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Introduction: In human-agent interaction, trust is oftenmeasured using human-
trust constructs such as competence, benevolence, and integrity, however, it is
unclear whether technology-trust constructs such as functionality, helpfulness,
and reliability are more suitable. There is also evidence that perception
of “humanness” measured through anthropomorphism varies based on the
characteristics of the agent, but dimensions of anthropomorphism are not
highlighted in empirical studies.

Methods: In order to study how different embodiments and qualities of speech
of agents influence type of trust and dimensions of anthropomorphism in
perception of the agent, we conducted an experiment using two agent “bodies”,
a speaker and robot, employing four levels of “humanness of voice”, and
measured perception of the agent using human-trust, technology-trust, and
Godspeed series questionnaires.

Results: We found that the agents elicit both human and technology
conceptions of trust with no significant difference, that differences in body and
voice of an agent have no significant impact on trust, even though body and
voice are both independently significant in anthropomorphism perception.

Discussion: Interestingly, the results indicate that voice may be a stronger
characteristic in influencing the perception of agents (not relating to trust) than
physical appearance or body. We discuss the implications of our findings for
research on human-agent interaction and highlight future research areas.

KEYWORDS

human-agent interaction, social robot, voice assistant, human factors, trust,
anthropomorphism, CASA paradigm

1 Introduction

Trust is often considered fundamental to human social activity (Fukuyama, 1995).
It is an implicit, everyday reality (Rotter, 1980) that influences social activity on an
individual as well as systemic level (Luhmann, 2018; Paxton, 2007). Trust plays a pivotal
role in forming and maintaining human relationships (Fehr, 1988; Rempel et al., 2001).
Research shows that trust is also crucial to human interaction with non-human artefacts
(Gram, 2024; Vance et al., 2008; Benbasat and Wang, 2005). It is no surprise then
that trust has become a central topic of research in human-technology relationships
(Saariluoma et al., 2019).
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Themultidisciplinary field ofHuman-Computer Interaction (HCI)
has produced significant research on trust in relation to various
forms of technology (Karat et al., 2007; Carolus et al., 2019; Warner-
Søderholm et al., 2018). Recent technical advancements in artificial
intelligence (AI) and automation technologies (AT) have highlighted
the need for a more human-centric, interaction-based approach to
technology development (Shneiderman, 2020; Wang et al., 2020), and
consequently a re-examination of trust concepts in HCI (Madhavan
and Wiegmann, 2007). This is further made visible in the more recent
field of Human-Agent/Robot Interaction (HAI/HRI)1 (Lazányi and
Hajdu, 2017), which is broadly related to, and influenced by, HCI
(Heuer and Stein, 2020; Hancock et al., 2011) and especially relevant
to interaction with social agents.

Social agents are unique due to their primary purpose of fulfilling
a social role in interaction with humans (Henschel et al., 2021). Seeing
as these artifacts are designed to be social actors, discourse regarding
an influential HCI theory, the ‘Computers Are Social Actors Paradigm’
(CASA paradigm), has re-emerged in HAI research (Gambino et al.,
2020). The notion that computers are perceived as social actors by
humans has been a long-stay in HCI (Lombard and Xu, 2021). The
CASA paradigm proposes that humans have a tendency to apply the
same social rules and heuristics when interacting with computers as
they do when interacting with humans (Nass et al., 1994; Nass and
Moon, 2000). Based on the assumption that humans prefer and find
it intuitive to socially interact with non-human agents that look and
behave like humans, social agent/robot design has often involved
intentionally building human-like characteristics into the physical
appearance and/or behaviours of agents (Fink, 2012). This approach
is substantiated by observed human psychological phenomenon such
as anthropomorphism–the tendency to attribute human qualities to
non-human entities (Złotowski et al., 2015), highlighting a bias towards
human-centric interaction with the environment. And research has
shown that anthropomorphism has a positive effect on perceptions
of competence and trustworthiness in autonomous technologies
(Waytz et al., 2014; De Visser et al., 2016; Gong, 2008).

However, generally, the multidimensional nature of
anthropomorphism (arising from different sensory experiences
in humans), though sometimes theoretically discussed (Fink,
2012), is not often empirically highlighted in HAI research.
Instead, anthropomorphism is often treated (and measured) as a
unidimensional phenomenon (Li and Suh, 2021). Visuo-centric
anthropomorphism is the most extensively studied, starting from
computers (Kim and Sundar, 2012), to digital personas (Nowak
and Rauh, 2008), and physical robots (Fink, 2012). The body of
an agent has thus received considerable attention. The advent
of conversational agents has stoked research interest in voice-
based anthropomorphism (Seaborn et al., 2021), for example,
with regard to gender (Seaborn and Pennefather, 2022). But
as agents become more complex and multimodal, it becomes

1 HAI and HRI are adjacent fields that both deal with human interaction

with agents. While HAI pertains to agents more broadly, including but

not limited to robots, chatbots and voice assistants, HRI more narrowly

focuses on robots alone. In this paper, we use the term agents (evenwhen

referring to robots) and use the broader term HAI (interchangeably with

HRI) as our study pertains to trust and anthropomorphism in both voice

assistants and robots.

important to explicitly highlight the multidimensionality of the
consequent anthropomorphism2, identify and study the relationship
between various dimensions, and understand how they influence
human perception in human-agent interaction. It is as-yet unclear
whether there is a more nuanced relationship between the various
dimensions of anthropomorphism and trust perception.

Aiming to contribute to the growing knowledge on
multidimensional anthropomorphism and trust in human-agent
interaction, we conduct an experiment with the purpose of studying
(1) the type of trust exhibited by humans in social agents, and
(2) how body and voice modalities of an agent interact with one
another to influence perception of the agent, particularly trust
and anthropomorphism. We manipulate the modality of the agent,
body (voice assistant speaker vs. humanoid robot) and voice (four
levels of humanness of speech) of the agent (see Section 3.3), and
measure the perception of trust, anthropomorphism, and other
social characteristics (animacy, likeability, perceived intelligence
and perceived safety) of the agent. Through this, we study whether
users report human-trust or technology-trust when watching an
interaction video of a social agent with varying combinations
of body and voice, whether the two modalities (body and
voice) differently influence the perception of trust, and whether
they differently influence the perception of anthropomorphism
(highlighting its different dimensions).

In this paper, we briefly overview the background for the
study in Section 2, elaborate on the methods and materials
used for the experiment in Section 3, present the results of the
experiment in Section 4, and lastly, discuss the broader implications
of the results, limitations of the study, and future research
opportunities in Section 5.

2 Background

In order to contextualise the study and its results, we first
review some of the theoretical concepts that our hypotheses (see
Section 3.2) are founded on. We draw from research on the CASA
paradigm, trust, anthropomorphism and embodiment, particularly
in relation to HCI and HAI, as a theoretical framework for the
study design (Section 3.3). Additionally, we briefly elaborate on
related experimental research on anthropomorphism in HAI.

2.1 CASA paradigm

In their seminal work The Media Equation: How People Treat
Computers, Television, and New Media Like Real People and Places,
Reeves and Nass (1996) argue that humans do not automatically
distinguish between real life and mediated representations,

2 We refer to multidimensionality of anthropomorphism in the

perceptive experience of humans, and multimodality of agents in their

design/characteristics to interact using various modes of communication

such as gestures, speech, etc. As a result, we surmise that multimodality

of agents is correlated to multidimensionality of anthropomorphism in

perception.
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prompting mindless (instinctive or lacking in deliberation) and
social responses when interacting with mediated representations
that mimic human social characteristics (Reeves and Nass,
1996). The CASA paradigm emerged from this discourse, more
narrowly focused on human interaction with technologies that
are perceived to exhibit social cues and some level of agency
(Nass et al., 1994; Nass and Moon, 2000).

Several studies have found evidence to support CASA. Nass,
who co-proposed the original theory, was part of several studies
that showed that humans reacted socially to computers when they
exhibited social cues; people perceived computers more positively
when the computer was labelled as a teammate compared to
when it was not (Nass et al., 1994), they preferred computers that
flattered them (Fogg and Nass, 1997), and they applied human
gender stereotypes onto computers that presented a gendered
voice (Nass et al., 1997). Apart from computers, CASA has also
found support across various technologies such as smartphones
(Carolus et al., 2019), chatbots (Adam et al., 2021), voice assistants
(Schneider and Hagmann, 2022), robots (Kim et al., 2013), and
autonomous vehicles (Waytz et al., 2014). Various studies have
found that a wide variety of social cues, even subtle ones,
can result in humans reacting socially to various forms of
technology. As a result, CASA has had a considerable impact on
HCI research.

At the same time, there have been several critiques of CASA
over the years, ranging from critiques of its applicability a quarter
of a century after it was proposed, given the drastically evolving
relationship between humans and computers (Lang et al., 2013),
inconsistent reproducibility of CASA in interaction with computers
(Schaumburg, 2001), to calls for more nuanced understanding
regarding where and how such a phenomenon might occur during
interaction (Tzeng, 2006). Alternatively, it has been argued that
the CASA paradigm may uniquely apply to emerging technologies
(mindless interaction) and diminish as humans gain a better
understanding of the technologies they interact with (mindful
interaction) (Heyselaar, 2023).

