al. (2023).

As our focus is on incremental learning from natural-language
interactions, our methodology involves human supervision as
follows: we first set up a randomly generated scene and pass
the instruction to the evaluated system. The system generates
some code that utilizes the same API as in Liang et al. (2023).
Specifically, there are “perception” functions (utilizing the ground-
truth simulation state) to query all object names and positions
and convert normalized to absolute coordinates and an “action”
function tomove an object to another object or position. For details,
see Supplementary Appendix A or Liang et al. (2023). During code
execution, the human observes the robot’s actions by watching
the simulation rendering. Each run can result in success (goal
reached), failure (goal not reached), error (system threw unhandled
exception), or timeout (e.g., system got stuck in a loop). The latter
two lead to immediate termination of the experiment. In contrast,
when the system yields control normally (after code execution for
CaP and on Fwait for our method), the resulting world state is
checked using scripted ground-truth evaluation functions, leading
to either success or failure outcomes. The human is then presented
with this outcome and has the option to provide feedback or
improvement instructions to the robot, which are again passed
to the system. The success detection is performed every time
the system yields control, and the sequence of states and user

interactions is recorded. Note that we allow user feedback even
when already in the success state as the execution might still have
been suboptimal and the human may want to provide feedback
to learn from for next time. Details and example interactions can
be found in Supplementary Appendix B.

Every task is repeated 10 times using randomly generated scenes,
and each run is performed in sequence, i.e., the interaction memory
is not reset between runs in order to allow for incremental learning.
To assess the results, we compute the following metrics from the
execution traces:

s is the turnout success rate, i.e., the percentage of runs that
ended in the success state (optionally after user interaction that
clarifies the goal or helps the system).

i is the initial success rate, i.e., the percentage of runs that yielded
a successful state on the first system return, i.e., where no user
interaction was required to reach success.

n counts the number of user interactions that were required until
the success state was first reached. For runs that count into the
initial success category, n = 0, while for non-successful runs, n
is undefined. When aggregating n, we average only the runs
that ended successfully.

4.2 Baselines and methods

CaP: We utilize the prompts provided by Liang et al. (2023).
This is equivalent to our system without incremental learning and
without the interactive console formatting. Specifically, we note that
CaP has no way of feeding back coding errors to the system, i.e.,
it fails immediately if the generated code is syntactically invalid or
throws an exception.

HELPER: we adapt the code and prompts provided by
Sarch et al. (2023) to the simulated tabletop evaluation scenario
and API. For few-shot example retrieval, we set k = 16 for a
fair comparison. Specifically, we feed back execution errors to
the self-reflection and correction prompt, and user feedback is
passed as a new command to the PLANNER. HELPER’s few-shot
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memory is expanded with successful trials. Further details can
be found in Supplementary Appendix A.

Dynamic CaP: To make CaP a more competitive baseline,
we add a simple form of learning and top-k retrieval and call
this method Dynamic CaP. Similar to HELPER and our method,
Dynamic CaP uses a memory of few-shot samples and stores
code transcripts of successful episodes as new samples therein. On
every request, we fill the prompt with the top-k similar examples
retrieved from the memory. Further implementation details can
be found in Supplementary Appendix A.

Ours: this is our full system with incremental learning and
a value of k = 16 for few-shot sample retrieval. We split and
translated the 16 samples from the CaP prompts into our interactive
console syntax to initialize the memory of interaction examples.
Furthermore, there are two very short samples that demonstrate
when to call Flearn.

Ours w/o learning: This is our system, but without incremental
learning. k = 16 means that all samples are used as the interaction
example memory is static.

Ours w/o retrieval: This is our system with incremental learning
but a very high value of k = 64 for few-shot sample retrieval, which
effectively is a system that does not use retrieval. Note that the
prompt construction is still dynamic as the order of the samples is
determined by the similarity to the current request (cf. Section 3.4).

