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Human dexterity is an invaluable capability for precise manipulation of objects
in complex tasks. The capability of robots to similarly grasp and perform in-
hand manipulation of objects is critical for their use in the ever changing
human environment, and for their ability to replace manpower. In recent
decades, significant effort has been put in order to enable in-hand manipulation
capabilities to robotic systems. Initial robotic manipulators followed carefully
programmed paths, while later attempts provided a solution based on analytical
modeling ofmotion and contact. However, these have failed to provide practical
solutions due to inability to cope with complex environments and uncertainties.
Therefore, the effort has shifted to learning-based approaches where data
is collected from the real world or through a simulation, during repeated
attempts to complete various tasks. The vast majority of learning approaches
focused on learning data-based models that describe the system to some
extent or Reinforcement Learning (RL). RL, in particular, has seen growing
interest due to the remarkable ability to generate solutions to problems with
minimal human guidance. In this survey paper, we track the developments of
learning approaches for in-hand manipulations and, explore the challenges and
opportunities. This survey is designed both as an introduction for novices in the
field with a glossary of terms as well as a guide of novel advances for advanced
practitioners.

KEYWORDS

in-handmanipulation, dexterousmanipulation,model learning, reinforcement learning,
imitation learning

1 Introduction

Robot in-hand manipulation has long been considered challenging. However,
it has undergone rapid development in recent years. With the vast industrial
development and increase in demand for domestic usage, significant growth in
interest in this field can be predicted. Evidently, we witness an increase in research
papers, as shown in Figure 1, along with algorithms for solving versatile tasks. Just
to mention a few, research has sought solutions for real-world tasks such as medical
procedures (Lehman et al., 2010), assembly in production lines (Kang et al., 2021),
and robotic assistance for sick and disabled users (Petrich et al., 2021). During the
COVID-19 pandemic, there has been a significant need for autonomous and complex
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FIGURE 1
Statistics on paper publications which addressed or mentioned robotic
in-hand manipulations over the past 5 years in three learning
sub-fields: Model-driven learning, Reinforcement Learning (RL) and
Imitation Learning (IL), along with papers that do not use any learning
method. The search is based on Google Scholar and may include
publications with merely a single mention of the topic and
non-peer-review publications.

robot manipulators (Kroemer et al., 2021). In this study, we
survey various in-hand manipulation tasks of robotic hands and
advanced learning approaches for achieving them. As commonly
done by the robotics community and as shown in Figure 2,
we distinguish between two main categories of robot in-hand
manipulation: dexterous and non-dexterous in-hand manipulations.
To the best of our knowledge, we can conclude that the former
approach ismore prolific in algorithms and the number of published
papers. In addition, we divide the types of manipulations into
ones that have continuous and non-continuous contacts during
execution. The continuous approach has more techniques than the
other as it normally uses dexterous robotic hands with higher
Degrees-Of-Freedom (DOF) in comparison to non-continuous
approaches (Sun et al., 2021).

Efforts for learning in-hand manipulation can be classified
into three subfields:model-basedmethods, Reinforcement Learning
(RL) and Imitation Learning (IL). Model-based methods focus
on the supervised learning of the dynamics of a system or state
representation. On the other hand, RL provides a reward function
that embeds an implicit directive for the system to self-learn
an optimal policy for completing a task. Similarly, IL requires a
policy to imitate human expert demonstrations. These approaches
have significant implications for in-hand manipulation, as they
each offer unique advantages in improving robotic capabilities.
They offer complementary contributions to improving robotic in-
hand manipulation. Model-based methods provide a foundation for
understanding systemdynamics, RL enables self-learning of optimal
policies, and IL allows for learning from human expertise. Figure 1
shows the increase in paper publications over the past 5 years with
regard to these three subfields. We note that the search is based on
Google Scholar and aims only to show a trend. Results may include
publications with merely a single mention of the topic without
actual scientific contribution and non-peer-review publications.
In this study, we survey in-hand manipulation approaches, tasks
and applications that use either of these subfields with substantial
contribution to the topic.

Previous surveys focused on specific aspects of robotic
manipulation such as the use of contact (Suomalainen et al.,
2022), space applications (Papadopoulos et al., 2021), handling
of deformable objects (Herguedas et al., 2019), multi-robot systems
(Feng et al., 2020) and manipulation in cluttered environments
(Mohammed et al., 2022). Some other surveys discussed learning
approaches for general manipulation such as imitation learning
(Fang et al., 2019), deep-learning (Han et al., 2023) and general
trends (Billard and Kragic, 2019; Kroemer et al., 2021; Cui and
Trinkle, 2021). However, to the best of the author’s knowledge,
this is the first survey of learning approaches for robotic in-hand
manipulation. Hence, this study offers multiple contributions.
Papers were classified and grouped into meaningful clusters. The
survey can help researchers to efficiently locate relevant research in
a desired class and perceive what has already been achieved. Table 1
provides a summary of prominent state-of-the-art work including
key properties. These properties will be defined, introduced and
discussed in the next section which provides an overview of in-
hand manipulation. Practitioners can use our survey to estimate the
added value of their research and compare it with previous studies.
We also explain the relationships between the different subfields to
showcase a wide perspective of the topic. In addition, our work can
be seen as a survey of survey papers, similar to the references of
some other survey papers.

This study adopts a top-down approach. First, we provide a
technical overview of in-hand manipulation, including the types
of manipulation, hands and sensing modalities (Section 2). This
overview provides an understanding of the relevant hardware,
manipulations and common terms to be used later. Next, we survey
the subject from a high-level perspective and later zoom into
more detailed sub-topics. In addition, we discuss popular tasks in
each field. For each task, we often found several approaches while
comparing the benefits of one over the other. Finally, we provide
insights into future challenges and open problems that should be
addressed by the robotics community.

2 Overview on in-hand manipulations

Robotic in-hand manipulation involves physical interaction
between a robotic end-effector, an object and often with the
environment (Cruciani et al., 2020). The properties of an end-
effector define its ability to manipulate the object including: sensory
perception, number of DOF, kinematics and friction. In this section,
we provide an overview of various types of in-hand manipulations
and the robotic hand types that are capable to exert them. In
addition, we discuss the common perception and control methods
used in these manipulations.

2.1 Dexterous and non-dexterous
manipulation

The conventional paradigm is to distinguish between
dexterous and non-dexterous hands. Generally, dexterous
manipulation is the cooperation of multiple robot arms or fingers
to manipulate an object (Okamura et al., 2000). Dexterous
in-hand manipulation is, therefore, the manipulation of an
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FIGURE 2
Taxonomy of robotic in-hand manipulation.

object in the hand by using its own mechanics (Mason and
Salisbury, 1985). Naturally, dexterous in-hand manipulation
requires a high number of DOF and includes, in most cases,
anthropomorphic hands. Contrary to dexterous hands, non-
dexterous ones have a low number of DOF and, thus, do not have an
intrinsic capability to manipulate objects by themselves and require
some extrinsic involvement.

2.2 Types of in-hand manipulations

We now introduce the types of in-hand manipulations
commonly addressed in the literature and distinguish between
those that maintain and do not maintain continuous contact
with the object. These types can be referred to as both
dexterous and non-dexterous manipulations as will be
discussed later.

2.2.1 In-hand manipulations that maintain
continuous contact

Initiating object motion within a robotic hand poses some
risk of losing control and potentially dropping it. Hence, the
majority of in-hand manipulations perform the motion while
maintaining sufficient contact with the object, as it is the safest
approach. Nevertheless, a prominent condition for a successful
manipulation is that grasp stability is guaranteed throughout the
motion. Following are the key in-hand manipulation types that
maintain contact.

• Rolling. Rolling manipulation is the ability to rotate an object
within the hand through rolling contact. This is caused by
finger motion during contact while the object is held against

another part of the hand, usually static, such as another
finger or palm (Han et al., 1997). Rolling manipulation is
limited to objects of certain geometries and is most feasible
with round ones.
• Pivoting. Pivoting is the reorientation of an object between

two fingers with respect to the hand (Sintov and Shapiro,
2016; Bhatt et al., 2021). The rotation point is commonly
the pinching point of the fingers and the reorientation is
conducted to some desired angle. The pivoting operation
can be done by utilizing gravity (Viña B. et al., 2015),
initiating external contact (Dafle et al., 2014) or generating
dynamic motions of the robotic arm (Sintov et al., 2016;
Cruciani and Smith, 2017).
• Sliding. In in-hand sliding manipulation, controlled slip is

initiated in order to vary the relative position of the object with
regards to the hand (Shi et al., 2017a). The object slides along
the links of the hand to a desired position due to forces from
the fingers or external forces (Shi et al., 2020).
• In-Grasp. While pivoting, sliding and rolling aim to change

either position or orientation of the object, in-grasp
exploits kinematic redundancy of the hand to vary both
the position and orientation of the object (Ma and Dollar,
2011). During manipulation, finger contacts and a stable
grasp are maintained. However, sliding or contact rolling
may occur (Calli et al., 2018b).
• Finger Gaiting. An approach analogous to gait where the

hand’s DOF are exploited to switch between contact locations
while maintaining a force-closure grasp (Rus, 1999; Xu et al.,
2007; Fan et al., 2017; Bhatt et al., 2021). Hence, the
approach is commonly performed quasi-statically where the
motion is performed relatively slow to reduce dynamic
effects. Finger gaiting may be considered quite wasteful, as it
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TABLE 1 Summary of state-of-the-art work on learning approaches for in-hand manipulation (in alphabetical order).