The CASA paradigm has nevertheless endured in the HAI
context for two reasons: (1) The two boundary conditions required
by the framework–social cues and perceived agency (Gambino et al.,
2020), are largely satisfied by social agents (Erel et al., 2019; Brincker,
2016); (2) Social agents are more likely than other technologies to
mirror the human-human interaction (HHI) paradigm due to the
very nature of their design (Oguz et al., 2018; Raković et al., 2024).
As a result, it could be argued that the CASA paradigm is more
robust in the HAI context than it is in HCI. Theoretical frameworks
to expand and update CASA in light of AI and robotics have already
been proposed (Gambino et al., 2020; Lombard andXu, 2021). Some
have even argued that social (collaborative) robots need to be social
as well as emotional actors in interaction to successfully serve their
intended purpose (Fischer, 2019). On the flip side, early empirical
research shows that, similar to HCI, evidence for CASA in HAI
is far from conclusive, with counter-intuitive findings that even
social agents may not always be perceived as social actors by users
(Fischer, 2011). Whether social agents are perceived as social actors
has implications for trust in them (Fischer, 2011), and consequently
for their design and development.

2.2 Trust

Trust is a broad, complex, multifaceted concept, that is difficult
to define and measure. It is a fundamental human phenomenon
that encapsulates internal (Gill et al., 2005), interpersonal (Lahno,
2004), and societal (Falcone and Castelfranchi, 2001) aspects, which
interact with and influence one another (Robbins, 2016). Trusting
behaviour is an individual characteristic (Sutherland et al., 2020), as
well as a situational and interpersonal variable (Ellonen et al., 2008).
As a result, there is no real scientific consensus on themechanisms of
trust, with several theoretical perspectives from various disciplines
attempting to explain various aspects of it (Simon, 2020). Beyond
humans, trust has been used to understand human experience
of abstract, non-human artefacts, such as objects (Gram, 2024),
corporations (Turnbull, 2003), and systems (Jalava, 2003).

Recently, ‘trust in technology’ has been an important and
growing area of research. While it has been argued that the concept
of trust in technology is meaningless as technology itself is not
a concrete thing upon which to place trust (Pitt, 2010), it is
generally understood that trust in technology as a whole is markedly
different from (interpersonal) trust in humans (Nickel et al., 2010;
Li et al., 2012). However, with regard to specific technologies as
opposed to the general concept of technology, there is less consensus
about the nature of trust, particularly in technologies possessing
human-like qualities (Gambino et al., 2020). Lankton et al. (2015)
note that some research on trust in technology has used human-
trust concepts such as ability, benevolence, and integrity, that are
used to measure interpersonal trust in humans, while others have
used technology-trust concepts such as reliability, functionality, and
helpfulness, often used to measure trust in technological artefacts
(Lankton et al., 2015). Choosing a trust concept is determined by
whether a technology is perceived to possess human-like qualities.
The CASA paradigm as a consequence has had considerable
impact on trust research in humanoid machines, as it lends
itself to the use of human-trust concepts. HRI research has
produced some evidence for human interpersonal trust concepts
in robots (Christoforakos et al., 2021).

Schaumburg (2001) notes two strands of theory on interaction
with computers that can be contradictory to one another, the
social and the cognitive (Schaumburg, 2001) – arguably equating
to CASA and non-CASA respectively. While the social perspective
emphasises social rules within interaction design to improve
approachablility and understandability, the cognitive perspective
assumes that the primary goal of interaction is to accomplish
a given task, emphasising efficiency, control and predictability
instead (Schaumburg, 2001). In a similar vein, Seeger et al. (2017)
highlight a duality in HCI trust research, ones that align with
CASA, and ones that disagree with the premise that computers
are social actors like humans, arguing instead that humans
have distinctly different expectations of, and thus type of trust
in, computers compared to humans (Seeger et al., 2017). Non-
CASA research in HCI has given rise to a distinctly separate
construct for technology-trust from that of human-trust (that
CASA research generally employs) (Gebru et al., 2022). While the
two types of trust concepts are analogous to one another, they
emphasise distinctly different explanations for the formation of
trust. These explanations can have a significant impact on the
design of technology, including autonomous agents. While it is
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likely that social agents elicit both human-trust and technology-
trust, as observed with some other social technologies (Lankton and
McKnight, 2011), it remains an open question how differences in
‘humanness’ of agents are perceived, and whether it influences the
type of trust. In our study, we explore this question by employing
the ability/competence, benevolence and integrity (ABI or CBI)
framework tomeasure human-trust, and its analogous functionality,
helpfulness, and reliability (FHR) conceptualisation to measure
technology-trust (see Section 3.4.1).

2.3 Anthropomorphism and embodiment

Anthropomorphism is the phenomenon where humans
attribute human qualities to non-human entities (Złotowski et al.,
2015). While the phenomenon is widely observed, the extent of its
prevalence is not clear–given that there is considerable variability
between humans as well as contexts (Waytz et al., 2010), and
the triggers for anthropomorphism are not exhaustively defined,
as it often involves various sensory, affective, and perceptual
characteristics in varying combinations (Li and Suh, 2021) –
making it a complex, multidimensional phenomenon. Irrespective,
anthropomorphism is a central concept in HAI. On one hand,
humanoid social agents today are capable of speaking, expressing,
andmoving (to some extent) in human-like ways (Leite et al., 2013),
on the other, agents remain narrowly specialised in their capabilities.
Research on how anthropomorphism in humanoid agents is
perceived, and what this perception means for HAI, is a developing
frontier. As autonomous systems become ubiquitous in society,
this research is crucial for safe and purposeful implementation of
these systems.

There are several simultaneous and overlapping phenomena
at play in human visual perception that are biased towards
anthropomorphism. Firstly, we seem to be hardwired for pattern
recognition, resulting in the perception of real world objects within
abstract shapes. For example, we often observe various familiar
shapes and patterns in our environment, such as seeing objects
and animals in cloud formations. This phenomenon is known
as Pareidolia (Liu et al., 2014). Secondly, Facial Pareidolia seems
to be a strong effect, where we interpret faces within objects in
our surroundings with minimal cues. For example, cars are often
described as having faces, and emoticons (the precursors to emojis)
are interpreted as faces. Thirdly, own-species bias seems to also play
an important role, where we are more likely to perceive something
to be a human face as opposed to an animal, and we humanise even
animal faces and expressions (Scott and Fava, 2013).

Anthropomorphism has been leveraged as a tool in social
agent interaction design (Fink, 2012). Theoretically, it is argued
that humanoid agents prime certain interaction affordances that
are intuitive to humans by aligning with familiar HHI mechanisms
(Fink, 2012). This is especially highlighted in the design of the
head/face of social robots, often with eyes and mouth similar to
that of humans, providing an interaction focal point to emulate
HHI (Fink, 2012). While a significant portion of research on
anthropomorphism in HAI pertains to the physical representation
or body of an agent (referred to as body anthropomorphism in
this paper), it is generally agreed upon that behaviours such as
gestures and speech also trigger anthropomorphism (Salem et al.,

2011). However, studies on anthropomorphism generally view it
as a singular phenomenon and do not often address its various
dimensions and the interplay between them. Part of the reason
perhaps is that anthropomorphism has come to be closely associated
with the concept of embodiment (Roesler et al., 2021), which is
often viewed (at least in HAI) as a simplistic binary–embodied
vs. disembodied (Dautenhahn et al., 2002). In this conception, the
focus of perception (of embodiment) is external rather than internal,
i.e., it is from the point of view of what is visible (visuo-centric)
rather than felt or perceived (Mondada, 2016). Such a conception
leads to over-emphasising certain aspects of anthropomorphism
while downplaying others. For example, it is still debated whether
voice alone can lead to anthropomorphism in light of inconsistent
empirical findings, and more research is needed in this direction (Li
and Suh, 2021).

Correia et al. question this by asking, “ [c]an we consider that
voice itself is an anthropomorphic feature and that it is enough
for humans to create an embodied mental model of an agent?”
(Correia et al., 2020). While the question needs further enquiry,
there is a strong theoretical argument to bemade in favour. Complex
speech has thus far only been observed in humans (Simonyan et al.,
2016), and language is a complex phenomenon that has played
a crucial role in the evolution of human cognition, knowledge
structures and communication (De Stefani and De Marco, 2019).
As a result, speech and language are strong markers for human
cognition and intelligence (Perlovsky, 2009) as well as social
interaction (Mondada, 2016). Not only that, language is inherently
embodied relative to human experience (Dove, 2023). It is also
highly metaphorical, with references embedded in human social
ontology (Lakoff and Johnson, 1980). And is loaded with cultural
and contextual knowledge (Borghi et al., 2019). As a consequence,
it can be argued that when an agent is able to speak3, it carries
and conveys all these intrinsic human qualities of speech and
language, eliciting anthropomorphic perception (referred to as voice
anthropomorphism in this paper) independent of the physical
presentation of an agent. Such a conception would encourage
categorising voice assistants (and even chatbots without digital
representations) as perceptively embodied. If body and voice both
enable embodiment, and anthropomorphism, it is then important
to compare and contrast voice anthropomorphism with body
anthropomorphism, and study how they individually contribute to
as well as interact with one another in the perception of social agents.
In our study,we employ a robot and a speaker, that both produce four
different levels of humanness of voice (see Section 3.3.1), in order to
study this.

