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Enhanced outdoor visual
localization using Py-Net voting
segmentation approach

Jing Wang*† , Cheng Guo† , Shaoyi Hu, Yibo Wang and
Xuhui Fan

College of Communication and Information Engineering, Xi’an University of Science and Technology,
Xi’ an, China

Camera relocalization determines the position and orientation of a camera
in a 3D space. Althouh methods based on scene coordinate regression yield
highly accurate results in indoor scenes, they exhibit poor performance in
outdoor scenarios due to their large scale and increased complexity. A visual
localization method, Py-Net, is therefore proposed herein. Py-Net is based
on voting segmentation and comprises a main encoder containing Py-layer
and two branch decoders. The Py-layer comprises pyramid convolution and
1 × 1 convolution kernels for feature extraction across multiple levels, with
fewer parameters to enhance the model’s ability to extract scene information.
Coordinate attentionwas added at the end of the encoder for feature correction,
which improved the model robustness to interference. To prevent the feature
loss caused by repetitive structures and low-texture images in the scene,
deep over-parameterized convolution modules were incorporated into the seg
and vote decoders. Landmark segmentation and voting maps were used to
establish the relation between images and landmarks in 3D space, reducing
anomalies and achieving high precision with a small number of landmarks. The
experimental results show that, in multiple outdoor scenes, Py-Net achieves
lower distance and angle errors compared to existing methods. Additionally,
compared to VS-Net, which also uses a voting segmentation structure, Py-Net
reduces the number of parameters by 31.85% and decreases themodel size from
236MB to 170 MB.

KEYWORDS

camera relocalization, coordinate attention, pyramidal convolution, landmark
segmentation map, landmark voting map

1 Introduction

Camera relocalization is a fundamental problem in computer vision tasks. It aims
to infer a camera’s translation vector and rotation angle in the world coordinate
system from RGB images, determining the camera’s precise position and orientation
in a scene.Camera relocalization is the core of simultaneous localization and mapping
as well as a key module in technologies such as virtual reality, augmented reality,
and autonomous driving (Chen et al., 2021). Traditional camera relocalization methods
often employ structure-from-motion (SFM) techniques to achieve high-precision camera
localization by preserving the geometric information of a scene using three-dimensional
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(3D) point clouds (Shavit and Ferens, 2019). However, these
methods use feature pointmatching that causes relocalization failure
when dealing with complex scenes. Absolute pose estimation using
deep learning (Kendall A. et al., 2015) overcomes the limitations
of large memory occupancy and hardware of traditional methods.
Scene coordinate regression (SCR)-based (Li et al., 2018) camera
relocalization is a deep learning method and regresses two-
dimensional (2D) image pixels to obtain a relation between
the 2D pixels and 3D scene coordinates. Further, it uses a
random sampling consistency (RANSAC) algorithm to select the
best poses, considerably improving the relocalization accuracy.
Additionally, image retrieval–based camera relocalization methods
requirematching the query image with an image database to find the
most similar image (Balntas et al., 2018; Arandjelovic et al., 2016)
for calculating the relative position of a camera (Laskar et al., 2017).
These methods yield good relocalization results in the absence of
presented scenes but have low localization speed.

SCR-based camera relocalization methods perform well in
indoor scenes. Networks with multiple viewpoint constraints
converge more easily than single-viewpoint models. Cai et al.
(Cai and Zhan, 2019) enhanced SCR networks using geometric
constraints and self-supervision, allowing the networks to learn
reliable 2D to 3D relations and improving the training efficiency.
Hierarchical scene coordinate networks offer better performance. Li
et al. (Li et al., 2020) proposed HSCNet, which accurately predicts
pixel scene coordinates from a single RGB image through multiple
output layers, with the final layer predicting the 3D coordinates.
Yang et al. (Yang et al., 2019) proposed SANet, which decouples
model parameters from the scene using hierarchical coding,
enabling the localization of unknown scenes and estimation of
camera poses.