Paper Learning type Manipulation Dex./Non-
Dex

Rigid/Soft Perception

Model RL IL type hand hand Vision Tactile Kines

Allshire et al.
(2022)

✓ In-Grasp Dex Rigid ✓ ✓

Antonova et al.
(2017)

✓ Pivoting Non-Dex Rigid ✓

OpenAI et al.
(2019);
Andrychowicz et al.
(2020)

✓ In-Grasp Dex Rigid ✓ ✓

Arunachalamet al.
(2023b)

✓ Mix Dex Rigid ✓

Azulay et al.
(2022a)

✓ In-grasp Non-Dex Soft ✓ ✓

Azulay et al.
(2022b)

✓ In-Grasp Non-Dex Soft ✓

Calli et al. (2018b) ✓ In-Grasp Non-Dex Soft ✓ ✓

Chen et al.
(2021a, 2022)

✓ Mix Dex Rigid ✓

Chen et al.
(2023a)

✓ F. Gait Dex Rigid ✓ ✓

Cruciani and
Smith (2017,
2018)

✓ Pivoting Non-Dex Rigid ✓

Deng and Zhang
(2020)

✓ Mix Dex Rigid ✓ ✓

Dimou et al.
(2023)

✓ In-Grasp Dex Rigid ✓

Falco et al. (2018) ✓ In-Grasp Dex Soft ✓ ✓

Funabashi et al.
(2019a, 2020b,
2019b)

✓ Rolling Dex Rigid ✓ ✓

Garcia-
Hernando et al.
(2020)

✓ Mix Dex Rigid ✓

Gupta et al.
(2021)

✓ Mix Dex Rigid ✓

Handa et al.
(2023)

✓ Mix Dex Rigid ✓

Huang et al.
(2021)

✓ F. Gait Dex Rigid ✓

Jain et al. (2019) ✓ ✓ In-Grasp Dex Rigid ✓ ✓ ✓

Khandate et al.
(2022, 2023)

✓ F. Gait Dex Rigid ✓ ✓

(Continued on the following page)
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TABLE 1 (Continued) Summary of state-of-the-art work on learning approaches for in-hand manipulation (in alphabetical order).

Paper Learning type Manipulation Dex./Non-
Dex

Rigid/Soft Perception

Model RL IL type hand hand Vision Tactile Kines

Kimmel et al.
(2019)

✓ In-Grasp Non-Dex Soft ✓ ✓

Korthals et al.
(2019)

✓ Mix Dex Rigid ✓ ✓ ✓

Kumar et al.
(2016)

✓ Mix Dex Rigid ✓ ✓

Li et al. (2014) ✓ In-grasp Dex Rigid ✓ ✓ ✓

Li et al. (2020) ✓ ✓ In-Grasp Dex Rigid ✓ ✓

Luo et al. (2023) ✓ Mix Dex Rigid ✓ ✓

Melnik et al.
(2021)

✓ Mix Dex Rigid ✓ ✓ ✓

Morgan et al.
(2020)

✓ In-Grasp Non-Dex Soft ✓

Morgan et al.
(2021b)

✓ ✓ Mix Non-Dex Soft ✓

Nagabandi et al.
(2020)

✓ ✓ Mix Dex Rigid ✓

Orbik et al. (2021) ✓ Mix Dex Rigid ✓ ✓

Park et al. (2024) ✓ In-Grasp Non-Dex Soft ✓

Pitz et al. (2023) ✓ In-Grasp Dex Rigid ✓

Qi et al. (2022) ✓ F. Gait Dex Rigid ✓

Qi et al. (2023) ✓ F. Gait Dex Rigid ✓ ✓ ✓

Radosavovic et al.
(2021)

✓ Mix Dex Rigid ✓

Rajeswaran et al.
(2017)

✓ Mix Dex Rigid ✓ ✓

Shin and Jeon
(2024)

✓ Rolling Dex Rigid ✓ ✓ ✓

Sievers et al.
(2022)

✓ In-Grasp Dex Rigid ✓

Sintov et al.
(2019, 2020a)

✓ In-Grasp Non-Dex Soft ✓ ✓

Solak and Jamone
(2019)

✓ In-Grasp Dex Rigid ✓

Solak and Jamone
(2023)

✓ In-Grasp Dex Rigid ✓ ✓

Srinivasan et al.
(2020)

✓ In-Grasp Dex Rigid ✓ ✓

(Continued on the following page)
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TABLE 1 (Continued) Summary of state-of-the-art work on learning approaches for in-hand manipulation (in alphabetical order).

Paper Learning type Manipulation Dex./Non-
Dex

Rigid/Soft Perception

Model RL IL type hand hand Vision Tactile Kines

Tao et al. (2023) ✓ Mix Dex Rigid ✓

Toskov et al.
(2023)

✓ Pivoting Non-Dex Rigid ✓

Toledo et al.
(2021)

✓ Pivoting Non-Dex Rigid ✓

Van Hoof et al.
(2015)

✓ In-Grasp Non-Dex Soft ✓

Veiga et al. (2020) ✓ In-Grasp Dex Rigid ✓

Wang et al. (2020) ✓ Pivoting Non-Dex Rigid ✓

Wei et al. (2023) ✓ Sliding Dex Rigid ✓

Yang et al. (2023) ✓ Mix Dex Rigid ✓

Yin et al. (2023) ✓ Mix Dex Rigid ✓ ✓

Yuan et al. (2020) ✓ Rolling Non-Dex Rigid ✓ ✓

Yuan et al. (2023) ✓ Mix Dex Rigid ✓ ✓ ✓

requires sufficiently many DOFs to manipulate the grasped
object between two grasp configurations while maintaining
stable grasps.

2.2.2 In-hand manipulations that do not maintain
continuous contact

• Pick and place. While not usually considered as in-
hand manipulation, pick-and-place is worth mentioning
since it is the most common. The method designates
a work area near the robotic arm, where the grasped
object can be placed in a controlled manner and then
picked up again at a new grasp configuration (Lozano-
Perez et al., 1987; Tournassoud et al., 1987). This approach
consumes valuable production time and occupies a substantial
work area.
• Dynamic Regrasping. In this approach, the robot initiates

an intended loss of grasp stability through the set of
dynamical motions. In most cases, the object is thrown
or released into midair and later caught in different grasp
configurations. Hence, the hand loses contact (fully or partly)
with the object and regains contact by catching it at the final
contact points (Sintov and Shapiro, 2017). Such a method
has the advantage of fast manipulation and may require a
low number of DOF. However, in contrast to manipulations
that maintain contact, the success rate for dynamic regrasping
may be lower as object stability is not maintained throughout
the motion.

2.3 In-hand manipulation with
non-dexterous hands

2.3.1 Parallel grippers
The most common and ubiquitous non-dexterous robotic hand

is the parallel or jaw gripper seen in Figure 3A. Parallel grippers are
widely used due to their simplicity, durability and low cost.They can
precisely grasp almost any object of the same scale and, therefore, are
ubiquitous in industrial applications ofmaterial handling (Guo et al.,
2017). Parallel grippers normally have only one DOF for opening
and closing the jaws. Hence, they do not have independent in-
hand manipulation capabilities. Consequently, solutions for in-
hand manipulation with parallel grippers often involve the discrete
manipulation approach of pick-and-place (Tournassoud et al.,
1987). In pick-and-place, the object is placed on a surface and
picked up again in a different grasp configuration (Zeng et al.,
2018). However, the picking and placing can be slow and demands
a large surface area around the robot. Hence, approaches for in-
hand manipulation with parallel grippers, that do not involve
picking and placing, are also divided to extrinsic and intrinsic
dexterity (Ma and Dollar, 2011; Billard and Kragic, 2019). The
former compensates for the lack of gripper DOF and involves
actions of the entire robotic arm for either pushing the object
against an obstacle (Dafle et al., 2014; Chavan-Dafle et al., 2020)
or performing dynamic manipulation. For instance, pivoting can be
done by intrinsic slippage control or extrinsic dynamicmanipulation
of the arm (Viña B. et al., 2015; Sintov et al., 2016; Cruciani and
Smith, 2018). Slippage control leverages gravity and tunes finger
contact force of the parallel gripper (Costanzo et al., 2021). Costanzo
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FIGURE 3
Various dexterous and non-dexterous hands. (A) Non-dexterous parallel jaw gripper model 2F-85 by Robotiq. The gripper has only a single DOF for
opening and closing on an object. (B) The four-finger dexterous and anthropomorphic Allegro hand with 16 DOF. (C) A four finger non-dexterous soft
hand operated by pneumatic bending actuators (Abondance et al., 2020). (D) Underactuated compliant hand model-O from the Yale
OpenHand project (Ma and Dollar, 2017). Images (A, B, D) were taken by the authors.

(2021) exploited a dual-arm system and tactile feedback to allow
controlled slippage between the object and parallel grippers. The
work of Shi et al. (2017b) controlled the force distribution of a
pinch grasp to predict sliding directions. Similarly, Chen Y. et al.
(2021) controlled the sliding velocity of an object grasped by a
parallel gripper.

In intrinsic manipulation, the available DOF of the gripper
are exploited for manipulating the grasped object (Cruciani et al.,
2018). While jaw grippers have only one DOF, some work has been
done to augment their intrinsic manipulation capabilities. These
robotic hands, equipped with additional functionalities beyond the
traditional single DOF parallel gripper, can no longer be categorized
as simple grippers. Seminal work by Nagata (1994) proposed six
gripper mechanisms with an additional one DOF at the tip, each
having the ability to either rotate or slide an object in some direction.