2.4 Relevant studies

Our study builds on top of existing experimental research
findings on anthropomorphism and trust in HAI. In ameta-analysis
on the effectiveness of anthropomorphism in HRI, covering 78

3 Voice, speech, and language are distinct yet related concepts. In this

paper, given the context of vocal agents and their ability to speak using

human language, we refer to the combined attributes of these concepts

when using the words voice or speech.
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studies with approximately 6,000 participants overall, Roesler et al.
(2021) found that anthropomorphism had a medium (size)
positive effect on humans interacting with robots, including a
medium (size) positive effect on perception of trust (Roesler et al.,
2021). Similarly, Blut et al. (2021) conducted a meta analysis on
anthropomorphism in service provision through various agent types
(robots, chatbots and other AI), covering 108 independent samples
with approximately 11,000 participants overall, and found that
anthropomorphism has a positive effect on trust (as a relational
mediator) (Blut et al., 2021). Particularly in voice assistants, Hsu
and Lee (2023) showed that human-like linguistic and behavioural
traits increased trust (Hsu and Lee, 2023). Introducing more
nuance to trusting behaviour, Chen and Park (2021) found that
anthropomorphism did not directly induce trust in intelligent
personal assistants, rather it increased social attraction or task
attraction, which in turn reinforced cognitive or affective trust
(Chen and Park, 2021). In terms of voice, Torre et al. (2020) showed
that a ‘smiling voice’ increased and sustained trust, despite evidence
against trustworthiness, in vocally expressive agents (Torre et al.,
2020). Foehr andGermelmann (2020) identify perceived personality
of the technology’s voice interface as one of four paths (and the only
anthropomorphism-based path) to trust in smart voice-interaction
technology (Foehr and Germelmann, 2020). In terms of agent
embodiment, in a scenario-based study using service chatbots in
banking, Kim and Im (2023) showed that users perceived highly
intelligent but disembodied agents as more human-like compared
to highly intelligent agents with poorly designed appearances (Kim
and Im, 2023). Lawson-Guidigbe et al. (2020) found that different
visual embodiment of virtual agents resulted in varying levels of trust
in an autonomous car context, with the mechanical-human model
being rated as the most trustworthy, followed by the human model
(Lawson-Guidigbe et al., 2020). Schneiders et al. (2021) showed
that for embodied personal assistnats, anthropomorphism did not
affected the perception of overall goodness, but had an impact
on the perception of Perceived Intelligence, Likeability, and the
Pragmatic Qualities of the device (Schneiders et al., 2021). Similarly,
Luo et al. (2023) showed that embodiment influenced perception
of anthropomorphism in voice assistants, and that physical robots
with voice elicited higher anthropomorphism than voice-only
assistants (Luo et al., 2023). These studies have all established a
relationship between anthropomorphism (and embodiment), trust,
and perception. In our study, we contribute to this body of work
by further exploring agent body and voice as two dimensions of
anthropomorphism, their relationship to one another, and their
impact on trust and perception of agents.

3 Methods and materials

As elaborated, trust, anthropomorphism and the CASA
paradigm are seemingly connected inHAI.The argument being that
anthropomorphism results in the perception of human attributes in
non-human artefacts, and the CASA paradigm states that humans
use human-social interaction mechanisms (trust among them)
when interactingwith agents perceived to exhibit human social cues,
thus resulting in human-trust in humanoid agents. In this paper, we
contribute to the understanding of this relationship by conducting
an experiment to answer the following research questions: (1) Do

humans exhibit different types of trust (human-trust vs. technology-
trust) in social agents? (2)Do differentmodalities of agent (body and
voice) have an impact on the type of trust exhibited by humans? and
(3) What is the impact of body and voice modalities on (dimensions
of) anthropomorphism perception, and other social characteristics?

3.1 Conditions

The dependent variables in this setup are the participants’ level
of human-trust, technology-trust, anthropomorphism, animacy,
likeability, perceived intelligence and perceived safety of the agent.
The independent variables are two categories of the physical body
of the agent, (1) speaker body–SB (2) humanoid robot body–RB, and
four categories of humanness of the voice4 5, (1) text-to-speech voice
- TSV, (2) AI generated voice–AIV, (3) modified human voice - MHV,
and (4) authentic humanvoice–AHV, resulting in a 2x4 factorial design.
Human-trust (HT) and technology-trust (TT) are both repeated
measures as well as independent measures variables (since both are
measured using one scale across conditions and the differences are
analysed within each condition as well as across–see Section 3.4.1),
whereas all other dependent variables are independent measures
only. The interaction effects between the independent variables is of
interest. The eight conditions comprising the study detailed in this
paper are denoted as follows.

• RB-AHV: Robot Body with Authentic Human Voice
• RB-MHV: Robot Body with Modified Human Voice
• RB-AIV: Robot Body with AI Generated Voice
• RB-TSV: Robot Body with Text-to-Speech Voice
• SB-AHV: Speaker Body with Authentic Human Voice
• SB-MHV: Speaker Body with Modified Human Voice
• SB-AIV: Speaker Body with AI Generated Voice
• SB-TSV: Speaker Body with Text-to-Speech Voice

3.2 Hypotheses

From this study design, we formulate the following 22
hypotheses to guide our data analysis. To reiterate, the independent
variables are agent body (SB and RB), and agent voice (AHV, MHV,
AIV and TSV)6, giving rise to the eight aforementioned conditions.
The hypotheses are formulated for each of the seven dependent
variables, human-trust, technology-trust, anthropomorphism,
animacy, likeability, perceived intelligence, and perceived safety.

4 ‘TSV’ and ‘AIV’ voices are both generated using text-to-speech (TTS)

algorithms, which is a technical term. The names for the conditions ‘text-

to-speech’ and ‘AI generated’ are not used in a technical sense, they

are mainly intended to make a clear distinction between the conditions,

and are derived from how the services used in creating the voices are

marketed (see Section 3.3.1).

5 Themodified human voice ‘MHV’ (and the associated conditions RB-MHV

and SB-MHV) were found to be flawed during analysis (see Section 3.3.2).

Data analysis was performed both including and excluding the variable

and both are reported.

6 The hypotheses remain applicable both including and excluding MHV.
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3.2.1 Trust hypotheses

• H_1: There is no difference between human-trust and
technology-trust scores in all conditions
• H_2a: There is no difference between human-trust scores

for agent body
• H_2b: There is no difference between human-trust scores for

agent voice
• H_2c: The effect of agent body on human-trust score does not

depend on agent voice (and vice versa)
• H_3a: There is no significant difference between technology-

trust scores for agent body
• H_3b: There is no significant difference between technology-

trust scores for agent voice
• H_3c: The effect of agent body on technology-trust score does

not depend on agent voice (and vice versa)

3.2.2 Anthropomorphism hypotheses

• H_4a: There is no significant difference between
anthropomorphism scores for agent body
• H_4b: There is no significant difference between

anthropomorphism scores for agent voice
• H_4c: The effect of agent body on anthropomorphism score

does not depend on agent voice (and vice versa)

3.2.3 Animacy hypotheses

• H_5a: There is no significant difference between animacy
scores for agent body
• H_5b: There is no significant difference between animacy

scores for agent voice
• H_5c: The effect of agent body on animacy score does not

depend on agent voice (and vice versa)

3.2.4 Likeability hypotheses

• H_6a: There is no significant difference between likeability
scores for agent body
• H_6b: There is no significant difference between likeability

scores for agent voice
• H_6c: The effect of agent body on likeability score does not

depend on agent voice (and vice versa)

3.2.5 Perceived intelligence hypotheses

• H_7a: There is no significant difference between perceived
intelligence scores for agent body
• H_7b: There is no significant difference between perceived

intelligence scores for agent voice
• H_7c: The effect of agent body on perceived intelligence score

does not depend on agent voice (and vice versa)

3.2.6 Perceived safety hypotheses

• H_8a: There is no significant difference between perceived
safety scores for agent body

• H_8b: There is no significant difference between perceived
safety scores for agent voice
• H_8c: The effect of agent body on perceived safety score does

not depend on agent voice (and vice versa)

3.3 Experimental setup

The study was conducted online using the participant
recruitment platform Prolific (www.prolific.com). The video-based
experiment design, and data collection, was done using Sunet Survey
(www.sunet.se). Video-based and scenario-based study design
(Xu et al., 2015) is relatively commonplace in HAI as it offers the
ability to collect larger samples of data, mitigate technical issues with
agents, and simulate technically challenging interactions. Studies
have shown that video-based HAI study results can be comparable
to live HAI study results (Woods et al., 2006; Honig and Oron-
Gilad, 2020). Recruited participants were first asked to provide
consent for participation, some demographic information was
collected, followed by a vignette, and lastly, a video of a human-agent
interaction. After watching the video, they were asked to answer
questionnaires (see Sections 3.4.1-2). The experiment took 20 min,
on average, to complete. The participants were compensated (above
average) according to Prolific’s calculations, in-line with acceptable
hourly wages in Sweden (although participant recruitment was
global–see Section 3.4.3).

3.3.1 Vignette
Thestudy employed a ‘vignette’ (see Supplementary Appendix 1)

to incite the appropriate setting and elicit consistent behaviour
from the participants for data collection. Vignettes are short
descriptions of situations that allow participants to situate the
study in a real-world context, enabling more contextually relevant
responses in survey studies (Atzmüller and Steiner, 2010). In
this study, the participants were informed that the agent was
a travel assistant called ‘Otto’, that was capable of making all
reservations pertaining to a trip, and that the video is of a user
interacting with the agent to plan a vacation. In the videos, a user
(only user voice is heard on the video–see Section 3.3.1) interacts
with Otto to plan a vacation. The vignette depicts a successful
interaction (see Supplementary Appendix 1). This would control for
performance-related trust effects. The scales were adapted in order
to allow individuals to place themselves in the user’s position while
answering the questions (see Supplementary Appendix 2). Through
this, the study examined the participants’ perception of trust,
anthropomorphism, and othermeasured dependent variables, of the
agent. Since the agent is a speaker in some conditions and robot in
others, the agent was named ‘Otto’ in order to maintain consistency
when referring to it across conditions. The travel assistant context
was chosen in order to present a plausible real world application
of an agent that was not too invasive in terms of privacy (such as
banking or insurance).

3.3.2 Videos
The videos weremade from separately recorded audio and video

files that were edited together to simulate an interaction. Apple
iMovie was used to combine and edit the audio and video files. A
single video file was created using AHV audio. The video was then
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FIGURE 1
Screenshots of robot and speaker from videos.

duplicated for all other conditions, ensuring consistency. The videos
were 3 min in length.