Outdoor scene relocalization faces many challenges, such as
differences between datasets and real environments and varying
scene properties, which affect relocalization accuracy. In the
presence of duplicate structures in a scene, an uncertainty is
generated in the positional solution. Duong et al. (Duong et al.,
2020) proposed an efficient multioutput scene coordinate (EMOSC)
method that combines machine learning and geometric methods.
It is a multioutput depth forest regression method based on sparse
feature detection, which greatly reduces the algorithm running
time and improves the prediction accuracy. Wald et al. (Wald et al.,
2020) introduced RIO-10 and a new metric: dense correspondence
reprojection error. Dong et al. (Dong et al., 2021) developed an
outlier-aware neural tree for high-precision camera relocalization in
dynamic indoor settings, featuring decision trees, neural routes, and
dynamic point filtering. SCR-based methods balance accuracy and
computation time. Turkoglu et al. (Turkoglu et al., 2021) combined
graph neural networks with image retrieval using relative positional
loss for training. Bui et al. (Bui et al., 2022) proposed a simpler SCR
algorithm using perceptrons and sparse descriptors, resulting in a
smaller model. PixLoc (Sarlin P. et al., 2021) is a scene-independent
algorithm requiring only a query image, 3D model, and reference
image with poses for camera relocalization. It uses metric learning
for generalization across different scenes. KFNet (Zhou et al., 2020)
combines a recursive network with Kalman filtering, extending SCR
to the time domain for 2D to 3D correspondence. A system reported
in a previous study (Brachmann E. and Rother C., 2021) estimated
camera translation and orientation from RGB-D or RGB images.

It was trained using a 3D environment model and required only
RGB images and ground truth for training. Despite the strengths
of SCR methods, their accuracy is limited by feature extraction,
necessitating improvements in this regard.

Herein, the current research status of camera relocalization
is reviewed. Existing deep learning–based camera relocalization
methods can be categorized into three types: direct regression
methods, image retrieval–based methods, and SCR methods. The
specific principles of these methods are described as follows.

Direct regression methods: In these methods, the camera pose
is directly estimated by inputting an image into a convolutional
neural network and performing supervised learning. Although
this approach is simple and requires only one neural network, its
accuracy is generally low.

Image retrieval–based methods:These methods initially involve
the feature encoding of input images. Then, they can directly find
an image in the database that is the most similar to the query
image and estimate the camera pose by matching their features.
Alternatively, they can estimate their relative poses and more
accurately estimate the camera pose. These methods demonstrate
good generalization and adapt well to large-scale scenes. However,
finding the most similar image from the image database is
time-consuming. Additionally, differences between database and
query images often make the retrieval of the most similar image
challenging. Similar to traditional camera relocalization methods
that establish sparse point clouds, optimizing the image-retrieval
step helps narrow down the search space, facilitating faster
estimation of the camera pose. The algorithm efficiency can be
enhanced to some extent using global descriptors as the retrieval
criterion.

SCR: Unlike traditional camera relocalization methods that
rely on feature matching to establish the 2D–3D relation, SCR is
more direct. By training a neural network, inputting an image, and
obtaining the 3D positions of image pixels using the network, i.e.,
scene coordinates, the camera pose is calculated using the PnP-
RANSAC algorithm based on the correspondence between 2D pixel
points and 3D spatial coordinates. These methods considerably
simplify the establishment of the 2D–3D relation. Unlike traditional
camera relocalization and image retrieval–basedmethods, SCR does
not directly store scene information in a database or 3D model.
Instead, it implicitly expresses scene information using a neural
network. A convolutional neural network is first trained to map 2D
pixels to 3D spatial coordinates. Then, the spatial coordinates are
input to the PnP-RANSAC algorithm for pose estimation. However,
camera relocalization methods based on SCR may not perform as
robustly in large-scale scenes as in small-scale scenes. In outdoor
environments, the accuracy of camera relocalization may also be
slightly influenced.

During camera relocalization in outdoor scenes, features
extracted by an SCRnetwork contain a large number of invalid scene
coordinates, which can slightly affect the relocalization accuracy.To
address this issue, herein, a voting segmentation network is
adopted as the baseline model. However, using ResNet101 in
the encoder of the voting segmentation network increases the
model size and computational complexity; therefore, its immunity
to external interference requires enhancement. To mitigate the
impact of external noise on the encoder, pyramid convolution
and 1 × 1 convolution kernels are used for constructing the
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main encoder. This design reduces the size of the network
model and effectively enhances the feature extraction capability.
Coordinate attention is also introduced to improve the resistance
of the model to interference. Additionally, a more efficient
feature extraction backbone network is developed using pyramid
convolution to address object occlusion in outdoor scenes. Due
to low texture and repetitive structures present in outdoor
environments, the camera perceives the same scene from different
poses, which in turn decreases the accuracy of camera relocalization.
Furthermore, the spatial scene information of local features
gradually diminishes as features propagate forward in the network.
Thus, the output scene coordinates of a network do not provide
usable scene information for estimating camera poses. To address
these two issues, deep over-parameterized convolution modules are
introduced into seg and vote decoders to improve the quality of
scene image features while maintaining the original computational
complexity.