Similarly, a passively rotating mechanism was integrated into the
fingers of the gripper allowing the object to rotate between the
fingers by gravity (Terasaki and Hasegawa, 1998). Zhao J. et al.
(2020) augmented a jaw gripper tip with a two DOF transmission
mechanism to re-orient and translate randomly placed screws.
Zuo et al. (2021) added a linear actuation along each of the two
fingers to enable translation and twist of a grasped object. Similarly,
a rolling mechanism was added to the gripper by Chapman et al.
(2021) in order to manipulate a flat cable. In-hand manipulation
was also enabled for a minimal underactuated gripper by employing
an active conveyor surface on one finger (Ma and Dollar, 2016).
Taylor et al. (2020) included a pneumatic braking mechanism
in a parallel gripper in order to transition between object free-
rotation and fixed phases. The above augmentation methods for
parallel grippers are limited to one manipulation direction and
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yield bulky mechanisms that complicate the hardware. However,
a simple vibration mechanism was recently proposed to enable
SE(2) sliding motion of a thin object between the jaws of a
parallel gripper (Nahum and Sintov, 2022).These innovative designs
offer enhanced in-hand manipulation capabilities without requiring
complex additional controls or software, opening upnew avenues for
research and development within the field of in-hand manipulation.
Traditional control and motion planning methods for these systems
often lack the flexibility to generalize to diverse tasks and objects.
Learning-based approaches offer a promising solution for enhancing
the capabilities of these mechanisms.

2.3.2 Soft hands
Soft hands are robotic grippers that are comprised of soft

or elastic materials. Due to their soft structure, they usually
provide passive compliance upon interaction with the environment
(Zhou et al., 2018). Hence, they can grasp objects of varying sizes
and shapes without prior knowledge. A class of soft hands is the
pneumatic-based hands where stretchable fingers can be inflated to
generate a grasp. For instance, RBO Hand 2 is a compliant, under-
actuated anthropomorphic robotic hand (Deimel, 2014). Each finger
of the hand is made of cast silicon wrapped with inelastic fabric.
When inflated, the fabric directs the stretch of the fingers toward
a compliant grasp. In-hand manipulation with pneumatic-based
hands was demonstrated for which heuristic finger gait enabled
continuous object rotation (Figure 3C) (Abondance et al., 2020).
Another pneumatic hand with reconfigurable fingers and an active
palm was designed to enable in-hand dexterity while maintaining
low mechanical complexity (Pagoli et al., 2021). Batsuren and Yun
(2019) presented a soft robotic gripper for grasping various objects
by mimicking in-hand manipulation. It consists of three fingers,
where each of them contains three air chambers: two side chambers
for twisting in two different directions and one middle chamber for
grasping. The combination of these air chambers makes it possible
to grasp an object and rotate it.

An important class commonly referred as a soft hand is
the Underactuated or Compliant hand (Dollar and Howe, 2010;
Liu et al., 2020). While the links of such a hand are generally rigid,
each finger has compliant joints with springs where a tendon wire
runs along its length and is connected to an actuator (Figure 3D).
Such a structure enables a two or more finger hand to passively
adapt to objects of uncertain size and shape through the use of
compliance (Odhner and Dollar, 2011). They can, therefore, provide
a stable and robust grasp without tactile sensing or prior planning,
and with open-loop control. In addition, due to the low number
of actuators, they enable a low-cost and compact design. Recently,
open-source hardware was distributed for scientific contributions
and can be easily modified and fabricated by 3D printing (Ma
and Dollar, 2017). Along with good grasping capabilities, precise
in-grasp manipulation was shown possible (Odhner and Dollar,
2015). Using visual servoing along with a linear approximation of
the hand kinematics, closed-loop control of a two-finger hand was
demonstrated (Calli and Dollar, 2016) and later used to track paths
plannedwith an optimization-basedmodel-free planner (Calli et al.,
2018a). However, a precise analytical model for soft hands is not
easy to acquire due to the compliance and inherent fabrication
uncertainties. Therefore, data-based models were proposed and will
be discussed later.

2.4 In-hand manipulation with dexterous
hands

Mason and Salisbury (1985) claimed that rigid hands can acquire
controllability of an object with at least three fingers of three
joints each. Such a hand control is termed dexterous manipulation
and the hand is a dexterous hand. Naturally, grippers that satisfy
this dexterity condition are bio-inspired or anthropomorphic
(Llop-Harillo et al., 2019) (Figure 3B). Early work on dexterous
anthropomorphic hands includes a three-finger and 11-DOF hand
(Okada, 1979), the four-finger Utah/MIT hand (Jacobsen et al.,
1986), and later the Barrett and DLR hands (Townsend, 2000;
Butterfass et al., 2001). Furthermore, extensive work was done on
five-finger anthropomorphic hands. Similar to the DLR hand, The
Gifu Hand used 16 built-in servo-motors in the joints (Mouri,
2002). On the other hand, the Robotnaut hand was designed
for space usage and included flex shafts for bending the fingers
(Lovchik and Diftler, 1999). A hand from Karlsruhe used 13 flexible
fluidic actuators for a lightweight design (Schulz et al., 2001).
The UB hand is a five-finger anthropomorphic hand that used
elastic hinges to mimic human motion (Lotti et al., 2004). Beyond
anthropomorphic designs, few non-anthropomorphic dexterous
hands have been proposed, incorporatingmultiple fingers in various
designs (Hammond et al., 2012). However, most attempts to
design a non-anthropomorphic multi-finger hand adhere to under-
actuation, limiting their dexterity (Molnar and Menguc, 2022).

While recent work on in-hand manipulation with dexterous
hands is based on learning approaches, earlier and few recent
ones have proposed non-data-driven methods. For instance, the
work by Furukawa et al. (2006) proposed a high-speed dynamic
regrasping strategy with a multi-fingered hand based on visual
feedback of the manipulated object. A different work introduced
a planning framework for an anthropomorphic hand to alternate
between finger gait and in-grasp manipulations (Sundaralingam
and Hermans, 2018). Recent work by Pfanne et al. (2020) used
impedance control for stable finger gaiting over various objects with
a dexterous multi-finger hand.

Multi-finger anthropomorphic hands are commonly employed
in the development of bionic prostheses as they resemble the
human hand (Cordella et al., 2016). They are usually operated by
Electromyographic (EMG) signals to reduce the cognitive burden
on the user (Starke et al., 2022). While these hands are often highly
dexterous and have multimodal information from various sensors
(Stefanelli et al., 2023), their use is commonly limited to pick and
place tasks (Marinelli et al., 2022). Hence, the learning methods
explored in this paper offer potential avenues for advancing the
capabilities of various hands including prosthetic ones with in-hand
manipulation tasks.

2.5 Perception

Humans use both visual feedback and touch perception for
interacting with the environment and, in particular, manipulate
objects within their hand (Robles-De-La-Torre andHayward, 2001).
Such sensory modules have been widely explored in robotics, both
individually and combined.
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2.5.1 Vision
Different variations of visual perception are used to observe a

manipulated object and estimate its pose in real time. The easiest
application is the positioning of fiducial markers such as ArUcO
(Garrido-Jurado et al., 2014), AprilTags (Olson, 2011) or reflective
markers for a Motion Capture system (MoCap) Azulay et al.
(2022a). These markers provide instant pose recognition of a
rigid object without the need for its geometry recognition
(Kalaitzakis et al., 2021). However, the requirement to apply them
on an object prevents spontaneous unplanned interaction with an
object. Specifically with reflective markers, the work is limited to
a room or lab where the MoCap system is located. In general,
vision-based markers are required to be continuously visible to the
camera. Hence, they are commonly for manipulation of specific
known objects, or for prototyping. For instance, fiducial markers
were used in visual servoing (Calli and Dollar, 2017) and hand state
representation (Sintov et al., 2019) during in-grasp manipulation of
an object with an underactuated hand.

While fiducial markers offer immediate pose estimation, their
reliance on predefined visual patterns limits their applicability
in real-world environments. To address this, visual perception,
combined with learning-based methods, is often employed for
robust object recognition and pose estimation. Visual pose
estimation, which is based on geometry recognition of the object,
is usually based on an RGB (monocular) camera, depth camera
or both (RGB-D). With RGB data, much work has been done
to regress 2D images to spatial pose of objects (Rad and Lepetit,
2017; Billings and Johnson-Roberson, 2019; Kokic et al., 2019).
Nevertheless, in simpler applications where the object is known,
it can be segmented using image processing tools. For instance, a
high-speed vision systemwas used by Furukawa et al. (2006) to track
a cylinder thrown and caught by a multi-finger hand. Similarly, a
high-speed camerawas used to solve a Rubik’s cubewith a fastmulti-
finger hand (Higo et al., 2018). A work by OpenAI used three RGB
cameras to train a model for pose estimation of a cube manipulated
by the Shadow hand (Andrychowicz et al., 2020). Ichnowski et al.
(2021) presented Dex-NeRF, a novel approach that enables grasping
using Neural Radiance Field (NeRF) technique. NeRF receives
five-dimensional vectors as input and can be used for grasping
transparent objects.TheRGBvalues are calculated using anArtificial
Neural Network (ANN) only after the initial stages.

Contrary to RGB cameras, 3D sensing such as stereo cameras,
laser scanners and depth cameras enable direct access to the distance
of objects in the environment. RGB-D sensing, in particular,
provides an additional point cloud corresponding to the spatial
position of objects in view. Commonly used depth cameras include
Intel’s RealSense and StereoLab’s ZED, where the latter leverages
GPU capabilities for advanced spatial perception. For instance,
an RGB-D camera was used to estimate the pose of objects
before and during grasp by a soft hand (Choi et al., 2017).
Similar work involved a depth camera to demonstrate robust
pose estimation of objects grasped and partly occluded by a two-
finger underactuated hand (Wen et al., 2020). Although visual
perception can provide an accurate pose estimation of amanipulated
object, it requires a line of sight. Hence, it cannot function in
fully occluded scenes and may be sensitive to partial occlusions.
Haptic-based approaches can, therefore, provide an alternative or
complementary solution.