3.3.2.1 Video recordings
A generic speaker and a humanoid robot were used to simulate

interaction in the videos (Figure 1). Videos of the speaker and
the robot were recorded with no audio using a smartphone. The
speaker is equipped with a touch panel on top, containing a
glowing logo and a ring of dotted lights surrounding the logo.
The logo and the lights were manipulated to convey two modes,
listening and speaking. To convey listening the lights circled around
the logo, and to convey speaking, the lights pulsated along with
the logo. The robot used for the experiment was the Epi robot
platform developed at LUCS, Lund University (Johansson et al.,
2020). The eyes and mouth of the humanoid robot are equipped
with LED lights, which were manipulated to convey listening
and speaking. The lights in the eyes were made to glow brighter
when speaking and dimmer when listening, and the lights in the
mouth were made to pulsate when speaking and switching off
while listening.

3.3.2.2 Audio recordings
A script was written according to the vignette (see

Supplementary Appendix 1) which was used to record all four
voices. All conditions used a male voice and were recorded in
English. A female human voice was recorded separately as the
human user interacting with the agent. We decided to have a
female user in order to more distinctly separate the human voice
from the agent voice–especially in the AHV condition. Gender
of the voice was kept constant as a control, but gender effects
are not within the scope of the study. The built-in text-to-speech
generator on Apple MacOS 12 Monterey was used for the TSV
condition. NaturalReader’s (www.naturalreaders.com) ‘AI text-to-
speech generator’ was used for the AIV condition7. While they are
both text-to-speech (TTS) voices, the former is a lot less advanced

7 A subscription to the public-use product was purchased to generate the

audio files.

than the latter resulting in markedly different voice ‘humanness’.
Existing consumer TTS applications were chosen in an effort to
improve external validity. Lastly, a real human voice was recorded
for the AHV condition. The AHV audio was modified using several
effects on audacity to mimic a robotic voice for the MHV condition.
Since the AHV (also consequently MHV) and user voice recordings
had some background noise caught by the microphone, the clean
audio files from the TTS applications were played out-loud and
re-recorded through the same microphone to replicate similar
background noise. This ensured consistency across conditions,
as well as aided the vignette by making the final videos mimic
real-world recordings.

To test for significance of perceived difference between the four
chosen voices, 216 participants were asked to listen to a 15 s audio
clip of each voice and rate them on a five-point Likert scale with
‘artificial-lifelike’ end-nodes (a single item taken from the Godspeed
anthropomorphism scale). A repeated measures Friedman test was
performed to find that there was a statistically significant difference
in perception of the voices, (χ2 = 491.159,p < .001,d f = 3), with
the highest mean ranks for AHV, followed by AIV, TSV, and
MHV (AHV = 3.72,AIV = 3.03,TSV = 1.73,MHV = 1.51)8. Post
hoc analysis using paired-sample sign tests were conducted with
a Bonferroni correction applied, resulting in a significance level
set at (p = .0083). There was a significant difference between
all six pairs (p < .001), leading us to conclude that the voices
reflect distinctly different levels of humanness as intended
for the study.

The female user voice was edited together with the AHV,
MHV, AIV and TSV audio (individually) to mimic a human-agent
conversation, resulting in the complete human-agent interaction
audio for the four conditions, which were used as the audio in the
final videos.

8 As discovered during analysis (see Section 3.5.2) MHV was a flawed

condition, as the edited voice was perceived to be unpleasant, explaining

the low rank here. We address the design flaw in Section 3.5.2.
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3.4 Measurement

Existing scales were used to measure human-trust, technology-
trust, anthropomorphism, animacy, likeability, perceived
intelligence, and perceived safety. The trust scales were adapted
to fit the vignette and the online study design. The Godspeed scales
did not require adaptation.

3.4.1 Trust perception
Trust was measured using an adapted version of the human-

trust and technology-trust scales developed by Lankton et al.
(2015) based on the competence, benevolence, and integrity (CBI)
framework for human-trust, and functionality, helpfulness, and
reliability (FHR) concepts for technology-trust (Lankton et al.,
2015). Although the sub-scales for perceived usefulness, enjoyment,
trusting intention, and continuance intention were also measured,
they are not reported in the analysis. Only the three respective
sub-scales for CBI and FHR are reported and interpreted in the
analysis. Other studies have previously employed some of the trust
items on the scale (Law et al., 2022).The technology humanness sub-
scale was not used since anthropomorphism is measured separately.
Regarding the distinction between human-trust and technology-
trust, Lankton et al. (2015) claim that, “literature is not clearwhether
contexts exist in which using one set of trust constructs is more or
less appropriate than using the other. It could be that each type’s
influence on outcome variables depends on users’ perceptions of a
technology’s human-like characteristics. If these perceptions matter
to trust, the choice of whether to use a human-like or a system-
like trust concept (and its measures) may make a crucial empirical
difference” (Lankton et al., 2015). This makes the scale especially
suited to this study, particularly since the scale was build to support
a view that technology humanness is a continuum from technology-
like to human-like, which is a particularly relevant conceptualisation
in this study. A precursor to this scale was employed to study
Facebook trusting belief to show that people distinguish the
technology-like trust characteristics of Facebook from its human-
like trust characteristics, and that all six trusting belief types are
discriminant from one another (Lankton and McKnight, 2011).

3.4.2 Anthropomorphism perception
Anthropomorphism was measured using the Godspeed Series

(Bartneck et al., 2009). It has been used widely and consistently in
HRI research. The series consists of five questionnaires measuring
anthropomorphism, animacy, likeability, perceived intelligence, and
perceived safety. While the anthropomorphism scale is of primary
interest, all the other scalesmeasure some quality of sociability of the
agent, so they are also relevant–we refer to them collectively as ‘social
characteristics’. The original scales did not require to be adapted.

3.4.3 Participants
The data was collected one condition at a time over a period

of 2 weeks. The following conditions were applied using the inbuilt
filter on prolific.

• Participants must be native-level speakers of English
• Participants must have access to a device with audio
• Participantsmust not have taken part in other conditions of the

experiment

• Participants must be evenly split by gender

A total of 800 participants were recruited, 100 per condition.
Invalid data points were removed during pre-processing. The final
sample size, split between the conditions, was.

• RB-AHV: 99; SB-AHV: 99
• RB-MHV: 95; SB-MHV: 100
• RB-AIV: 97; SB-AIV: 98
• RB-TSV: 100; SB-TSV: 97

The highest education level for just under half of the participants
was a bachelors degree at 47%, followed by high school degree at
21%, and masters degree at 16%. A majority of the participants
reported being proficient at using technology, with 57% identifying
as moderately proficient, followed by 30% as extremely proficient
with technology. A majority of the participants were also familiar
with virtual assistants. About 51% reported using a virtual assistant
(such as Google assistant or Amazon Alexa) sometimes, 35%
reported using them often, and 11% reported never using them.

3.5 Analysis

The data was measured using Likert-scales (7-point scales
for Human-trust and technology-trust, and five-point scales for
anthropomorphism, animacy, likeability, perceived intelligence and
perceived safety). Likert-scales present a couple of different options
in terms of analysis. Parametric statistics, such as t-tests and
ANOVA tests (which are of relevance to this study), are only
viable for interval-scale variables. However, it has been argued that
“parametric statistics can be usedwith Likert data, with small sample
sizes, with unequal variances, and with non-normal distributions,
with no fear of ‘coming to the wrong conclusion’. These findings
are consistent with empirical literature dating back nearly 80 years”
(Norman, 2010). This assumption of interval scaling of rating scales
has become established in research practice (Döring and Bortz,
2016; Mummendey and Grau, 2014). However, some statisticians
insist the ordinal nature of Likert data, and favour the use of non-
parametric tests such as Friedman tests and Kruskal–Wallis tests.
In our analysis, we perform a combination of the two, favouring
parametric tests where possible, due to their higher power, and using
non-parametric alternatives where necessary (see Section 3.5.1).

Before we calculated the single scores for each of the sub-scale
items to use for the analysis, we checked whether the sub-scale
items were sufficiently consistent to indicate a reliable measure of
the construct using Cronbach’s Alpha. As can be seen in Table 1,
the Cronbach’s Alpha scores for all sub-scales are greater than 0.7,
which is deemed satisfactory, the only exception being perceived
safety, which is just under for some of the conditions. However,
Cronbach’s Alpha is sensitive to the number of items on a scale,
and the Godspeed Perceived Safety scale is comprised of only three
items, which explains the lower scores. Given that the scale has not
been adapted, is widely used, and the Cronbach’s Alpha scores are
not significantly below 0.7 (with most above 0.6), we consider it
acceptable.

Having established the internal reliability of the scales, the
parametric tests are performed on the mean value of the Likert-
scale items, whereas the non-parametric tests are performed
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TABLE 1 Cronbach’s Alpha scores.