This paper makes the following significant contributions.

(1) We propose a new network architecture, Py-layer, which is an
encoding unit composed of stacked pyramid convolutions and
1 × 1 convolutions, with the addition of coordinate attention
for feature correction. This simple and efficient network
structure can extract multi-scale scene information, capture
important features within the scene, and balance performance
and efficiency.

(2) We use Py-layer to develop a camera relocalization solution
based on a voting segmentation architecture. Deep over-
parameterized convolution modules are integrated into
the segmentation and voting decoders to address feature
loss caused by repetitive structures and low-texture images
in the scene.

(3) We conducted extensive experiments on the Cambridge
Landmarks dataset to verify the effectiveness of our method in
large-scale outdoor scenes.The experimental results show that,
compared to VS-Net, which also uses a voting segmentation
structure, our model improves average distance and angular
accuracy by 29.41% and 33.33%, respectively, while reducing
the number of parameters by 31.85%.

The remainder of this paper is organized as follows:
Section 2 overviews deep learning–based camera relocalization
methods. Section 3 provides the details of the proposed Py-
Net network and its components. Section 4 presents the
experimental results, and Section 5 summarizes the study with
concluding remarks.

2 Materials and methods

Herein, the proposed methodology as well as the hardware
and software platforms and datasets required for experiments are
discussed.

2.1 Network architecture

The Py-Net architecture is a simple yet powerful
encoder–decoder network (Figure 1) comprising three main

components: the image encoder, seg decoder, and vote decoder.This
design enables the generation of accurate landmark segmentation
maps and voting maps for 2D-to-3D correspondence modeling.
During training, Py-Net uses a landmark segmentation method
based on patch labeling to generate segmentation coordinates for
all pixels that correspond to patches surrounding the landmarks.
Additionally, each pixel within the landmark patch predicts a 2D
directional vector pointing toward the landmark, thereby enabling
reliable and precise coordinate voting.

Themain encoder comprises stacked Py-layers of different sizes.
The Py-layer is a coding layer composed of 1 × 1 and pyramid
convolutions. 1 × 1 convolution kernels perform dimensionality
reduction and expansion, whereas pyramid convolutions use
convolutions of multiple sizes to process the input image. It contains
multiple levels of feature extraction layers, each with convolutions
of different sizes and depths. Thus, the ability of the network
to extract scene information enhances. Coordinate attention is
added at the end of the Py-layer for feature correction. The output
of the encoder is then fed into atrous spatial pyramid pooling,
where features are sampled in parallel using dilated convolutions
with different sampling rates. Finally, seg decoder and vote
decoder branches produce landmark segmentation and votingmaps,
respectively.

In both decoder branches, depth over-parameterized
convolution (DOConv) module was used as the convolution
module. This design over-parameterizes the decoder, increasing
the number of learnable parameters while maintaining the original
computational complexity and thus enhancing the quality of scene
image features.

2.2 Pyramidal convolution layer

Compared with standard convolution, pyramidal convolution
offers a more robust capability to process input images. It
uses multiple convolution sizes containing multiple levels of
feature extraction layers, each with convolutions of different
sizes and depths; thus, it captures rich details of the scene.
Standard convolution contains only one convolution size, and the
convolutional depth us equal to the depth of the feature map. In
contrast, the convolution size increases and depth decreases in
pyramidal convolution with increasing feature extraction levels. In
outdoor scenes, the occlusion of building parts may occur, making
it difficult for a single type of convolution to effectively capture
details in the scene image. However, pyramidal convolution can use
convolution kernels with different receptive fields to capture fine
features, thereby improving the camera relocalization accuracy.

Figure 2 shows that the number of residual blocks in the
backbone network increases via pyramidal convolution, enabling
the network to process images using multiple convolution sizes and
multiple feature extraction levels. Thus, the ability of the network
to extract scene information is enhanced. When optimizing the
encoder of the voting segmentation network, the encoding function
is mainly completed by 3 × 3 convolution kernels because 1 × 1
convolution kernels in eachmodule serve to reduce and increase the
dimensionality. Therefore, 3 × 3 convolutions are first improved in
eachmodule of the backbone encoder.Using pyramidal convolution,
the network model can process input images using multiple sizes
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FIGURE 1
Py-Net network architecture. Py-Net architecture illustrates a encoder-decoder network, integrating an image encoder, segmentation decoder, and
voting decoder, enabling accurate 2D-to-3D correspondence modeling.