Furthermore, we compare the differently capable LLMs gpt-
3.5-turbo-0301 and gpt-4-0613 of the OpenAI API
(OpenAI, 2023a,b). For Limprove, we always use GPT-4. We note that
the original CaP numbers (Liang et al., 2023) were reported with
the codex model (Chen et al., 2021) that is no longer available.
We reproduced their experiments with the newer models but did
not perform further prompt tuning; therefore, our success rates for
CaP are lower than those reported in Liang et al. (2023). Specifically,
GPT-3.5 sometimes generates natural-language responses instead
of code, which causes CaP to fail with a SyntaxError.

4.3 Results

Tables 1, 2 present the aggregated results of our experiments,
while further details can be found in Supplementary Appendix C.
From these results, we draw the following main insights:

Interactive feedback helps achieve success. For all methods,
s is notably above i, which means that Linteract effectively uses human
feedback to improve its behavior. This effect is less stressed for CaP
with GPT-3.5 as it often immediately fails with an error, thus not
allowing for further interaction.

Incremental learning reduces necessity of corrective
interactions. For many tasks, i is notably higher and n lower
when comparing systems with learning to systems without learning,
indicating that the feedback from earlier (failed) attempts is
effectively utilized to improve following executions of the same
task. This effect is also confirmed by Supplementary Figures 1, 2.
Although for GPT-4 on seen instructions, performance is already
on a high level and corrections are rarely necessary, and the numbers
strongly support that incremental learning reduces interactions for
unseen instructions, as well as for GPT-3.5 on all instructions.
Thus, our method for incremental learning is especially useful for

“hard” tasks with respect to the predefined examples and general
capabilities of the used model.

Incremental learning improves the in-task success rate.
Our systems with incremental learning also have higher s than
those without learning. The reason is that our incremental
learning method reflects on the erroneous behavior and generates
a new sample for in-context learning that demonstrates the
desired behavior. With such nearly identical demonstration, the
generalization to new situations is much better, thus causing fewer
errors that cannot be corrected through interaction.

Incremental learning generalizes to new tasks. Qualitatively,
we observed several cases where a correction for one task is useful
for another task as well. For instance, GPT-3.5 initially interprets
“the corner” as someposition like (0.1,0.9).When instructing to “put
it right into the corner without any margin,” the behavior of using
full numbers, e.g., (0,1), transfers to subsequent different tasks that
also involve corners. Quantitatively, this effect is entangled with the
previous points in higher s and i, especially for the later unseen tasks.
For a further investigation, see Supplementary Appendix C.

Demonstration retrieval improves performance. For both
LLMs, our system with retrieval outperforms the system that always
uses all samples. This is especially true for GPT-3.5 as the system
without retrieval accumulated too many interaction examples in its
memory in the final experiments, thus leading to immediate failure
due to exceeding the LLM’s token limit. Although this is not the case
for GPT-4 with its much larger context length, the performance of
the system with retrieval is still better. We hypothesize that this is
due to too many irrelevant samples distracting the LLM.

Better LLMs lead to better performance. This can be
clearly seen when comparing the numbers for GPT-4 and GPT-

3.5. Nonetheless, we emphasize that GPT-3.5’s performance
as Linteract is still reasonably well, while it is faster and a factor
of 10 times cheaper. Specifically, the total cost to perform the
experiments in Table 1 was $ 245.6 for GPT-4 vs. $ 19.8 for
GPT-3.5 (which includes the use of GPT-4 for Limprove). Our
method of incremental learning can thus be seen as a knowledge
distillation method, with GPT-4 as the expensive teacher model
Limprove generating task-specific new prompts for the cheaper GPT-
3.5 to improve its future behavior as Linteract.

Comparison with HELPER and Dynamic CaP. As a key
difference to our method, HELPER learns from successful trials
by storing them as an example, while our method only inspects
erroneous experiences and then stores improved versions thereof.
The experimental results show that this strategy is more effective,
leading to higher s, i and lower n. Furthermore, HELPER cannot
see its own previously generated code when responding to errors or
feedback, in contrast to our method, which utilizes the interactive
Python console prompting for this purpose. Thus, HELPER cannot
handle feedback such as “slightly more to the left” effectively.