RB RB RB RB SB SB SB SB

AHV MHV AIV TSV AHV MHV AIV TSV

Competence 0.921 0.935 0.970 0.955 0.920 0.930 0.927 0.933

Benevolance 0.769 0.755 0.864 0.912 0.824 0.840 0.809 0.848

Integrity 0.869 0.919 0.927 0.924 0.873 0.855 0.861 0.916

Human-Trust 0.903 0.885 0.944 0.948 0.888 0.910 0.902 0.933

Functionality 0.874 0.951 0.958 0.937 0.853 0.909 0.911 0.891

Helpfulness 0.794 0.796 0.715 0.874 0.817 0.866 0.831 0.830

Reliability 0.883 0.876 0.912 0.922 0.890 0.903 0.857 0.896

Technology-Trust 0.901 0.901 0.920 0.934 0.897 0.895 0.887 0.917

Anthropomorphism 0.839 0.771 0.837 0.845 0.798 0.853 0.747 0.796

Animacy 0.828 0.719 0.863 0.778 0.848 0.842 0.826 0.818

Likeability 0.901 0.883 0.917 0.891 0.945 0.912 0.888 0.859

P. Intelligence 0.849 0.878 0.889 0.915 0.894 0.862 0.811 0.849

P. Safety 0.667 0.634 0.617 0.719 0.648 0.689 0.593 0.738

on the median values. This is in keeping with how interval
and ordinal data are treated in parametric and non-parametric
statistics respectively. For the parametric tests on human-trust and
technology-trust, the mean value of individual sub-scale items
for competence-benevolence-integrity (CBI), and functionality-
helpfulness-reliability (FHR) were calculated, the mean of these
individual-item-means then represents each of these constructs.
The mean value of the construct-level means for CBI represents
human-trust score and the mean value of the construct-level
means for FHR represents technology-trust score. Similarly, the
mean value of individual sub-scale items for anthropomorphism,
animacy, likeability, perceived intelligence and perceived safety were
calculated, themean of these individual-item-means then represents
the respective scores. The median-based scores were calculated in a
similar manner for the non-parametric tests.

3.5.1 Tests and preconditions
Paired-sample t-tests are used to compare two matched pairs

of dependent variables, such as Human-trust and Technology-trust
within each condition in this study.The preconditions (1) interval or
ratio-scaled dependent variables, (2) two related-group independent
variable, and (3) absence of outliers, were satisfied. However, (4)
normally distributed differences of paired, dependent variables, was
not satisfied. As a result, we cannot perform t-tests. Instead, we
perform their non-parametric equivalent, theWilcoxon signed-rank
test.The preconditions for this test, (1)Ordinal or continuous-scaled
dependent variables, (2) two categorical, related-group, independent
variables, and (3) symmetrically distributed differences of paired,
dependent variables, are satisfied by the data.

Two-way ANOVA tests allow analysing both main and
interaction effects of two or more independent variables on a
dependent variable, which is necessary in this study to understand
the relation between independent variables body and voice, and their
individual as well as combined effect on the dependent variables.
The study design ensures the preconditions (1) independence of
measurements, (2) nominal-scaled independent variables, and as
per the argument above, (3) interval-scaled dependent variables.
The precondition, (4) absence of outliers, was deemed inapplicable
though the data contains extreme valueswithmore than 1.5 standard
deviations above or below themedian, as all valid data-points in this
exploratory study are to be considered relevant. However, both (5)
Gaussian distributed residuals of dependent variables–or normality,
and (6) homogeneity of variances of dependent variables–or
homoscedasticity, were not satisfied in all the conditions. This is a
common occurrence with real-world data. Consequently, variance-
stabilizing transformations according to Box-Cox (Box and Cox,
1964) were applied (see Table 2). ANOVA tests are generally robust
against moderate deviations to normality assumption, as simulation
studies using a variety of non-normal distributions have shown
that the false positive rate is not affected much by this violation
of the assumption (Glass et al., 1972; Harwell et al., 1992; Lix et al.,
1996). Similarly, homogeneity of variance (homoscedasticity) could
not be assumed in all conditions. Where this precondition is not
fulfilled, variance-stabilizing transformations (Box and Cox, 1964)
were applied. In case of persisting heteroscedasticity, which was
found to be common in our data (see Table 3), a robust two-way
ANOVA (generalized pivotal quantity or gPQ based generalized
test) was employed (Ananda et al., 2023) to mitigate the issue. In
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TABLE 2 Shapiro-Wilk normality test - pre and post data transformation.

Data RB RB RB RB SB SB SB SB

Transf AHV MHV AIV TSV AHV MHV AIV TSV

Human-Trust
Pre .010 .040 .007 < .001 .007 .013 .005 .016

Post .672 .888 .554 .566 .523 .733 .366 .925

Technology-Trust
Pre .002 .109 .004 .001 .120 .067 .084 .076

Post .388 .109 .895 .404 .120 .067 .084 .076

Anthropo-morphism
Pre .035 < .001 .065 < .001 .118 < .001 .583 .005

Post .012 < .001 .203 .002 .012 < .001 .221 .032

Animacy
Pre .089 .061 .337 .105 .175 .042 .092 .442

Post .096 .061 .337 .105 .175 .042 .092 .442

Likeability
Pre < .001 .146 .003 .002 < .001 .008 .001 .026

Post .005 .022 .001 .007 < .001 .010 .017 .289

Perceived Intelligence
Pre < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001

Post < .001 .044 .003 < .001 < .001 .006 < .001 .005

Perceived Safety
Pre .006 .093 .007 < .001 < .001 .049 .004 .045

Post .039 .083 .005 .013 .007 .022 .018 .063

cases where all preconditions were satisfied, we only report the
two-way ANOVA results, in cases where non-normality persisted
post-transformation, we mention the number of conditions that do
not fulfil the precondition, and in cases where homoscedasticity is
not achieved post-transformation, we report the robust two-way
ANOVA results. Games-Howell post hoc tests were performed and
reported where applicable. The preconditions for this test are the
same as preconditions (1), (2), and (3) for the two-way ANOVA,
which are satisfied.

Given the persistence of non-normality and heteroscedasticity
in our data despite transformation (see Tables 2, 3) in some
cases, there is a risk that the significance of the ANOVA result
is over-estimated. Though robust ANOVA reduces the risk, in
order to account for this and supplement the ANOVA results,
non-parametric tests on the non-transformed data were also
performed. We only report these additional tests where the ANOVA
preconditions are not satisfied, and the ANOVA indicates significant
results. We employ the Mann-Whitney U test with body as
the independent variable, and Kruskal–Wallis test with voice as
an independent variable, along with Holm-Bonferroni adjusted
pairwise Dunn test. We determine that no further tests are required
for interaction effects between body and voice, as elaborated in
the results. The preconditions for the Mann-Whitney U test, (1)
independence of measurements (2) ordinal or continuous-scaled
dependent variable, and (3) one categorical, independent group,
independent variable, are all satisfied by the data. The preconditions
for Kruskal–Wallis test, (1) independence of measurements (2)

TABLE 3 Levene’s Homogeniety Test (on transformed data) -
MHV-included and MHV-excluded.

Condition MHV-
included

MHV-
excluded

Levene
Statistic

Sig Levene
Statistic

Sig

Human-trust 1.852 .075 2.359 0.39

Technology-trust 1.466 .176 1.995 .078

Anthropomorphism 1.912 .065 1.996 .082

Animacy 1.350 .224 .827 .531

Likeability 2.391 .020 2.313 .043

Perceived
Intelligence

1.659 .116 2.295 .044

Perceived Safety 1.217 .290 1.086 .369

ordinal or continuous-scaled dependent variable, and (3) two or
more categorical, independent group, independent variables, are
all satisfied by the data. The fourth and final precondition (4)
similar shape distributions of groups, is not satisfied. However this
assumption only needs to be satisfied when testing for a difference
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between medians, but does not need to be satisfied for testing
dominance between distributions.

The data was analysed using a combination of Microsoft
Excel, IBM SPSS, and RStudio. We produced data visualisations
only where a statistically significant result was observed due to
a limitation on tables and figures. Visualisations were created
using R packages ‘ggpubr’ (Alboukadel, 2023) and ‘ggstatsplot’
(Patil, 2021).

3.5.2 Problems and mitigation
It was discovered during analysis that the MHV audio produced

confounding results. As was found in the individual rating of the
four voice-snippets, the MHV audio ranked last when compared
to the other three voices, potentially indicating a design flaw. This
reflected in the results for the full study (see Section 4) as well. Upon
further inspection of the free-text remarks made by the participants
at the end of the survey, it was found that 15 and 17 participants for
RB-MHV and SB-MHV, respectively, made unfavourable remarks
concerning the MHV voice (no such remarks were made regarding
any of the other voices). The remarks broadly fell into three
categories, (1) the voice was unclear, (2) the voice was weird, and
(3) the voice was unpleasant. The overly edited nature of the voice,
in order to make AHV-audio sound robotic, has seemingly caused
the voice to have explicitly negative reactions, which is not intended.
This would cause some difficulty in interpreting the results. In
order to mitigate this problem and draw meaningful inferences
from the results, we analysed the data both with and without the
two MHV conditions, RB-MHV and SB-MHV. We present results
from analysing both the MHV-included dataset as well as the
MHV-excluded dataset. Exclusion of the MHV conditions does
not significantly alter the study design, or its ability to produce
meaningful insights towards the research questions. In light of this,
the MHV-excluded results are to be considered the primary results
of the study and its research questions. While we discuss how the
MHV-included results could be interpreted in light of other existing
research, we do this in order to explain any differences between the
MHV-included andMHV-excluded results.We intend to present the
results from both the original data (MHV-included) along with the
data adjusted to address design issues (MHV-excluded), to ensure
research transparency.

4 Results

For the parametric tests, we report the results of two
analyses, using MHV-included dataset and MHV-excluded dataset,
for each independent variable. Post-hoc tests for ANOVA are
performed only on MHV-included dataset, as the pairwise tests
can be interpreted both with and without the MHV conditions.
However, we only use MHV-excluded results for hypothesis
testing.

For the non-parametric tests, we report MHV-included
results for human-trust vs. technology-trust, as the results can
be interpreted both with and without the MHV conditions.
We only report MHV-excluded results of the non-parametric

alternative test to an ANOVA9, as it is not of relevance for the
MHV-included dataset. Non-parametric test results are only
reported where statistical significance is found in the two-
way ANOVA results. Any contradictions between the tests are
also reported.