FIGURE 2
Py-layer network architecture. here pyramidal convolution increases the number of residual blocks. This allows the network to handle images with
multiple convolution sizes and feature extraction levels, enhancing scene information extraction without increasing computational complexity.

of convolution containing multiple levels of feature extraction
layers, each with convolutions of different sizes and depths. Thus,
the ability of the network model to extract scene information is
slightly enhanced without introducing additional parameters and
computational overhead.

For the input feature map FMi ∈ ℝCi×H×W, the n-layer pyramidal
convolution has n convolutional kernel sizes {K2

1,K
2
2,K

2
3,…,K

2
n}

and n convolutional kernel depths
{
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(
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}
}
}
;

Output Features The FMo ∈ ℝ
Co×H×W is stitched together from

the outputs of n convolutional kernels, where the size of Co
is given by Equation 1:

Co = FMo1 + FMo2 + FMo3 +…FMon (1)

Here FMoi, i ∈ 1…n is the output feature dimension
corresponding to n convolutional kernels.

The number of parameters of the pyramidal convolution
is given by Equation 2:

parameters = K2
n ∙

FMi
K2
n

K2
1

∙ FM0n +K2
3 ∙

FMi
K2
3

K2
1

∙ FM03 +K2
2 ∙

FMi
K2
2

K2
1

∙ FM02

+K2
1 ∙ FMi ∙ FM01 (2)

Therefore, if the number of output feature maps is equal for
each layer of the pyramidal convolution, then its parameters and
computational costs will be evenly distributed across each level of
the pyramid.

As shown in Figure 3, standard convolution can only have a
single size convolution kernel, with the same kernel depth as the
input features. Moreover, the number of computational parameters
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FIGURE 3
Comparative Analysis of pyramidal convolution and standard convolution in multi-level feature extraction and parameter count.

FIGURE 4
Visualization and Analysis of the coordinate attention mechanism.

generated by a single convolution kernel is given by Equation 3:

parameters = K2
1 ∙ FMi ∙ FM01. (3)

When multiple standard convolution kernels of different sizes
are used to process input features, the as-generated computational
and parameter quantities are greater than those generated via
pyramidal convolution. This is because the input channels of these
kernels must match the input features.

2.3 Coordinate attention

Attentionmechanism is widely used in computer vision to enable
network models to focus on relevant information. Some operations
in convolutional neural networks, such as convolution, pooling, and
fully connected layers, only consider nonself-desired clues. Contrarily,
attention mechanism is purposeful and can explicitly model cues
that align with its own intentions. As convolutions are conducted
within local windows in the main encoder, their representation
capability for global features is relatively weak. To address the issue
of weak antiinterference capability in outdoor scenes with SCR
networks, an attention mechanism is embedded in the encoder. This
enables the network model to completely leverage global and local
information. Consequently, the model can prioritize the areas of
interest in an image, increase the corresponding weights of those
areas, and ultimately highlight useful features while suppressing or
ignoring irrelevantones.These factors furtherenhance the localization
accuracy.
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FIGURE 5
Depthwise over-parameterized convolution. By increasing the number of trainable model parameters, the learning capability of the model is enhanced.
As a result, the quality of the extracted scene features is also improved.

Coordinate attention is a lightweight attention mechanism that
considers channels and spaces in parallel (Figure 4). With the input
of a feature X, X ∈ ℝH×W×C, the coordinated attention mechanism
first pools along the height and width of the feature using two
pooling kernels of size H × 1 and 1 × W, respectively. The output
of height h and channel c can be expressed as follows (Equation 4):

zhc (h) =
1
W
∑

0≤i≤W
xc(h, i) (4)