Dynamic CaP improves performance over plain CaP, but it
cannot compete with HELPER or our method. This confirms
that our method of interactive Python console prompting is
more effective than producing all code to solve the task at
once. Furthermore, we can observe that learning from successful
trials helps with seen instructions by reinforcing correct behavior,
but it does not transfer to unseen instructions. Note that this
observation also applies to HELPER, but mainly to i, since HELPER
can better respond to execution errors and user feedback than
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TABLE 1 Evaluation results on simulated tabletop tasks: success rate s and initial success rate i.

Test Ours HELPER Dyn. CaP CaP

Full w/o retrieval w/o learning

s i s i s i s i s i s i

GPT-4

SA SI 100 97.5 97.5 90.0 98.8 90.0 97.5 87.5 88.8 86.2 85.0 71.2

UA SI 100 92.5 98.8 95.0 98.8 92.5 100 93.8 97.5 93.8 96.2 81.2

UA UI 93.3 85.0 91.7 81.7 91.7 78.3 91.7 81.7 63.3 46.7 53.3 35.0

GPT-3.5

SA SI 95.0 87.5 93.8 82.5 85.0 43.8 93.8 77.5 57.5 55.0 53.8 52.5

UA SI 97.5 86.2 96.3 88.8 80.0 45.0 87.5 71.2 65.0 57.5 60.0 58.8

UA UI 85.0 70.0 56.7 51.7 66.7 43.3 80.0 50.0 46.7 36.7 16.7 15.0

TABLE 2 Evaluation results on simulated tabletop tasks: average number of interactions until success n.

Test Ours
HELPER Dyn. CaP CaP

Full w/o retrieval w/o learning

GPT-4

SA SI 0.04 0.12 0.37 0.21 0.06 0.26

UA SI 0.14 0.12 0.1 0.1 0.07 0.35

UA UI 0.16 0.18 0.55 0.22 0.62 0.74

GPT-3.5

SA SI 0.14 0.25 1.09 0.31 0.16 0.02

UA SI 0.33 0.15 0.95 0.38 0.23 0.06

UA UI 0.28 0.19 1.29 0.68 0.48 0.07

CaP. We conclude that our proposed method to learn from
erroneous interactions is more effective than reinforcing successful
behavior only.

Further results. Supplementary Appendix C presents two
additional experiments: first, we investigate the effect of k by
setting k = 4 (instead of 16), showing that lower k comes with
a higher n and lower i, as potentially relevant demonstrations
might not be retrieved, thus requiring another user interaction.
Second, we change the behavior of Flearn to simply save the current
interaction in M, skipping Limprove. This hurts the performance as
the erroneous behavior fromprevious trials is often repeated, despite
the prompt containing improvement instructions from earlier
interactions.

5 Real-world demonstration

To demonstrate the utility of our proposed prompt-based
incremental learning technique, we perform experiments on the
real-world humanoid robot ARMAR-6 (Asfour et al., 2018). We
first provide challenging commands which the LLM initially
solves incompletely or wrongly. Then, the human interactively
provides feedback and tells the robot how to improve. Afterward,