4.1 Human-trust vs. technology-trust

A pairwise, Wilcoxon signed-rank test was performed to
compare human-trust and technology-trust pairs in all eight
conditions (RB-AHV, RB-MHV, RB-AIV, RB-TSV, SB-AHV, SB-
MHV, SB-AIV, and SB-TSV). The results shown in Table 4 indicate
no statistically significant difference in ranks between human-trust
and technology-trust pairs in any of the groups. As a result, the null
hypothesis H_1 – there is no significant difference between human-
trust and technology-trust scores for RB-AHV, RB-MHV, RB-AIV,
RB-TSV, SB-AHV, SB-MHV, SB-AIV, and SB-TSV, is accepted.

4.2 Body, voice and human-trust

A two-way ANOVA was performed to explore the main and
interaction effect of agent body and voice on human-trust score.
In the MHV-included dataset, there was no statistically significant
difference in human-trust for agent body (F(1,788) = .536,p = .464),
as well as for agent voice (F(3,788) = 1.617,p = .184). There
was also no significant interaction between agent body and
voice (F(3,788) = 1.317,p = .268). The same was true for the
MHV-excluded dataset for body (F(1,594) = .035,p = .852), voice
(F(2,594) = 1.219,p = .296), and interaction between body and voice
(F(2,594) = .623,p = .536). As a result, the null hypotheses H_2a,
– there is no significant difference between human-trust scores
for agent body, H_2b, – there is no significant difference between
human-trust scores for agent voice, and H_2c, – the effect of
agent body on human-trust score does not depend on agent voice,
are accepted.

4.3 Body, voice and technology-trust

A Two-Way ANOVA was performed to explore the
main and interaction effect of agent body and voice on
technology-trust score. In the MHV-included dataset, there
was no statistically significant difference in technology-
trust for agent body (F(1,797) = .023,p = .881). But there
was a statistically significant difference in technology-trust
for agent voice (F(3,797) = 2.799,p = .039). There was no
statistically significant interaction between agent body and
voice (F(3,797) = 2.123,p = .068). While the ANOVA showed
a statistically significant difference for voice, neither Tukey
HSD nor Games-Howell post hoc tests showed a statistically
significant difference for any pairwise comparisons.The discrepancy

9 Non-parametric alternatives to one-way ANOVA for the two dependent

variables body and voice are deemed sufficient where no interaction

effects are found in the two-way ANOVA results.
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TABLE 4 Wilcoxon signed rank test - Human-trust (HT) vs. Technology-trust (TT).

Comparison Median Std. Deviation Sum of ranks Asymp. Sig

RB-AHV-TT 6 .9222 575

RB-AHV-HT 6 1.007 699 .515

RB-MHV-TT 5 1.071 623

RB-MHV-HT 5 1.01012 602 .912

RB-AIV-TT 6 1.012 565

RB-AIV-HT 6 1.181 660 .608

RB-TSV-TT 6 1.145 533

RB-TSV-HT 6 1.3247 594 .736

SB-AHV-TT 6 .969 454

SB-AHV-HT 6 .9685 365 .520

SB-MHV-TT 6 1.0288 983

SB-MHV-HT 6 1.158 612 .098

SB-AIV-TT 6 .9507 658

SB-AIV-HT 6 1.103 668 .960

SB-TSV-TT 5 1.1373 684

SB-TSV-HT 5 1.167 443 .164

was not examined further as in the MHV-excluded dataset,
there was no statistically significant difference for either body
(F(1,594) = 1.503,p = .221) or voice (F(2,594) = 2.982,p = .051), or
interaction effect between the two (F(2,594) = 1.162,p = .314). As a
result, the null hypotheses H_3a–there is no significant difference
between technology-trust scores for agent body, H_3b–there is no
significant difference between technology-trust scores for agent
voice, and H_3c–the effect of agent body on technology-trust score
does not depend on agent voice, are accepted.

4.4 Body, voice and anthropomorphism

A Two-Way ANOVA was conducted to explore the main and
interaction effect of agent body and voice on anthropomorphism
score. For the MHV-included dataset, it was found that
the residuals in six of the eight groups were not normally
distributed. Anthropomorphism score differed statistically
significantly for agent body (F(1,789) = 11.585,p < .001),
and voice (F(3,789) = 56.299,p = < .001). There was no
statistically significant interaction between agent body and
voice (F(3,789) = .501,p = .682). For the MHV-excluded
dataset, residuals in four of the six groups were not normally
distributed. Anthropomorphism score differed statistically
significantly for agent body (F(1,594) = 5.997,p = .015), and
voice (F(2,594) = 43.548,p < .001). There was no statistically

significant interaction between agent body and voice
(F(2,594) = .168,p = .845). As a result, the null hypothesis H_4c–the
effect of agent body on anthropomorphism score does not depend
on agent voice, is accepted. The null hypotheses H_4a–there is
no significant difference between anthropomorphism scores for
agent body, and H_4b–there is no significant difference between
anthropomorphism scores for agent voice, are rejected.

Games-Howell post hoc analysis on voice revealed a significant
difference between all groups except TSV-MHV and AIV-
AHV (see Figure 2). Mean level of anthropomorphism score increased
from TSV to AIV (.30,95%−CI[.19, .42],p < .001) and from TSV
to AHV (.41,95%−CI[.28, .53],p < .001). It decreased from AIV
to MHV (−.41,95%−CI[−.53,−.29],p < .001), and increased from
MHVtoAHV (.51,95%−CI[−.39, .64],p < .001). Games-Howell post
hoc analysis on body revealed a significant difference between the robot
(RB) and speaker (SB). Mean level of anthropomorphism increased
from RB to SB (.10,95%−CI[.36, .18],p < .001).

The non-parametric, Mann-Whitney U test was performed to
evaluate whether there was a statistically significant difference in
the distribution of anthropomorphism perception across agent
body (see Figure 3). The results indicated that speaker (SB)
had statistically significant higher anthropomorphism rankings
than robot (RB), (U = 40323,p = .02). A Kruskal–Wallis test was
performed on voice (see Figure 4). It indicated that there was
a statistically significant difference in anthropomorphism across
voice, (χ2(2,600)) = 72.31,p < .001). Holm-Bonferroni adjusted
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FIGURE 2
Trend lines for Anthropomorphism score across Body and Voice.

Dunn post hoc comparisons indicated that the TSV ranked
significantly lower than AIV, (p < .001), and TSV also ranked
significantly lower than AHV, (p < .001).There was also a significant
difference between AIV and AHV, (p = .0.04). This is mostly
consistent with the two-way ANOVA result, except that the Games-
Howell post hoc test did not find a significant difference between
AIV and AHV.

4.5 Body, voice and animacy

A Two-Way ANOVA was conducted to explore the main and
interaction effect of agent body and voice on animacy score.
For the MHV-included dataset, it was found that the residuals
in one of the eight groups were not normally distributed. There
was a statistically significant difference in animacy for agent body,
(F(1,789) = 4.167,p = .042), and voice (F(3,789) = 32.866,p < .001).
There was no statistically significant interaction between agent
body and voice, (F(3,789) = 2.006,p = .112). For the MHV-excluded
dataset, residuals for all groups were normally distributed. There
was no statistically significant difference in animacy for agent body,
(F(1,594) = 1.282,p = .258), but there was a statistically significant
difference for voice (F(2,594) = 26.750,p < .001). There was no
statistically significant interaction between agent body and voice,
(F(2,594) = 2.189,p = .113). As a result the null hypotheses, H_
5a–there is no significant difference between animacy scores for
agent body, and H_5c–the effect of agent body on animacy score
does not depend on agent voice, are accepted. The null hypothesis
H_5b–there is no significant difference between animacy scores for
agent voice, is rejected.

Games-Howell post hoc analysis on voice revealed
a significant difference between all groups except TSV-
MHV (see Figure 5). Mean level of animacy increased from
TSV to AIV (.35,95%−CI[.14, .55],p < .001), and from TSV to
AHV (.58,95%−CI[.37, .78],p < .001). It decreased from AIV to
MHV (−.47,95%−CI[−.58,−.27],p < .001), increased from AIV
to AHV (.23,95%−CI[−.02, .44],p = .02), and MHV to AHV
(.70,95%−CI[−.49, .91],p < .001).

The non-parametric, Kruskal–Wallis test indicated that
there was a statistically significant difference in animacy across
voice (see Figure 6), (χ2(2,600)) = 48.195,p < .001). Holm-
Bonferroni adjusted Dunn post hoc comparisons indicated that
TSV ranked significantly lower than AIV, (p < .001), TSV also
ranked significantly lower than AHV, (p < .001), and AIV ranked
significantly lower than AHV, (p = .008). This is consistent with the
two-way ANOVA result.

4.6 Body, voice and likeability

A Two-Way ANOVA was conducted to explore the
main and interaction effect of agent body and voice on
likeability score. For MHV-included dataset, residuals in
seven of the eight groups were not normally distributed. The
level of likeability had no statistically significant difference
by body, (F(1,789) = .042,p = .838), but differed statistically
significantly by voice, (F(3,789) = 15.636,p < .001). There was
no statistically significant interaction between agent body
and voice, (F(3,789) = .531,p = .661). For MHV-excluded
dataset, residuals in five of the six groups were not normally
distributed. The level of likeability had no statistical difference
by body, (F(1,594) = .362,p = .548), but differed statistically
significantly by voice, (F(2,594) = 6.133,p = .002). There was no
statistically significant interaction between agent body and voice,
(F(2,594) = .485,p = .616). As a result the null hypotheses, H_
6a–there is no significant difference between likeability scores for
agent body, and H_6c–the effect of agent body on likeability score
does not depend on agent voice, are accepted. The null hypothesis
H_6b–there is no significant difference between likeability scores
for agent voice, is rejected.