The output of width w and the cth channel can be
expressed as Equation 5:

zwc (w) =
1
H
∑

0≤j≤H
xc(j,w) (5)

where zhc ∈ℝC×H×1 and zwc ∈ ℝC×1×W.
After the two pooling operations, the two embedding features

zhc and zwc can be stitched together. Then, the stitched features are
reduced by 1 × 1 convolution and input to the sigmoid function
(Equation 6):

f = δ(F1(z
h,zw)) (6)

where f ∈ ℝ
C
r
×1×(H+W), F1 denotes the convolution, and δ denotes the

sigmoid activation function. Then, the feature f is split in the spatial
dimension using two 1 × 1 convolutions to obtain two feature maps.
After transforming these maps, the attention vector is obtained as
follows (Equations 7–8):

gh = σ(Fh(f h)) (7)

gw = σ(Fw(f w)) (8)

FIGURE 6
Computation methods of depthwise convolution and standard
convolution. (A) Standard convolution, (B) DOConv.

where Fw and Fh denote the 1 × 1 convolutional transformation
and f w and f h denote the split features f w ∈ ℝ

C
r×w and f h ∈ ℝ

C
r×H ,

respectively. Eventually, the input features can be corrected using the
two attention vectors (Equation 9):

yc(i, j) = xc(i, j) × g
h
c (i) × g

w
c (j) (9)

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2024.1469588
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Wang et al. 10.3389/frobt.2024.1469588

TABLE 1 Visual localization accuracy of state-of-the-art methods.We report the median translation error (m), rotation error (degrees), and localization
precision, where the translation and rotation errors are within 5 cm and 5°, respectively. NA indicates no available values, Best results are in bold.

Great court Kings
college

Old hospital Shop facade St.Mary’s
church

Avg

Direct Regression

PoseNet
(Kendall et al.,

2015b)

NA 1.92 m,5.40 ° 2.31 m,5.38 ° 1.46 m,8.08 ° 2.65 m,8.48 ° 2.09 m,6.84 °

Dense PoseNet
(Shen and Chen,

2019)

NA 1.66 m,4.86 ° 2.57 m,5.14 ° 1.41 m,7.18 ° 2.45 m,7.96 ° 2.02 m,6.29 °

LSTM-Pose
(Luo et al., 2018)

NA 0.99 m,3.65 ° 1.51 m,4.29 ° 1.18 m,7.44 ° 1.52 m,6.68 ° 1.30 m,5.52 °

SVS-Pose
(Abozeid et al.,

2022)

NA 1.06 m,2.81 ° 1.50 m,4.03 ° 0.63 m,5.73 ° 2.11 m,8.11 ° 1.32 m,5.17 °

NeRF-loc
(Liu et al., 2023)

Pixloc
(Sarlin et al.,

2021b)
ST-Pixloc

(Wang et al., 2024)

0.25 m,0.1 ° 0.07 m,0.2 ° 0.18 m,0.4 ° 0.11 m,0.2 ° 0.04 m,0.2 ° 0.13 m,0.22 °

0.42 m,0.18 ° 0.16 m,0.26 ° 0.49 m,0.79 ° 0.06 m,0.23 ° 0.14 m,0.36 ° 0.25 m,0.36 °

0.24 m,0.13 ° 0.15 m,0.23 ° 0.42 m,0.69 ° 0.05 m,0.26 ° 0.13 m,0.31 ° 0.19 m,0.32 °

SCR

DSAC
(Brachmann et al.,

2017)

2.80 m,1.5 ° 0.30 m,0.5 ° 0.33 m,0.6 ° 0.09 m,0.40 ° 0.55 m,1.6 ° 0.81 m,0.92 °

DSAC++
(Brachmann and
Rother, 2021b)

0.4 m,0.2 ° 0.18 m,0.3 ° 0.20 m,0.3 ° 0.06 m,0.3 ° 0.13 m,0.4 ° 0.19 m,0.3 °

ACE
(Brachmann et al.,

2023)

0.42 m,0.2 ° 0.28 m,0.4 ° 0.31 m,0.6 ° 0.05 m,0.3 ° 0.19 m,0.6 ° 0.25 m,0.42 °

VS-Net
(Huang et al.,

2021)

0.22 m,0.2 ° 0.16 m,0.3 ° 0.16 m,0.4 ° 0.06 m,0.2 ° 0.08 m,0.4 ° 0.14 m,0.3 °

Py-Net (ours) 0.19 m,0.1 ° 0.14 m,0.2 ° 0.16 m,0.3 ° 0.05,m0.2 ° 0.07 m,0.2 ° 0.12 m, 0.2 °

CA has higher computational efficiency and less computational
overhead in the spatial dimension than other attention modules.