we not only provide the same command again to check for
improved behavior but, in order to study generalization, also
try similar commands that initially (i.e., before learning) led
to similar mistakes. Details on the implementation of these
experiments, especially on the API exposed to the LLM, can be
found in Supplementary Appendix D. The system is connected to
a memory-centric cognitive robot architecture where the memory
mediates between high-level components and low-level abilities
(see Figure 4). Specifically, the API provided to the LLM allows
querying the robot’s memory with functions to list all objects
and location names (opt. with a given affordance), query sub-
symbolic coordinates of objects or locations, or retrieve state
information about specific objects. The robot’s memory is filled
beforehand by the robot’s perception and cognition components. In
our experiments, we use a mixture of predefined prior knowledge
(e.g., about static objects in the scene) and online perception
(e.g., object pose-detection, self-localization). Furthermore, the API
allows invoking registered skills, behaviors, and movements of the
robot, such as grasping, navigation, object placement, or handing
objects to a human. However, we do not focus on scenarios where
the involved skills themselves fail; rather, we focus on high-level
semantic problems. Please refer to Supplementary Appendix D for
further details.
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We present three scenarios: improving plans to demonstrate
complex improvement of suboptimal or unintended performance,
learning user preferences to show how to adapt to non-generic task
constraints, and adapting low-level parameters to demonstrate that
our system can learn from vague user instructions. Demonstration
videos can be found at https://lbaermann.github.io/interactive-
incremental-robot-behavior-learning/.

5.1 Improving plans

In this scenario, we tell the robot that we want juice. The prior
knowledge contains some similar interaction examples, picking
up a single object and handing it over to the human. Thus,
the task of bringing the juice is executed successfully. However,
since the user needs a cup to drink, we further instruct the
robot “can you also bring me a cup?,” which causes the robot
to additionally hand over a cup. Afterward, we ask the robot to
improve this behavior using “Thanks, but next time, can you do
this both at once? You have two hands.” Limprove generates an
improved interaction example, as shown on the right of Listing 1
(simplified, cf. Supplementary Appendix E1).

Afterward, when given the same initial command again, the
robot uses bimanual behavior to hand over both the juice and cup.
Furthermore, the learned bimanuality generalizes to “can you bring
something to drink to the table?” which does not use handover but
places both objects on the table. Unfortunately, a further test with
“can I have somemilk, please?” shows the unimanual behavior again,
so we again have to ask for a cup and trigger incremental learning.
In the next session, we ask “hey, can you serve some drink?,” which
correctly generalizes the behavior to use both hands to pick up a
different drink and cup, but it misinterprets “serve” as performing
a handover instead of putting it on the table. However, we can
successfully trigger learning again by teaching “when I say serve, I
mean that you should put it on the table,” and subsequent requests
do behave as intended.

We conclude that our interactive, incremental learning system
can flexibly generate complex behavior from concise improvement
instructions. However, it is still challenging to robustly generalize
from a single instruction to all the cases a human might
have intended, as shown by the milk example, where a second
correction was necessary for successful generalization. Improving
this generalization capability should be a focus of future work.

5.2 Learning user preferences

As shown in Figure 1, in this scenario, we ask the robot to
assist with cleaning the top of the fridge. The memory M contains
predefined comparable examples for cleaning the table and kitchen
counter, which guide the LLM to only handing over the sponge
to the human. However, since the top of the fridge is higher than
the table or the kitchen counter, we require a ladder to reach it,
so we additionally ask for it (GPT-4 did, in contrast to GPT-3.5,
proactively ask whether it should also bring the ladder). The robot
then successfully places the ladder in front of the fridge. Eventually,
we instruct the robot to always bring the ladder when working
on high surfaces. The generated improved interaction example

Listing 2. When asked to move faster on a specific route,
Limprove generates an example including an explicit
comment stating the user’s preference.

correctly brings the ladder after the sponge, without any further
request (details in Supplementary Appendix E2). Afterward, when
we perform a similar request (e.g., “clean on top of the dishwasher”),
the robot brings both the sponge and the ladder successfully, while
for lower surfaces (e.g., kitchen counter), the robot still brings
only the sponge. The behavior also transfers to different tasks than
cleaning, e.g., the robot brings the cereals and the ladder on “can
you get me the cereals? I want to put it in the topmost shelf,” while it
does not bring the ladder when tasked with “I want to put the cereals
in the shelf.”

In summary, this example demonstrates that our method can be
used to learn task constraints or preferences that a user specifies, and
this knowledge can be generalized to similar situations.