Games-Howell post hoc analysis by voice revealed a significant
difference between all groups except AIV-AHV (see Figure 7).
Mean level of likeability increased from TSV to AIV
(.57,95%−CI[.08,1.06],p = .015), decreased from TSV to MHV
(−.57,95%−CI[−1.10,−.04],p = .030), increased from TSV to AHV
(.59,95%−CI[.08,1.10],p = .015), decreased from AIV to MHV
(−1.14,95%−CI[−1.65,−.64],p < .001), and increased from MHV
to AHV (1.16,95%−CI[−.64,1.69],p < .001).

The non-parametric, Kruskal–Wallis test indicated that there
was a statistically significant difference in anthropomorphism
across voice (see Figure 8), (χ2(2,600)) = 10.56,p = .005). Holm-
Bonferroni adjusted Dunn post hoc comparisons indicated that
TSV ranked significantly lower than AIV, (p = .01), and TSV also
ranked significantly lower than AHV, (p = .01). However, there was
no significant difference between AIV and AHV, (p = 1.0). This is
consistent with the two-way ANOVA result.

4.7 Body, voice and perceived intelligence

A Two-Way ANOVA was performed to explore the main
and interaction effect of agent body and voice on perceived
intelligence score. For MHV-included dataset, residuals in
eight of the eight groups were not normally distributed. The
level of perceived intelligence had no statistical difference
by body, (F(1,789) = 1.418,p = .234), but differed statistically
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FIGURE 3
Mann-Whitney U test for Anthropomorphism score across Body.

FIGURE 4
Kruskal–Wallis test for Anthropomorphism score across Voice.

significantly by voice, (F(3,789) = 2.806,p = .039). There was no
statistically significant interaction between agent body and voice,
(F(3,789) = 2.319,p = .074). For MHV-excluded dataset, residuals
in six of the six groups were not normally distributed. The level
of perceived intelligence had no statistical difference by body,
(F(1,594) = .157,p = .692), or voice, (F(2,594) = 1.192,p = .304).
There was no statistically significant interaction between agent
body and voice either, (F(2,594) = 2.687,p = .069). As a result, the
null hypotheses H_7a–there is no significant difference between
perceived intelligence scores for agent body, H_7b–there is no
significant difference between perceived intelligence scores for agent

voice, and H_7c–the effect of agent body on perceived intelligence
score does not depend on agent voice, are accepted.

Games-Howell post hoc analysis by voice revealed a statistically
significant difference between the group AIV-MHV. Mean
level of perceived intelligence decreased from AIV to MHV
(−.78,95%−CI[−1.47,−.078],p = .022).

4.8 Body, voice and perceived safety

A Two-Way ANOVA was performed to explore the main and
interaction effect of agent body and voice on perceived safety score.
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FIGURE 5
Trend lines for Animacy score across Body and Voice.

In the MHV-included dataset, residuals in six of the eight groups
were not normally distributed. The level of perceived safety had no
statistical difference by body, (F(1,789) = .493,p = .483), but differed
statistically significantly by voice, (F(3,789) = 12.524,p < .001).
There was no statistically significant interaction between agent
body and voice, (F(3,789) = .816,p = .485). In the MHV-excluded
dataset, residuals in five of the six groups were not normally
distributed. The level of perceived safety had no statistical difference
by body, (F(1,594) = .029,p = .884), but differed statistically
significantly by voice, (F(2,594) = 3.332,p = .036). There was no
statistically significant interaction between agent body and voice,
(F(2,594) = .109,p = .897). As a result the null hypotheses, H_
8a–there is no significant difference between perceived safety scores
for agent body, and H_8c–the effect of agent body on perceived
safety score does not depend on agent voice, are accepted. The
null hypothesis H_8b–there is no significant difference between
perceived safety scores for agent voice, is rejected.

Games-Howell post hoc analysis by voice revealed that
mean level of perceived safety decreased from TSV to MHV
(−.48,95%−CI[−.88,−.07],p = .013), decreased from AIV to MHV
(−.85,95%−CI[−1.23,−.47],p < .001), increased from MHV to
AHV (.68,95%−CI[.30,−1.07],p < .001), and increased from TSV
to AIV (.37,95%−CI[.03, .71],p = .029) (see Figure 9).

The non-parametric, Kruskal–Wallis test indicated that there
was a statistically significant difference in anthropomorphism
across voice (see Figure 10), (χ2(2,600)) = 10.26,p = .006). Holm-
Bonferroni adjusted Dunn post hoc comparisons indicated that
TSV ranked significantly lower than AIV, (p = .007), and also TSV
ranked significantly lower than AHV, (p = .03). However, there was
no significant difference between AIV and AHV, (p = 1.0). This is
mostly consistent with the two-way ANOVA result, except that the
Games-Howell post hoc test did not find a significant difference
between TSV and AHV.

5 Discussion

Overall, three primary findings are immediately apparent upon
initial examination of the results, (1) lack of significant difference

in human-trust and technology-trust, both within and between
any of the conditions, (2) lack of significant difference in any of
the independent variables (except anthropomorphism) across agent
body (SB and RB), and (3) significant difference in a majority of the
independent variables (outside of trust, and with the exception of
perceived intelligence) across agent voice (AHV, AIV and TSV). It is
also worth noting the lack of interaction effects between body and
voice across any of the conditions. The results, for the most part, are
consistent between the parametric and non-parametric tests, further
indicating the robustness of the findings.

5.1 Trust

Given that both a smart speaker and a robot possess social cues
by way of being able to speak and interact in human comprehensible
ways, as well as perceived agency by way of being able to answer
questions and perform tasks, the CASA paradigm would hold that
both would elicit human social reactions (Reeves and Nass, 1996),
and consequently trust–as conceived in HHI (Lankton et al., 2015).
While the experiment did assume that both cases would produce
both human-trust and technology-trust, it was not obvious whether
differing levels of humanness significantly changed the type of trust
placed in the social agent. If it did, that would contradict the CASA
paradigm. From the results, we see that is not the case. Though
the anthropomorphism results show that, indeed humanness of
agent is perceived significantly differently across agent body and
voice, those perceptive differences did not directly affect trust.
All agents used in this study were anthropomorphic to varying
degrees, while the results indicate that the degrees may not have
had a significant effect on trust, generally high levels of trust
(both human and technology) were recorded in all conditions as
seen in Table 4. This is in-line with previous findings of a positive
correlation between anthropomorphism and trust more broadly
(Blut et al., 2021; Roesler et al., 2021).

The lack of differences in human-trust lends further weight
to the CASA paradigm, especially considering that no differences
were noted even in the MHV-included results. Despite the MHV
audio being perceived as unclear, weird, and unpleasant, this did
not significantly affect human-trust. This can be explained to some
extent by the CASA paradigm. It would still be true that the agents
in the MHV conditions possessed social cues by being able to
communicate in spoken language, albeit poorly in comparison to
other voices, and be able to perform tasks and display perceptive
agency, meeting the two boundary conditions for CASA to apply
(Gambino et al., 2020). And since the vignette depicts successful task
completion by all the agents, it would explain the insignificance of
human-trust differences across conditions. While previous studies
have found that linguistic and behavioural traits had an effect on
trust in voice-based agents (Hsu and Lee, 2023), seeing as these traits
were maintained as constant with only a difference in the quality of
humanness of voice, our results do not necessarily contradict these
findings. Technology-trust on the other hand, performed slightly
differently.While no significant differences were found in theMHV-
excluded results, MHV-included results were significantly different,
indicating that the MHV audio caused a loss of technology-trust,
which is comprised of functionality, helpfulness and reliability.
This shows that quality of voice-based interaction has a significant
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FIGURE 6
Kruskal–Wallis test for Animacy score across Voice.

FIGURE 7
Trend lines for Likeability score acorss Body and Voice.

effect on technology-derived conception of trust.While technology-
trust is stable despite significant differences in anthropomorphism
perception, when voice-based interaction is not ideal, such as with
an ineffective voice in the case of MHV, it negatively affected
technology-trust. Although not part of the primary results of the
study, this highlights that theoretical concepts underlying trust
measurement need careful consideration as they highlight and
obscure different aspects of trust.

In a previous study, Krantz et al. (2022) showed that when a
robot had the ability to speak, the level of perceived trustworthiness
the participants reported remained stable at a level similar to when
the robot behaved perfectly, even when the robot failed. When the
robot did not speak, the level of perceived trustworthiness reported
by the participants dropped when the robot failed (Krantz et al.,
2022). This showed that speech could be a mitigating factor in loss
of trust in HRI. In our study, all agents possessed (simulated) the

ability to speak, simply possessing this ability could have mitigated
any potential loss of trust attributed to the characteristics (body
and voice) of the agent, explaining the insignificance of differences
in trust (of both types) reported across all the conditions. This
hypothesis will need further examination. In addition, it could be
that task-based agents are evaluated in terms of their ability to
complete the task successfully, which might outweigh the influence
of their characteristics on trust, and given that all agents perform
the task in the exact same manner, it would explain the insignificant
differences in trust. There is some evidence in other experiments to
corroborate this argument (Hancock et al., 2011).

5.2 Anthropomorphism

Of all the dependent variables measured, anthropomorphism
was the only one where both independent variables (body and
voice) had a significant effect. This highlights that individuals
are perceptively attuned to anthropomorphic features of an agent,
and perceive anthropomorphism significantly differently both by
changes in the physical presentation of the agent body, as well as the
changes in the humanness of voice.