2.5.2 Haptics
Information from haptic sensors is acquired through direct

contact with objects by either tactile sensing (Yousef et al., 2011)
or internal sensing of joint actuators known as Kinesthetic (or
Proprioception) haptics (Carter and Fourney, 2005). Traditionally,
tactile refers to information received from touch sensing, while
kinesthetic refers to internal information of the hand sensed
through movement, force or position of joints and actuators. While
kinesthetic haptics can be easier to measure, tactile sensing is the
leading haptic-based sensing tool for object recognition and in-hand
manipulation. State-of-the-art tactile sensors include force sensors
on fingertips, arrays of pressure sensors (Bimbo et al., 2016) or high-
resolution optical sensors (Yuan et al., 2017; Sun et al., 2022). With
these sensors, robotic hands can continuously acquire information
about the magnitude and direction of contact forces between them
and the manipulated object during interaction. An array of pressure
sensors was used for servo control of the Shadow hand in in-
hand manipulation tasks of deformable objects (Delgado et al.,
2017). Optical tactile sensors work by projecting a pattern of
light onto a surface and observing the distortion of that pattern
caused by contact using an internal camera. Different sensors utilize
different cameras with sensing resolution of up to 2592× 1944.
This distortion provides information about the shape, texture, and
pressure applied to the surface (Taylor et al., 2022; Azulay et al.,
2024). Lambeta et al. (2020)used these sensors to learn in-hand
manipulation models. To combine the advantages of haptics and
visual perception, some work has been done with both to explore
the hand-object interaction during in-grasp manipulation (He et al.,
2015). While haptics provides valuable information regarding the
state of contact with the environment, traditional analyticalmethods
are often insufficient for processing this data. Hence, learning-based
approaches have emerged as a promising solution for extracting
meaningful information from haptic sensor data.

2.6 Simulation of in-hand manipulation

Simulating in-hand and dexterous manipulation is a critical
aspect of robotic research, offering a controlled environment for
developing and testing advanced control algorithms. High-fidelity
simulators like MuJoCo (Todorov et al., 2012) and Isaac Gym
(Makoviychuk et al., 2021) allow researchers to model complex
interactions between robotic hands and objects, enabling the study
of tasks such as reorienting a cube (Andrychowicz et al., 2017),
opening doors (Rajeswaran et al., 2017) or dynamically adjusting
grasps on irregular objects (Agarwal et al., 2023). For instance,
MuJoCo’s ability to model soft contacts and Isaac Gym’s high-
speed parallel simulationsmake them valuable tools for training and
evaluating robotic manipulation strategies. The use of simulations
in dexterous manipulation research is invaluable. It enables large-
scale experimentation and rapid iteration, eliminating the risks
or costs associated with physical testing. Researchers can explore
complex manipulation tasks with multimodal sensing, including
tactile and visual inputs (Yuan et al., 2023), in a controlled and
scalable setting. Ultimately, these simulations drive the development
of more adaptive robotic systems capable of human-like dexterity in
unstructured environments.
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Despite their advantages, these simulators face significant
challenges in accurately replicating real-world physics,
particularly in modeling friction, soft deformation and
contact forces (Haldar et al., 2023). This sim-to-real gap can result
in behaviors learned in simulation failing to transfer seamlessly
to physical robots due to unmodeled dynamics and sensor noise.
Furthermore, while rigid body dynamics are often well-represented,
simulators struggle with soft materials and deformable objects,
which is crucial for tasks like manipulating cloth or delicate items.
More specifically, the simulation of underactuated hands is still a
challenge.

2.7 Datasets of in-hand manipulation
motions

Learning models require a significant amount of data to achieve
sufficient accuracy. Data in many applications is inherently high-
dimensional, often consisting of multimodal signals like visual
and haptic data. Simulators, such as mentioned above, provide
an environment to collect such data. However, the reality gap is
often too large and the acquisition of real-world data is necessary.
However, acquiring the data may be exhausting, expensive and
even dangerous. Hence, practitioners often disseminate their
collected data for the benefit of the community and for potential
benchmarking (Khazatsky et al., 2024). For example, RealDex
is a dataset focused on capturing authentic dexterous hand
motions with human behavioral patterns based on tele-operation
(Liu et al., 2024). The RUM dataset includes data of real in-hand
manipulation of various objects with adaptive hands (Sintov et al.,
2020b). A prominent dataset is the YCB object and model set
(Calli et al., 2015a), aimed to provide a standard set of object for
benchmarking general manipulation tasks including in-hand ones
(Cruciani et al., 2020). Some datasets are simulation based such as
the DexHand (Nematollahi et al., 2022) where the data is comprised
of RGB-D images of a Shadow Hand robot manipulating a cube.
Overall, publicly available datasets are an important tool to promote
standardized objects, tasks and evaluation metrics to benchmark
and compare different approaches to robotic in-handmanipulation.

3 Model-driven learning for in-hand
manipulation

The establishment of control policies for in-hand manipulation
remains challenging regardless of gripper, object or task properties.
Various contact models and hand configurations have been used
in the literature to develop kinematic and dynamic models
for in-hand manipulation as described in previous sections. In
order to execute in-hand manipulation tasks with these models,
detailed knowledge of the object-hand interaction is required. For
most robotics scenarios, however, such information cannot be
reasonably estimated using conventional analytical methods since
precise object properties are often not a priori known. Model
learning offers an alternative to careful analytical modeling and
accurate measurements for this type of system, either through
robot interaction with the environment or human demonstrations.
Learning a model can be done explicitly using various Supervised

Learning (SL) techniques, or implicitly by maximizing an objective
function. In this section, we will focus on the former technique
of supervised learning while the latter will be covered in the
following section.

3.1 Learning state representation

Learning a state representation for in-hand robotic
manipulations refers to the process of developing a mathematical
model that describes the various states of the hand-object system
during manipulation. This model can be used to represent the
position, orientation, velocity, and other physical properties of
an object. Furthermore, the model can be used to predict object
response to certain actions.

State representation is an important building block where the
object-hand configuration is sufficiently described at any given
time. For example, if a robot is trying to roll an object within
the hand, it may use some state representation to measure and
track the object’s pose, and use this information to exert informed
actions. In SL, an ANN is commonly used to extract relevant
features from data and learn useful features from high-dimensional
observation spaces (Azulay et al., 2022a; Andrychowicz et al.,
2020; Funabashi et al., 2019b; Sodhi et al., 2021; Dimou et al.,
2023). It is also effective in combining data from multiple sensors
or information sources (Qi et al., 2022), and is often used by
robots to merge information from different modalities, such as
vision and haptic feedback (Andrychowicz et al., 2020). Without
a compact and meaningful representation of the object-hand
state, the robot may struggle to perform successful and efficient
manipulations (Azulay et al., 2022a).

Haptic perception is commonly used to learn various features of
an object in uncertain environments so as to grasp and manipulate
it. Such information may include stiffness, texture, temperature
variations and surface modeling (Su et al., 2012). Often, haptic
perception is used alongside vision to refine initial pose estimation
(Bimbo et al., 2013). Contact sensing is the common approach
for pose estimation during manipulation (Azulay et al., 2022a).
Such sensing has been generally achieved using simple force or
pressure sensors (Tegin and Wikander, 2005; Cheng et al., 2009;
Wettels et al., 2009). As such, Koval et al. (2013) used contact sensors
and particle filtering to estimate the pose of an object during contact
manipulation. Park et al. (2024) used soft sensors in a pneumatic
finger and a neural-network to estimate the angles of the finger. In
recent years, optical sensor arrays have become more common due
to advancements in fabrication abilities and due to their effectiveness
in covering large contact areas (Bimbo et al., 2016). The softness
of the sensing surface allows the detection of contact regions as it
deforms while complying with the surface of the object. Changes in
images captured by an internal camera during contact are analyzed.

Several works have used data from optical-based tactile sensors
and advanced deep-learning networks to estimate the relative pose
of an object during contact manipulation. For example, Sodhi et al.
(2021) used data from an optical-based tactile sensor to estimate
the pose of an object being pushed, while others (Lepora and Lloyd,
2020; Psomopoulou et al., 2021) explored the use of these sensors for
estimating the relative pose of an object during a grasp. In a work by
Wang et al. (2020), the use of tactile sensing for in-hand physical
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feature exploration was also explored in order to achieve accurate
dynamic pivoting manipulations. Wang et al. (2020) also used
optical tactile sensors on a parallel gripper in order to train a model
to predict future pivoting angles given some control parameters.
Toskov et al. (2023) addressed the pivoting with tactile sensing and
trained a recursive ANN for estimating the state of the swinging
object. The model was then integrated with the gripper controller
in order to regulate the gripper-object angle. Funabashi et al.
(2019b) learned robot hand-grasping postures for objects with
tactile feedback enabling manipulation of objects of various sizes
and shapes. These works demonstrate the potential of haptic
perception and learning techniques for improving the accuracy and
efficiency of in-hand manipulation tasks. In practice, tactile sensing
provides valuable state information which is hard to extract with
alternative methods.

3.2 Learning hand transition models

A common solution for coping with the unavailability of a
feasible model is to learn a transition model from data. Robot
learning problems can typically be formulated as a Markov Decision
Process (MDP) (Bellman, 1957). Hence, a transition model, or
forward model, is a mapping from a given state xt ∈ X and action
at ∈A to the next state xt+1, such that xt+1 = f(xt,at). Subsets X and
A are the state and action spaces of the system, respectively. Such
models are commonly obtained through non-linear regression in
a high-dimensional space. Often, the forward model is described
as a probability distribution function, i.e., P(xt+1|xt,at), in order to
represent uncertainties in the transition.