5.3 Adapting low-level parameters

In this scenario, we ask the robot to bring some object from
the table to the workbench (details in Supplementary Appendix E3).
Subsequently, we say “remember that the route from the table to the
bench is safe, you can go faster.” Flearn correctly generates a sample
that adapts the numeric speed factor of the move_to function on
that route. However, if we test the same task afterward, Linteract still
uses the default speed. Annoyed by that, we shout “you forgot that I
told you to go faster from the table to the workbench. When moving
on that route, you should go faster!,” triggering another learning
process, generating another correct sample, including an explicit
comment, as shown in Listing 2.

Proceeding requests now behave correctly and increase
the speed from the table to the workbench. However, an
adversarial test shows that Linteract now dangerously uses
increased speed from another location to the workbench as
well, while routes to different places still correctly use the
default speed.

To conclude, our system can successfully learn to adapt low-level
API parameters as requested by a user, but ensuring that the LLM
applies learned knowledge in the intended context only is not fully
solved yet.

6 Conclusion and discussion

We present a system for integrating an LLM as the central
part of high-level orchestration of a robot’s behavior in a closed
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interaction loop. Memorizing interaction examples from experience
and retrieving them based on the similarity to the current user
request allows for dynamic construction of prompts and enables
the robot to incrementally learn from mistakes by extending
its episodic memory with interactively improved code snippets.
We describe our implementation of the system in the robot
software framework ArmarX (Vahrenkamp et al., 2015) and on the
humanoid robot ARMAR-6 (Asfour et al., 2018). The usefulness of
our approach is evaluated both quantitatively on the tasks fromCode
as Policies (Ahn et al., 2022) and qualitatively on a humanoid robot
in the real world.

Although the proposed method, in particular the incremental
prompt learning strategy, shows promising results, there are still
many open questions for real-world deployment. First of all, the
performance of LLMs is quite sensitive to wording in the prompt,
thus sometimes leading to unpredictable behavior despite only slight
variations in the input (e.g., adding “please” in the user command).
This might be solved with more advanced models in the future as
we did observe this issue more often with GPT-3.5 than with GPT-
4. Investigating the effect and performance of example retrieval in
dynamic prompt construction might also contribute to improving
robustness. Furthermore, our incremental prompt learning strategy
should be expanded to involve additional human feedback before
saving (potentially wrong) interaction examples to the episodic
memory. However, this is challenging to accomplish if the user
is not familiar with robotics or programming languages. One
possible approach would be to verbalize the improved interaction
example using an LLM, present it to the user, and ask for
confirmation. Similarly, the improved code could first be executed
in a simulation environment to check its validity before saving it in
the memory of interaction examples. Both approaches have some
open challenges, such as ensuring correctness of the verbalization
or accuracy of the simulation as there will be a large sim-to-
real gap for the type of behaviors considered in our paper. To
rigorously evaluate our incremental learning method in the real
world, future work may want to incorporate a user study with
non-technical participants. Further work should also focus on
abstraction of similar behavior and forgetting of irrelevant learned
behavior. Although our system is limited by the APIs exposed to
the LLM, it could be combined with complementary approaches
(Parakh et al., 2023) to support learning of new low-level skills,
which would then be exposed through new functions added to
the API. Furthermore, designing an API that enables robust yet
flexible interactions is a challenge that should be considered in
future work. In particular, providing the LLM access to sub-
symbolic parameters (such as positions to navigate to) enables fine-
grained user corrections (“move a little more to the left”), but it
can significantly harden the task for the LLM and entails many
more failure cases. Moreover, although we provide the LLM with
access to perception functions and examples of how to use them,
it sometimes comes up with non-grounded behavior (e.g., referring
to non-existing objects or locations). This may be improved by
adding further levels of feedback to the LLM or using strategies
like Grounded Decoding (Huang et al., 2023). Finally, our system
inherits biases and other flaws from its LLM (Bender et al., 2021),
which may lead to problematic utterances and behaviors. In future
work, we will try to address some of these challenging questions to

further push the boundaries of natural, real-world interactions with
humanoid robots.
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