In terms of voice, TSV was perceived as less anthropomorphic
than both AIV and AHV. This result was expected, as the text-
to-speech (TTS) service used to create TSV audio is older, less
advanced, and the result is noticeably artificial, which is by
design. However, the differences in anthropomorphism perception
between AIV and AHV are less clear. The parametric Games-
Howell post hoc tests on the means of the transformed data,
and the non-parametric Dunn post hoc tests on the medians of
the non-transformed data, produce contradictory results, with the
parametric tests finding no significant difference where the non-
parametric tests found a significant difference. Given that the data
fails to meet some assumptions for the parametric tests (despite
robustness against non-normality, and the use of robust ANOVA),
there may be reason to accept the non-parametric result in this
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FIGURE 8
Kruskal–Wallis test for Likeability score across Voice.

FIGURE 9
Trend lines for Perceived Safety score acorss Body and Voice.

instance, which would indicate that all three voices were perceived
significantly differently in terms of anthropomorphism, with AHV
being perceived as most anthropomorphic, followed closely by AIV,
and TSV definitively being perceived as the least anthropomorphic.
These results are largely in line with expectations based on literature
(Lévêque et al., 2012; Kühne et al., 2020). In the MHV-included
analysis,MHVwas perceived as less anthropomorphic than both the
AIV and AHV, with no significant difference from TSV. This shows
that less-than-ideal voice quality negatively affects the perception of
anthropomorphism in agents.

In terms of body, the speaker was perceived as more
anthropomorphic than the robot. This is confirmed by both the
parametric and non-parametric tests. At first glance, the result
is unexpected. Smart speakers (especially ones without a screen
to present a virtual body, such as in our study) are generally
considered disembodied agents in HAI (Bonfert et al., 2021;
Lee et al., 2006), and research suggests that embodiment and

anthropomorphism are positively correlated (Roesler et al., 2023;
Kiesler et al., 2008). As a result, it would be reasonable to assume
that, all other things being equal, a humanoid robot would be
perceived as more anthropomorphic than a speaker when using
the same voice to communicate. However, our results present the
contrary. One explanation could be that there was a perceived
mismatch of expectations between the robot’s appearance and
its performance. Research has found that humans form certain
expectations regarding social robot’s overall abilities by displaying a
few human-like qualities, such as speech, and when the expectations
are mismatched with performance, it can lead to negative overall
effects (Kwon et al., 2016; Paepcke and Takayama, 2010). In our
experiment, the humanness of the body of the robot may have
created greater expectations of human-like capabilities, resulting
in less anthropomorphism perception when the robot fails to meet
this expectation. This expectation-gap is of less concern for the
speaker, as the speaker does what it would likely be expected to
do. Another explanation could be that design of the robot had
an impact on perception. In chatbots, it was found that highly
intelligent disembodied agents were perceived as more human-
like than highly intelligent (virtually) embodied agents with poorly
designed appearances (Kim and Im, 2023). Seeing as this study
was video-based, it may be reasonable to interpret the results
through these findings on virtual embodiment. However, our
results are contradictory to some studies that find that robots
with voices were perceived as more anthropomorphic than voice-
only agents Luo et al. (2023). This may be a reflection of the
differences between video-based and direct interaction methods.

The lack of significance in interaction effects between body
and voice indicates that body anthropomorphism and voice
anthropomorphism are distinct phenomena, and that they
individually influence the perception of the agent. This lends
some empirical support to the multidimensional nature of
anthropomorphism perception. Measuring anthropomorphism
perception as a singular phenomenon risksmissing these underlying
dimensions and their individual effects on perception of an agent.
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FIGURE 10
Kruskal–Wallis test for Perceived Safety score across Voice.

5.3 Social characteristics

We categorise the rest of the Godspeed scales used (as
dependent variables) – animacy, likeability, perceived intelligence
and perceived safety, as pertaining to ‘social characteristics’ for
ease of discussion. Agent voice had a significant effect across these
dependent variables while agent body had no significant effect
(with the exception of perceived intelligence where neither had
an effect). AHV was perceived as the most animate, and TSV
as the least. TSV was perceived as the least likeable, but there
was no significance between likeability between AIV and AHV.
TSV was also perceived as the least safe. Previous studies have
indicated that anthropomorphism may not directly impact trust,
rather, increase social attraction, which in turn reinforces trust
(Chen and Park, 2021). Anthropomorphism of voice in this study
does result in greater perception of social characteristics which
could be considered an aspect of social attraction, however, that
does not impact trust. In the MHV-included results, voice also had
a significant effect on perceived intelligence, showing that quality
of voice interaction impacts perception of intelligence of an agent,
and that it may be of relevance to disembodied agents as well,
arguably extending the findings from previous studies pertaining
embodied agents (Schneiders et al., 2021).

Previous research employing the same Godspeed scales has
found that a speaking robot was seen as more lifelike, likeable, and
as having higher perceived intelligence than a non-speaking robot,
regardless of whether it displayed faulty behaviour (Krantz et al.,
2022). The results from our study further extend these findings
and show that not only does presence or absence of voice have
an impact on anthropomorphism, likeability, and perceived safety,
but the qualitative nature of voice, has a significant impact as well,
with perceptively more human voices performing better in terms
of perception of social characteristics. This result is of particular
relevance for agent design, as it implies that voice design may have
significantly more impact on user perception than the design of the
physical agent.

5.4 Contribution

Overall, the study makes three contributions to the state
of the art in HAI. The results show that (1) body and voice
both contribute to anthropomorphism perception independently
from one another, serving as empirical evidence for the
multidimensionality of anthropomorphism, (2) voice has a stronger
impact on the perception of social characteristics of an agent
compared to body, and (3) provided successful interaction,
users perceive both human and technology conceptions of
trust in agents with no significant difference and irrespective
of the physical or voice attributes. However, these results
should be considered in light of the context and limitations of
the study.

5.5 Limitations

Interaction complexity is a significant limitation of most studies
in HAI. Human-agent interaction is highly complex, and can vary
significantly based on context, making it difficult to generalise
findings across different settings. In this study, through a vignette,
we depict a ‘travel agent’ context in order to convey a relatively low-
stakes setting for an interaction, but that means that the results may
not reflect high-stakes settings, like banking, for example.The choice
of agents and voices used also affects perception and interaction.
For example, one study found, using Furhat (Al Moubayed et al.,
2012) in a workplace context, a significant difference in user
perception of trust between robot and smart speaker (Robb et al.,
2023), which was not the case in this experiment using Epi in a
service context.

The video-based, pseudo-interaction research design is a
limitation in terms of Ecological validity. Since the participants
do not directly interact with the agents, rather they watch
videos of simulated human-agent interaction, the results from
such a study may not reflect live-interaction (Bainbridge et al.,
2011). Although, arguments to the contrary have also been
made (Woods et al., 2006; Honig and Oron-Gilad, 2020). It
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can also be argued that the results may be more directly
applicable to virtual agents than physical agents, however, the
insights may still be relevant. This is an ongoing debate in
HAI methodology.

Measurement validity might be considered a limitation.
While the scales chosen are widely-used, many of the subjective
components such as trust and anthropomorphism do not as-yet
have ideal quantitative measures, as the theory which they are
founded on is still debated. For example, it is argued whether the
Competence/Ability, Benevolence and Integrity conceptualisation
of human-trust encapsulates the experience of trust (Baer and
Colquitt, 2018).

5.6 Future research

Several variations of the study could be performed to provide
further insights into the effect of body and voice anthropomorphism
on perception of the agent in human-agent interaction. Firstly,
changing the body of the agents used could highlight the
impact of variations in embodiment. Altering the voices used
(for example, quality of humanness, gender, accent or speed)
could lead to a more nuanced understanding of the impact of
voice in perception of an agent. And using different scales of
measurement derived from different theoretical conceptualisations
of trust, anthropomorphism, and social characteristics, could
further highlight different aspects of the phenomenon being
measured.The study could also be reproduced employing qualitative
and/or live-interaction methods to gain further insights into the
subjective experience of human-agent interaction, and to contrast
the qualitative results with the quantitative ones presented in
this study.

The results from this study lend some empirical weight to a
nuanced understanding of anthropomorphism by highlighting two
of the dimensions, perceived simultaneously and independently,
through body and voice. The results also highlight the significant
role played by voice in agent perception, but further empirical
research into the relationship between voice, embodiment, and
anthropomorphism is needed to draw generalisable conclusions
about the role of voice. At the same time, there are several
other agent modalities of communication that could also possess
anthropomorphic qualities and influence perception, such as
gestures and tactile interaction. Further research in this direction
is needed to expand our understanding of anthropomorphism
perception in humans, its dimensions, and relationship with
various agent modalities. Additionally, developing methods of
measurement for these dimensions of anthropomorphism is
also needed.

6 Conclusion

In this paper, we presented an online, video-based, human-
agent interaction experiment, conduced using a speaker and robot
that each employed four different levels of humanness of voice,
to study the (1) type of trust (human-trust vs. technology-trust)
exhibited by humans in social agents, (2) understand whether
modalities of agent (body and voice) have an impact on the type

of trust exhibited by humans, and (3) study the impact body and
voice modalities have on anthropomorphism perception–to make
inferences about the dimensions of anthropomorphism. We found
that the participants exhibited both human-trust and technology-
trust in agents, with no significant difference between the two,
within and between all conditions. Body and voice had no significant
impact on either type of trust, despite both (independently) having
a significant impact on anthropomorphism perception. Voice
was a significant factor in perception of social characteristics
outside of trust and perceived intelligence, while body
was not.

The results broadly indicate that trust is a relatively stable
construct, despite varying anthropomorphism, provided successful
agent interaction. Body and voice both independently lead to
anthropomorphism perception, highlighting different dimensions
of anthropomorphism–arising from different modalities of
agent. And voice is a significantly stronger factor than body
in influencing the perception of the agent. These results have
implications for agent design, where voice stands out as an
important modality to consider. Furthermore, the results
expand upon theory on anthropomorphism by providing weight
to the argument for a multidimensional understanding of
anthropomorphism.
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