Learning transition models for in-hand manipulation tasks
typically involves understanding how changes in the robot’s state
are caused by its actions (Nagabandi et al., 2020). While a hand
transition model is generally available analytically in rigid hands
where the kinematics are known (Ozawa et al., 2005), analytical
solutions are rarely available for compliant or soft hands. As far as the
authors’ knowledge, the major work on learning transition models
involves such hands. Attempts to model compliant hands usually
rely on external visual feedback. For example, Sintov et al. (2019)
proposed a data-based transition model for in-grasp manipulation
with a compliant hand where the state of the hand involves
kinesthetic features such as actuator torques and angles along with
the position of themanipulated object acquiredwith visual feedback.
The extension of this work used a data-based transition model in
an asymptotically optimal motion planning framework in the space
of state distributions, i.e., in the belief space (Kimmel et al., 2019;
Sintov et al., 2020a). Recently, Morgan et al. (2020) proposed an
object-agnosticmanipulation using a vision-basedModel Predictive
Control (MPC) by learning the manipulation model of a compliant
hand through an energy-based perspective (Morgan et al., 2019).
The work by Wen et al. (2020) used a depth camera to estimate
the pose of an object grasped and partly occluded by the two
fingers of an underactuated hand. While the work did not consider
manipulation, an extension proposed the use of the depth-based
6D pose estimation to control precise manipulation of a grasped
object (Morgan et al., 2021b). The authors leverage the mechanical
compliance of a 3-fingered underactuated hand andutilize an object-
agnostic offline model of the hand and the 6D pose tracker using

synthetic data. While not strictly a transition model, Calli et al.
(2018b) trained a model to classify transitions and identify specific
modes during in-grasp manipulations of an underactuated hand. By
using visual and kinesthetic perception, state and future actions are
classified to possiblemodes such as object sliding and potential drop.

While the above methods focus on pure visual perception for
object pose estimation, tactile sensors were used in recent work
independently or combined with vision. Recent work integrated
allocentric visual perception along with four tactile modules, that
combine pressure, magnetic, angular velocity and gravity sensors,
on two underactuated fingers (Fonseca et al., 2019). These sensors
were used to train a pose estimation model. Lambeta et al. (2020)
explored a tactile-based transition model for marble manipulation
using a self-supervised detector with auto-encoder architectures.
Azulay et al. (2022a) tackled the problem of partial or fully occluded
in-hand object pose estimation by using an observation model that
maps haptic sensing on an underactuated hand to the pose of
the grasped object. Moreover, an MPC approach was proposed to
manipulate a grasped object to desired goal positions solely based on
the predictions of the observation model. A similar forward model
with MPC was proposed by Luo et al. (2023) for the multi-finger
dexterous Allegro hand. Overall, these approaches demonstrate the
potential of using external visual feedback fused with tactile sensing
to learn transition models for in-hand manipulation tasks of various
hands with uncertainty.

3.3 Self-supervision and exploration for
learning transitions

Self-supervision and exploration are important techniques
for learning transitions of in-hand robotic manipulation. Self-
supervision refers to the process of learning from unlabeled data,
where the learning algorithm is able to infer the desired behavior
from the structure of the data itself. This can be particularly useful
for in-hand manipulation, as it allows the robot to learn about
the various states and transitions of an object without the need
for explicit human supervision. Exploration, on the other hand,
refers to the process of actively seeking out and interacting with
the environment in order to collect useful data. In the context of
in-hand manipulation, exploration can involve the robot trying out
different grasping andmanipulation strategies in order to learn what
works best for a given object and task. By actively seeking out and
interacting with the environment in this way, the robot can learn
about the various states and transitions of the object through trial
and error, and utilize this knowledge to improve its manipulation
performance. Together, self-supervision and exploration can be
powerful tools for learning transitions in in-hand manipulation,
as they allow the robot to learn from its own experiences and
actively gather information about the object being manipulated and
its surroundings.

The collection process to generate a state transition model for a
robotic system requires active exploration of the high-dimensional
state space (Kroemer et al., 2021). The common strategy is to
exert random actions (Calli et al., 2018a) in the hope of achieving
sufficient and uniform coverage of the robot’s state space. In practice,
some regions are not frequently visited and consequentially sparse.
In systems such as compliant hands (Sintov et al., 2020c) or
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object throwing (Zeng et al., 2020), each collection episode starts
approximately from the same state and, thus, data is dense around
the start state while sparser farther away. Therefore, acquiring
state transition models for robotic systems requires exhausting and
tedious data collection along with system wear, i.e., the transition
function f(xt,at) is difficult to evaluate.

Active sampling is an alternative strategy where actions that
are more informative for a specific task are taken (Wang et al.,
2018). However, acquiring a general model of the robot requires the
exploration of the entire feasible state space. Bayesian Optimization
is the appropriate tool to identify key locations for sampling
that would provide increased model accuracy. However, having
knowledge of sampling locations does not guarantee the ability to
easily reach them. Reaching some state-space regions may require
exerting complicatedmaneuvers.The right actions that will drive the
system to these regions for further exploration are usually unknown,
particularly in preliminary stages with insufficient data. That is, we
require a good model in order to learn a good model.

4 In-hand manipulation with
reinforcement learning

Reinforcement learning (RL) is one of the main paradigms of
machine learning, akin to supervised and unsupervised learning.
RL models learn to take optimal actions within some environments
by maximizing a given reward (Figure 4). In contrast to model-
driven learning, most RL algorithms collect data during the learning
process. Often, the learning is done in simulated environments
in order to avoid tedious work and wear of the real robot. RL
policies are functions mapping current states to optimal actions
and a distinction is commonly made between on- and off-
policy learning (Singh et al., 2022). Both approaches commonly
approximate the value function which is an expected cumulative
reward defined for states and actions. In on-policy learning, data
collection is guided by the intermediate policy learned by the agent.
The value function is learned directly by the policy. Therefore, a
balance must be kept between exploration of unvisited action-state
regions, and exploitation of known regions in order to maximize
reward. In off-policy methods, on the other hand, the value
function of the optimal policy is learned independent of the actions
conducted by the agent during training.

4.1 Brief RL overview

Assuming that a given system is a Markov Decision Process
(MDP), the next state depends solely on the current state and
desired action according to a forward transition dynamics while
receiving a reward. In model-based RL, a transition model can
be learned independently of the policy learning as described in
Section 3.2. When the system is stochastic due to uncertainties and
limited observability, a Partial Observed Markov Decision Process
(POMDP) is considered. As the true state cannot be fully observed
in such a case, an observation space is introduced. Therefore, the
agent receives an observation when reaching the next state with
some probability. In bothMDPandPOMDP, the goal is, therefore, to
learn a policy whichmaximizes the expected reward. Awider review

of key concepts and methods can be found in the work of Nguyen
and La (2019).

Deep reinforcement learning integrates the RL learning
paradigm with deep ANNs serving as the policy or value function
approximation. Such integration has revealed significant capabilities
and led to the success of many reinforcement learning domains
(Mnih et al., 2013; 2015) including robotmanipulation (Levine et al.,
2016; Nguyen and La, 2019) and specifically in-hand dexterous
manipulation (Jain et al., 2019; Andrychowicz et al., 2020). Examples
of straight-forward implementation of an RL algorithm include
the work of Antonova et al. (2017) which addressed the pivoting
problem with a parallel gripper. The RL policy was trained while
relying on fast tracking with a camera. However, the trained policy
yielded excessive back and forthmotions. Cruciani and Smith (2017)
coped with this limitation by employing a three-stage manipulation
in which the robot learns to control the velocity and opening of the
gripper. An RL policy was acquired through Q-Learning (Watkins
and Dayan, 1992). In an extension work, Cruciani and Smith (2018)
integrated path planning with the RL policy for the robotic arm to
perform more complex tasks. In another example, Van Hoof et al.
(2015) was the first to employ RL on a two-finger underactuated
hand by utilizing its compliance and tactile sensing.

Direct implementation of RL algorithms usually only works
in specific and limited applications. Hence, this section presents a
comprehensive survey of advanced approaches and current research
in the field, with a focus on the unique challenges of in-hand
manipulation. First, we describe transfer learning challenges and
approaches focusing on the sim-to-real problem. Next, the problem
of episodic resetting in real-life experiments is discussed. Finally,
we explore the topic of multi-level control systems and actor-critic
learning schemes.

4.2 Transfer learning and sim-to-real
problems

Often, ANN based controllers must train extensively for each
new task before being able to perform successfully, requiring long
training periods and extensive computation resources. Specifically
for in-hand manipulation, performing tasks with trained policies on
new objects may be challenging. Transfer learning can be divided
into few-shot, one-shot and zero-shot learning (Pourpanah et al.,
2023). Few-shot and one-shot transfer learning requires few
instances or a single instance, respectively, of a new task in
order to tune the previously trained model. On the other hand,
a trained model in zero-shot transfer can instantly perform
tasks not included in the training stage. Thus, the ability to
learn and generalize to new tasks in few-shots or less is highly
beneficial. In in-hand manipulation, the transfer of a model
often refers to the generalization to new objects not included in
the training (Huang et al., 2021).

The common approach in few- and one-shot transfer learning
is to share weights and data between different tasks, objects
and hands. Funabashi et al. (2019a) demonstrated the ability to pre-
train a policy to perform a stable rolling motion with only three
fingers of theAllegro hand and then transfer to utilize all four fingers.
This was shown to be possible given identical finger morphologies.
It was shown that pre-training can be done with data gathered even
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FIGURE 4
Illustration of (left) basic RL, (top right) actor-critic architecture, and (bottom right) a multi-network architecture.

from randommotions such that, afterward, training for specific tasks
can be done in one-shot transfer.

While training RLmodels on real robots yields highly successful
controllers (Kalashnikov et al., 2018; Zhu et al., 2019), it is
also expensive in time and resources, or can pose danger with
some robots. Furthermore, it tends to require extensive human
involvement as discussed in the next section. Consequently,
simulations are an emerging approach for policy training as they
enable rapid and efficient collection of a massive amount of data.
While training on simulations can be beneficial, transferring a
robot policy trained in simulation to a real robot remains a
challenge (Zhao W. et al., 2020). Compared to real-world systems
that are usually uncertain and noisy, simulations are naturally more
certain and simplified. This gap is commonly known as the sim-
to-real problem and can significantly reduce the performance of
policies trained in the simulation domain and transferred to the
application domain in the real world (Höfer et al., 2021). This
is especially relevant in the case of in-hand manipulation tasks
which tend to heavily involve hard-to-model contact dynamics
(Funabashi et al., 2020b; Liarokapis and Dollar, 2016). Hence, the
resulting controllers are often sensitive to small errors and external
disturbances.

The most common approach for bridging the reality gap in
a sim-to-real problem is domain randomization (Van Baar et al.,
2019). In this approach, various system parameters in the simulation
are constantly varied in order to improve robustness to modeling
errors. OpenAI et al. (2019); Andrychowicz et al. (2020) proposed
the Automatic Domain Randomization (ADR) approach where
models are trained only in simulation and can be used to solve real-
world robot manipulation problems. Specifically, a Rubik’s cube was
solved by performing finger gaiting and rolling manipulations with
the anthropomorphic Shadow hand. ADR automatically generates

a distribution over randomized environments. Control policies and
vision state estimators trained with ADR exhibit vastly improved
sim-to-real transfer.

In the work of Sievers et al. (2022), a PyBullet simulation of the
DLR hand was used to train an off-policy for in-grasp manipulation
solely using tactile and kinesthetic sensing. Domain randomization
was used for sim-to-real transfer to the real hand. An extension
of the work has demonstrated zero-shot sim-to-real transfer while
focusing on 24 goal orientations (Pitz et al., 2023). Beyond directly
modifying the dynamics in domain randomization, applying small
random forces to the grasped object was shown by Allshire et al.
(2022) to improve the robustness of the resulting policy in in-
grasp manipulation of the TriFinger hand. Recently, Handa et al.
(2023) have taken the domain randomization approach to reorient a
cube within the four-finger Allegro hand using RGB-D perception.
As opposed to Pybullet and similar simulators which are based
on CPU computations, Allshire et al. and Handa et al. used the
GPU-based Nvidia Isaac Gym simulator (Makoviychuk et al., 2021).
Using a GPU-based simulator reduces the amount of computational
resources and costs.

As opposed to domain randomization, Qi et al. (2022) used an
adaptation module learning to cope with the sim-to-real problem.
The module trained through supervised learning to approximate
the important properties of the system based solely on kinesthetic
sensing. An RL policy is trained to take actions for finger gaiting
with a multi-finger hand based on the approximations and on real-
time state observations. An extension of the work added visual and
tactile perception while also including a Transformer model for
embedding past signals (Qi et al., 2023). Have also used the Isaac
Gym simulator since it excels in contact modeling. However, Isaac
Gym and most other simulators tend to provide unreliable contact
force values. To cope with this limitation, Yin et al. (2023) simulated
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16 tactile sensors across a four-finger Allegro (i.e., fingertips, fingers
and palm) while considering only binary signals of contact or no
contact. Due to this configuration, a trained policy is shown to
successfully ease the sim-to-real transfer.

4.3 Episodic resetting

Learning robot tasks in the real world often requires sufficient
experience. In many systems, this is commonly achieved with
frequent human intervention for resetting the environment in
between repeating episodes, for example, when the manipulated
object is accidentally dropped. It is particularly relevant in the case of
in-hand manipulation where resetting may be more complex due to
large uncertainties in failure outcomes. Removing the costly human
intervention will improve sample collection and, thus, decrease
learning time. Eysenbach et al. (2018) proposed a general approach
for training a reset policy simultaneously with the task policy.
For instance, a robot manipulator can be trained to reset the
environmentwithin the policy training allowing amore autonomous
and continuous learning process. As shown by Srinivasan et al.
(2020), the resulting reset policy can be used as a critic for the
task controller in order to discern unsafe task actions that will lead
to irreversible states, where reset is inevitable. Specifically in this
work, a model learns to identify actions that a Shadow hand may
exert while attempting to reorient a cube through rolling and finger
gaiting, without the risk of dropping the cube entirely. Preventing
the reach of these irreversible states increases the safety of the
controller, and can also be used to induce a curriculum for the
forward controller.

Another approach to avoid irreversible states is by the addition
of a reactive controller designed specifically for intervening only
when the robot state is in the close neighborhood of such
irreversible states (Falco et al., 2018). In this work, Falco et al.
used a compliant prosthetic hand in the in-grasp manipulation
of objects based on visual perception with an added reactive
controller connected to tactile sensors. The goal of the reactive
controller is to avoid object slipping. The nominal control method
can, thus, be trained with the goal of not only succeeding in the
given task but also minimizing the intervention of the reactive
controller.

While episodic resetting is often considered a burden, it can
instead be considered an opportunity. When training multi-task
capabilities for in-hand manipulation, failure in one task may cause
a need for a resetting of the grasp. Rather than using human
intervention or an additional control system, the reset can instead
be viewed as another manipulation task (Gupta et al., 2021). For
example, an unsuccessful attempt at a rolling motion which leads to
a wrong object pose, may require the learning of a sliding task to fix
the pose. Thus, task training ending in success or failure can both be
chained to further learning of other tasks. This results in a reset-free
learning scheme.

4.4 Multi-network architecture

Multi-network architectures, such as actor-critic (Lillicrap et al.,
2016) or teacher-student (Zimmer et al., 2014), are often

beneficial in improving the learning process. In the more
common actor-critic structure, an actor network is trained as
the policy while the critic network is trained to estimate the
value function. Such structures try to cope with the inherent
weaknesses of single-network structures. That is, actor-only
models tend to yield high variance and convergence issues
while critic-only models have a discretized action space and,
therefore, cannot converge to the true optimal policy. In
teacher-student architectures, on the other hand, knowledge
distillation enables the transfer of knowledge from an unwieldy
and complex model to a smaller one. As such, a teacher
model is an expert agent that has already learned to take
optimal actions whereas the student model is a novice agent
learning to make optimal decisions with the guidance of
the teacher.

Chen et al. (2021a), Chen et al. (2022), Chen et al. (2023a)
used an asymmetric teacher-student training scheme with a
teacher trained on full and privileged state information. Then,
the teacher policy is distilled into a student policy which acts
only based on limited and realistic available information. Policies
for object reorientation tasks were trained with a simulated
Shadow hand on either the EGAD (Morrison et al., 2020) or
the YCB (Calli et al., 2015b) benchmark object sets and tested
on the other. Results have exhibited zero-shot transfer to new
objects. While the teacher-student approach utilizes privileged
information during training, the actor-critic approach manages
the learning by continuous interaction between the two models.
This was demonstrated with the Proximal Policy Optimization
(PPO) algorithm for in-hand pivoting of a rigid body held in a
parallel gripper, using inertial forces to facilitate the relative motion
(Toledo et al., 2021). Moreover, combining actor-critic methods
with model-based methods can result in improved learning. The
learned model can be used within a model predictive controller
to reduce model bias induced by the collected data. This was
demonstrated by an underactuated hand to perform finger gaiting
(Morgan et al., 2021a) and object insertion (Azulay et al., 2022b).
Recently, Tao et al. (2023) proposed to consider the multi-finger
hand during a reorientation task as a multi-agent system where
each finger or palm is an agent. Each agent has an actor-
critic architecture while only the critic has a global observation
of all agents. The actor, on the other hand, has only local
observability of neighboring agents. In such a way, the hand
does not have centralized control and can adapt to changes or
malfunctions.

In a different multi-modal architecture approach proposed
by Li et al. (2020), various control tasks required for in-hand
manipulation are divided into multiple hierarchical control levels
(Figure 4). This allows the use of more specialized tools for
each task. In the lower level, traditional model-based controllers
robustly execute different manipulation primitives. On the higher
level, a learned policy orchestrates between these primitives
for a three-finger hand to robustly reorient grasped objects
in a planar environment with gravity. A similar approach
was taken by Veiga et al. (2020) where low-level controllers maintain
a stable grasp using tactile feedback. At the higher level, an RL
is trained to perform in-grasp manipulation with a multi-finger
dexterous hand.
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4.5 Curriculum Learning

Often, directly training models with data from the entire
distributionmay yield insufficient performance. Hence, Curriculum
Learning (CL) is a training strategy where the model is gradually
exposed to increasing task difficulty for enhanced learning efficacy
(Wang et al., 2021). Such a process imitates the meaningful learning
order in human curricula. Adding CL to guide the development
of necessary skills can aid policies to learn difficult tasks that
tend to have high rates of failure (Chen et al., 2022). In this
example, researchers modify the behavior of gravity in simulations
according to the success rate to aid the learning of gravity-
dependent manipulation tasks. This method allows the robot to first
successfully learn a skill and then move on to increasingly harder
andmore accurate problems, slowly reaching the actual desired skill.
Azulay et al. (2022b) trained an actor-critic model to insert objects
into shaped holes while performing in-grasp manipulations with
a compliant hand. The work has exhibited object-based CL where
simple objects were first introduced to the robot followed by more
complex ones. Other uses of CL can involve guiding the exploration
stages of solution search using reward shaping (Allshire et al., 2022).
The work shows that it is possible to improve early exploration by
guiding the model directly to specific regions using specific reward
functions as priors. Those regions however may not hold actual
feasible solutions, and it may be necessary to reduce the effects of
the reward functions in later stages of the learning process.

4.6 Tactile information

While visual perception is a prominent approach for feedback
in RL, it may be quite limited in various environments and the
object is often occluded by the hand. On the other hand, tactile
sensing provides direct access to information regarding the state
of the object. Nevertheless, data from tactile sensing is often
ambiguous, and information regarding the object is implicit. Yet,
the addition of tactile sensory is widely addressed as it can improve
the learning rate. For instance, in the work of Korthals et al. (2019),
tactile sensory information for the Shadow hand increased the
sampling efficiency and accelerated the learning process such that
the number of epochs for similar performance was significantly
decreased. Jain et al. (2019) have shown that the integration
of tactile sensors increases the learning rate when the object is
highly occluded. This was demonstrated in various manipulation
tasks including in-hand manipulation of a pen by a simulated
anthropomorphic hand. Melnik et al. (2019) compared multiple
sensory methods, including continuous versus binary (i.e., touch
or no touch) tactile signals and, higher versus lower sensory
resolutions. The results from this comparative study have shown
that using tactile information is beneficial to the learning process,
compared to not having such information. However, the specific
method that gave the best result was dependent on the learned
manipulation task (Melnik et al., 2021).

While Melnik et al. used tactile information directly as part
of the state vector, Funabashi et al. (2020b,a) used a higher-
resolution sensory arraywithout visual perception.Themodel coped
with the increased dimension of the output tactile information by
considering the relative spatial positioning of the sensors. Similarly,

Yang et al. (2023) used a tactile array across a multi-finger hand. The
array was embedded using Graph Neural Network which provides
an object state during the manipulation and used for model-free
RL. Recently, Khandate et al. (2022) implemented model-free RL
to reorient an object through finger gaiting with a multi-finger
dexterous hand while only using kinesthetic and tactile sensing. In
an extensionwork, Khandate et al. offered the use of sampling-based
motion planning in order to sample useful parts of themanipulation
space and improve the exploration (Khandate et al., 2023). Tactile
sensing provides valuable information and often can fully replace
visual perception. However, policies based on tactile perception
usually require an excessive amount of real-world experience in
order to reach sufficient and generalized performance.

In summary, research in the field of RL for robotic in-hand
manipulation is growing and achieving increasing success in recent
years. While showcasing promising performance in specific tasks,
RL policies still perform poorly in multi-task scenarios and struggle
to generalize with zero- or few-shot learning (Chen Y. et al., 2023).
Major challenges currently being faced include the control of highly
dexterous hands with high amounts of sensory information, the
transfer of a model learned in simulation to a real robotic system,
and the transfer of learning specific tasks on well-known objects
to other tasks and unknown objects. Major advances are being
achieved using multi-level control structures, domain and dynamic
adaptation, and the combination of model-based and model-free
methods to gain the benefits of both. While exciting advances have
beenmade in RL, the field continues to explore the challenges of data
efficiency and adaptability to new domains.

5 Imitation learning for in-hand
manipulation

As discussed in the previous section, training RL policies for real
robots from scratch is usually time-consuming and often infeasible
due to the lack of sufficient data (Rapisarda, 2019). A prominent
approach for copingwith these challenges is Imitation Learning (IL).
Instead of learning a skill without prior knowledge, IL aims to learn
from expert demonstrations (Duan et al., 2017; Fang et al., 2019).
Prior knowledge from the expert can then be optimized for the agent
through some learning framework such as RL. While IL is often
considered a sub-field of RL, we provide a distinct focus due to its
importance and wide work. IL can be categorized into two main
approaches: Behavioral Cloning (BC) and Inverse Reinforcement
Learning (IRL) (Zheng et al., 2022). In BC, a policy is trained in a
supervised learning fashionwith expert data tomap states to actions.
IRL, on the other hand, extracts the reward function from the expert
data in order to train an agent with the same preferences (Arora and
Doshi, 2021).

In both BC and IRL, a policy is learned with some prior.
This is in contrast to RL where the policy is learned from scratch
based on the agent’s own experience. Hence, IL requires an initial
process of data acquisition as illustrated in Figure 5. First, data is
collected from demonstrations of an expert. Demonstrations can
be acquired in various mediums such as recording human motion
or recording proprioceptive sensing of the robot during manual
jogging. In the next step, IL usually involves either learning a policy
to directly imitate the demonstration (BC) or feature extraction
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FIGURE 5
Flowchart of policy training with Imitation Learning (IL). The policy is first learned based on expert demonstrations and then iteratively refined using a
chosen RL algorithm.

from the data (IRL). The last step is further policy refinement
through conventional RL. From an RL perspective, IL usually
reduces the learning time by bootstrapping the learning process
using an approximation of the expert’s policy.

5.1 Date acquisition

Data is collected from an expert demonstrator while conducting
the desired task. The motion of the expert is recorded through some
set of sensors such that the learning agent can later observe and learn
to imitate. There are various approaches to demonstrate and record
the motions and their choice may affect the learning process.

One data acquisition approach is to teleoperate the robot
throughout the task using designated tools such as a remote control
(Zhang et al., 2018). However, remote controls are unnatural and
quite infeasible in teleoperation of dexterous robotic hands. In
a more natural approach, Arunachalam et al. (2023b) used a
visual hand pose estimation model (i.e., skeleton) to approximate
keypoints on the human hand during reorientation of an object.
The user can also use a VR set in order to have the point-of-
view of the robot (Arunachalam et al., 2023a). In these examples,
a policy is learned for an anthropomorphic robot hand by using
simpler nearest-neighbors search in the data. The action in the
demonstration data which has a state closest to the current
state is exerted. Similarly, Kumar et al. (2016) recorded the
proprioceptive state of a virtual anthropomorphic robotic hand
during teleoperation with the CyberGlove worn by an expert user.
With the glove, the joint angles along with tactile information

are recorded. The recorded tasks are then used to train and
evaluate in-hand manipulation with a five-finger dexterous hand
for reorientation tasks. In a similar approach, Wei and Xu (2023)
designed a wearable robotic hand for IL teleoperation such that the
expert has tactile feedback during demonstrations.

In a different approach by Gupta et al. (2016), only information
regarding the motion of a manipulated object is collected while
ignoring the motions of the human expert. Hence, an object-centric
policy is learned while selecting the most relevant demonstration
for each initial state in the training. In a different approach,
the demonstrator manually moves the robot by contacting and
pushing it to perform the task (Li et al., 2014; Shin and
Jeon, 2024; Gašpar et al., 2018). During the demonstration, the
robot collects kinesthetic data from the joints. While the approach
is simple, it is usually applied to robotic arms with a single serial
kinematic chain. It is quite infeasible for a human to synchronously
move a dexterous and multi-contact robotic hand to perform a
complex in-hand manipulation task. Nevertheless, simpler tasks
with non-dexterous hands may by possible while the authors have
not found prior work.

5.2 Learning process

The process for learning from the demonstrations is commonly
conducted by either BC or IRL (Hussein et al., 2017). In BC, the
agent is required to directly take the strategy of the expert observed
in the demonstrations (Arunachalam et al., 2023b). The agent will
exert an action taken by the expert when in a similar state. Hence,
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demonstration data is usually recorded in the form of state-action
pairs which is easy to learn. Then, a policy is learned in a supervised
learning manner. However, state-action pairs can be difficult to
obtain from, for instance, video data. To cope with this problem,
Radosavovic et al. (2021) proposed the state-only imitation learning
(SOIL) approachwhere an inverse dynamicsmodel can be trained to
extract the actions chosen based on the change in the state perceived
from videos. The inverse dynamics model and the policy are trained
jointly. SOIL enables learning fromdemonstrations originating from
different but related settings. While not an IL approach, Yuan et al.
(2023) considered a trained teacher policy as an expert and used
BC to distill it to a student in the training of in-hand manipulation
with vision and tactile sensing. In a different work, BC was used to
control a unique design of a gripper having actuated rollers on its
fingertips (Yuan et al., 2020). The demonstration data was extracted
from a handcrafted controller and shown to improve performance.

Rajeswaran et al. (2017) compared methods of RL to solve
complexmanipulation tasks, with andwithout incorporating human
demonstrations. The authors suggested a method of incorporating
demonstrations into policy gradient methods for manipulation
tasks. The proposed Demonstration Augmented Policy Gradient
(DAPG) method uses pre-training with BC to initialize the policy
and an augmented loss function to reduce ongoing bias toward
the demonstration. The results in the paper showcase that DAPG
policies can acquire more human-like motion compared to RL from
scratch and are substantially more robust. In addition, the learning
process is considerably more sample-efficient. Jain et al. (2019)
extended the work by exploring the contribution of demonstration
data to visuomotor policies while being agnostic about the data’s
origin. Demonstrations were shown to improve the learning rate
of these policies in which they can be trained efficiently with
a few hundred expert demonstration trajectories. In addition,
tactile sensing was found to enable faster convergence and better
asymptotic performance for tasks with a high degree of occlusions.
While Rajeswaran et al. and Jain et al. demonstrated the approach
only in simulations, Zhu et al. (2019) demonstrated the use of DAPG
on a real-robot in complex dexterousmanipulation tasks.The results
have shown a decrease of training time from 4–7 h to 2–3 h by
incorporating human demonstrations.

Few studies on in-hand manipulation have used BC due to the
significant effort required to collect sufficient demonstration data.
While simple to implement, BC usually requires large amounts
of data for sufficient performance (Ross et al., 2011). IRL, on the
other hand, directly learns the reward function of the demonstrated
expert policy which prioritizes some actions over others (Arora
and Doshi, 2021). IRL learns the underlying reward function of
the expert which is the best definition of a task. Once acquired the
reward function, an optimal policy can be trained to maximize such
a reward using a standard RL algorithm. While general work on
IRL is wide for various robotic applications, not much work has
been done that combines IRL with in-hand manipulation. A single
work demonstrated the IRL approximation of the reward function
using expert samples of desired behaviours (Orbik et al., 2021).
However, the authors have argued that the learned reward functions
are biased towards the demonstrated actions and fail to generalize.
Randomization and normalization were used to minimize the bias
and enable generalization between different tasks.

While not directly IRL, Deng and Zhang (2020) utilized reward-
shaping to improve the RL training of in-hand manipulation
with a dexterous hand. By observing hand synergies of a human
demonstrator, a limited and low-dimensional state space was
constructed. Using reward-shaping allows the inclusion of multiple
levels of knowledge, from the standard extrinsic reward to
hand synergies-based reward and an uncertainty-based reward
function that is aimed at directing efficient exploration of the
state space. Learning using all three reward functions is shown
through simulations to improve learning. The minor use of IRL
to address in-hand manipulation problems may be explained
by its tendency to provide ill-behaved reward functions and
unstable policies (Cai et al., 2019).

IL was also proposed for in-hand manipulation without the use
of RL. Solak and Jamone (2019) proposed the use of Dynamical
Movement Primitives (DMP) (Ijspeert et al., 2013). The approach
shows that a multi-finger dexterous hand can perform a task based
on a single human demonstration while being robust to changes in
the initial or final state, and is object-agnostic. However, the former
property may yield object slip and compromise grasp stability.
Hence, an extended work proposed haptic exploration of the object
such that the manipulation is informed by surface normals and
friction at the contacts (Solak and Jamone, 2023).

While traditional IRL has shown high performance in a wide
range of tasks, it only provides a reward function that implicitly
explains the experts’ behaviour but does not provide the policy
dictating what actions to take. Hence, the agent will still have to
learn a policy through RL training in a rather expensive process. To
address this problem, theGenerative Adversarial Imitation Learning
(GAIL) (Ho and Ermon, 2016) was proposed and combines IL with
Generative Adversarial Networks (GAN) (Goodfellow et al., 2020).
Similar to GAN, GAIL incorporates a generator and a discriminator.
While the generator attempts to generate a policy that matches the
demonstrations, the discriminator attempts to distinguish between
data from the generator and the original demonstration data.
Training of GAIL is, therefore, the minimization of the difference
between the two. Consequently, GAIL is able to extract a policy from
the demonstration data. Recently, the use of GAIL was proposed
for in-hand manipulation by a dexterous hand (Wei et al., 2023).
The approach was shown to perform significantly better than BC or
direct RL training. GAIL has the potential to improve and expedite
policy learning of more complex in-hand manipulation tasks, and
should be further explored.

6 Discussion

In-hand manipulation is one of the most challenging
topics in robotics and an important aspect for feasible robotic
applications. Traditional analytical methods struggle to estimate
object properties and noisy sensory information. With in-hand
manipulation reaching a bottleneck using these traditionalmethods,
researchers are leveraging advancements in deep learning and
reinforcement learning to unlock new levels of dexterity. A summary
comparison of the three learning approaches discussed in this
paper is given in Table 2. These tools encapsulate the ability to
model complex and noisy systems such as a dexterous robotic hand
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TABLE 2 Comparison of key components in learning methods for robotic in-hand manipulation.

Feature Model-based learning Reinforcement learning Imitation learning

Learning Approach Learns a model of the environment and
uses it to plan actions

Learns a policy directly through trial
and error, interacting with the
environment

Learns a policy by imitating
demonstrated behaviors

Data Requirements Large amounts of data to train the
model accurately

Large amounts of data for exploration
and learning

Demonstrations of desired behaviors

Sample Efficiency Generally, more sample efficient than
reinforcement learning due to model-
based planning

Can be sample inefficient, especially in
complex and unstructured
environments

Relatively sample efficient, as it directly
learns from a set of demonstrations

Exploration Exploration is often done through
simulation or carefully designed
exploration strategies

Exploration is a key component, often
achieved through techniques like
ε-greedy

Limited exploration, as it learns from
fixed demonstrations

Generalizability Can generalize to unseen environments
if the model is accurate

Generalizability depends on the
diversity of training data and the
learning algorithm

Generalizability is limited by the
diversity of demonstrations

Suitability for In-Hand Manipulation Well-suited for tasks with complex
dynamics and uncertainties, as the
model can provide predictions and plan
accordingly

Can be challenging due to the
complexity of in-hand manipulation
and the need for precise control
demonstrated behaviors

Can be effective for tasks with clear
demonstrations and limited variability

equipped with various sensors. Nevertheless, current research still
faces significant challenges:

1. Data efficiency. Learningmodels is essential for understanding
changes in the robot’s state caused by its actions during in-
handmanipulation.While analytical solutions are available for
rigid hands, compliant or soft hands rely on external visual
feedback. However, collecting data can be challenging due
to the high-dimensional state space and the need to explore
the entire feasible space. Future work by researchers should
address methods to reduce the required size of training data
by making models more general to various applications. For
instance, Bayesian optimization can assist in identifying key
sampling locations, but reaching some regions may require
complex maneuvers, making it necessary to have a good prior
model to learn a better one.

2. Sim-to-real transfer. Learning policies in simulation is a
prominent approach to improve data efficiency in robot
training. While significant progress has been made to address
the sim-to-real problem, simulations hardly represent the real
world and trained policies work poorly on the real system.
Hence, large efforts should be put into closing the reality gap
by generating better simulations and, incorporating advanced
data-based models that can generalize better. Examples of
the latter include decision transformers (Monastirsky et al.,
2023) and diffusion policies (Chi et al., 2023). These advanced
methods are versatile and can be applied to either of the three
learning paradigms: model-based learning, RL and IL.

3. Soft robotic hands. High-dexterous hands such as
anthropomorphic ones have been demonstrated in multiple
complex in-hand manipulation tasks. However, they are
highly expensive making their adaptation to real-world tasks
not possible. Consequently, an abundance of research and

development has been put in recent years on soft robotic
hands that are typically low-cost to manufacture. However,
these hands cannot be modeled or controlled analytically
and learning approaches are the common paradigm. As
discussed previously, common solutions require a significant
amount of data and are usually specific to a single hand and
task. Therefore, the robotics community should promote
efficient learning approaches in terms of data efficiency,
computationally light-weight and generalizable to different
hardware, tasks and environments. Specifically, future research
should prioritize the development of more realistic simulation
environments tailored for soft and adaptive robotic hands.

4. Tactile sensing. While visual perception technology is quite
mature, the use of high-resolution tactile sensing is relatively
new. In general, Table 1 clearly shows the dominance of
visual perception over tactile sensing in research. Highly
capable tactile sensors can provide vital information regarding
the contact state including position, forces, torsion, shape
and texture. Nevertheless, they often require a large amount
of real-world data in order to perform well. Simulations
such as TACTO (Wang et al., 2022) address this problem
by simulating tactile interactions. However, these remain
quite far from reality and cannot provide reliable load
sensing. Practitioners should work toward better tactile
simulators along with distillation approaches for efficient sim-
to-real transfer.

5. Learning fromDemonstrations. ILwith expert demonstrations
has proved to be efficient for shortening the data-hungry
training phase of RL. However, hardware and methods for
collecting demonstration data generally lack the ability to
capture the entire state space of the hand-object system.
For instance, visual perception is incapable of observing the
intrinsic and contact state of the system. Furthermore, IL
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models focus on task completion and fail to address strategy
learning with efficient data utilization. Future work should
facilitate efficient platforms for collecting high-dimensional
data in the real world. In addition, learning methods should
require a small amount of data from the expert user in order to
generalize well to various scenarios of the tasks.

6. Task generalization. The prevailing paradigm in in-hand
manipulation focuses on crafting task-specific or narrowly
applicable policies, which hinders broader applicability.
Collected datasets typically consist of several tens of thousands
of samples tailored to the specific task at hand. The field
therefore necessitates a paradigm shift toward solutions
capable of seamless adaptation or generalization to novel
tasks or objects. A large, standard and unified dataset of in-
handmanipulation in-the-wild assembled bymany researchers
would be invaluable for advancing generalization.

7 Conclusion

This paper provides a comprehensive survey of various learning-
based approaches for robotic in-hand manipulation, focusing on
model-based methods, reinforcement learning (RL), and imitation
learning (IL). Each of these methodologies has demonstrated
significant progress in enabling robotic systems to perform
dexterous in-handmanipulation tasks, which are essential for robots
to operate effectively in complex human environments. Despite
these advancements, several challenges remain, such as the need
for higher data efficiency, improved sim-to-real transfer and better
generalization across different objects and tasks.

While RL has revealed success due to its ability to generate
solutions with minimal human intervention. Key findings indicate
that RL policies often struggle with generalization and multi-
task scenarios. Similarly, model-based approaches offer precision
but can be limited by the complexity of dynamic environments.
Imitation learning provides a promising avenue by leveraging
expert demonstrations, but it requires extensive data collection,
and its performance is highly dependent on the quality of the
demonstrations. In addition to the challenges and future research
suggestions discussed in Section 6, advancements should also
be made in more applicative directions such as: enhance the
generalization of models to be agnostic to the robotic hand
with versatility to various tasks, through few-shot or zero-shot
learning; augment the capabilities of prosthetic hands to perform

more complex tasks that usually involve in-hand manipulation;
explore simplistic multimodal sensing while efficiently integrating
these modalities; and, utilize the significant potential in human
demonstration and continuous learning during human-robot
collaboration, where robots can learn from human demonstrations
and adapt to human preferences. By addressing these challenges,
future research can push the boundaries of robotic dexterity,
enabling robots to perform more sophisticated tasks autonomously.
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