2.4 Depthwise over-parameterized
convolution

In standard convolution, all kernels in a convolutional layer are
convolved with the input image. Standard convolution emphasizes
the spatial relation of pixels and considers it as channels but
at the expense of relatively high computational complexity. In
contrast, depthwise convolution assigns each kernel to a specific
input channel. Each channel of the input image is convolved with
a dedicated kernel. Depthwise convolution focuses more on the
features represented in the depth of an image and has relatively lower
computational complexity.

Deep over-parameterized convolution (Cao et al., 2022) is an
extension of standard convolution, in which an additional depthwise

convolution is incorporated. This additional convolutional
structure increases the number of trainable model parameters
and enhances the learning capacity of the model. The quality
of scene features extracted by this model is also consequently
improved.

The feature quality in the SCR network deteriorates due to
the influence of repetitive structures and low-texture objects in
scene images. To address this issue, standard convolutions must
be substituted with deep over-parameterized convolutions. This
replacement will enhance the quality of features extracted by the
network and improve the overall nonlinear capability of the network,
making it more robust. Figure 5 shows the structure of deep over-
parameterized convolution.

Deep over-parameterized convolution comprises standard and
depthwise convolutions. First, the convolutional kernel 𝔻 from
the standard convolution and the depthwise convolution kernel𝕎
are used to compute a new convolutional kernel 𝕎. Then, 𝕎 is
convolved with the feature ℙ in the same manner as the standard
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FIGURE 7
Comparison of scene coordinate predictions. (A) Great court snene; (B) Kings College Scene; (C) ShopFacade Scene. The network predicts the 2D-3D
correspondences of the image, visualizing them as a scene coordinate map by rendering different coordinates in different colors. The richness of the
scene information in the scene coordinate map significantly affects the accuracy of the PnP algorithm.

convolutional kernel (Equation 10):

𝕆 = (𝔻T ○𝕎)×𝕡 (10)

As shown in Figure 6,𝕎 represents the convolutional kernels of
standard and depthwise convolutions and ℙ represents the feature.
𝕎 in standard convolution is a 3D tensor, 𝕨 ∈ Rcout×(M×N)×Cin . ℙ is
a 2D tensor, 𝕡 ∈ R(M×N)×Cin . where Cout and Cin denote the output
and input channel dimensions of the feature andM×N denotes the
spatial dimensions of the feature. Each convolutional kernel on the
Cout dimension of 𝕎 performs a dot product operation with ℙ,
yielding the output𝕆 (Equation 11):

𝕆Cout
=∑(M×N)×Cin

i
𝕨Couti
𝕡i. (11)

The dimensions of 𝕆 correspond to the output channel
dimension of the convolutional kernel.

In depthwise convolution, each input channel of ℙ undergoes
a dot product operation with Dmul channels of the convolutional
kernel. The dimension of each input channel of ℙ is transformed
from M×N to Dmul, where Dmul is the depth multiplier. The final
output𝕆 is obtained accordingly (Equation 12):

𝕆dmulCin
=∑M×N

i
𝕨idmulcin𝕡icin , (12)

where the depthwise convolutional kernel 𝕎 is a 3D tensor, 𝕨 ∈
R(M×N)×Dmul×Cin .

DOConv and standard convolution have the same receptive
field. For a feature input ℙ, the output feature dimensions
obtained via DOConv and output feature dimensions processed
via standard convolution are identical. The linear transformation
of standard convolution can be parameterized using Cout ×
(M×N) ×Cin Cout training weights. The linear transformation
of DOConv can be parameterized using the training weights of

two convolutional kernels. Only when Dmul ≥M×N, the newly
combined convolutional kernel 𝕎ʹ can exhibit the same linear
transformation as the standard convolution kernel𝕎 when formed
via combination. DOConv introduces over-parameterization to the
network, thereby increasing the number of learnable parameters
while maintaining the original computational complexity and
enhancing the feature quality of scene images.

2.5 Loss function

Thescene is first reconstructed in 3Dusing Py-Net.The resulting
3D surface is divided into 3D image patches using the center point of
each patch as a 3D landmark, {q1,…,qn} ∈ ℝ

3. Segmentation maps
S ∈ ℤH×W and voting maps d ∈ ℝH×W×2 are obtained by projecting
3D image patches and 3D landmarks onto 2D images. To generate a
segmentation map, values are assigned to each pixel point pi(ui,vi)
by determining its projected 3D image patch coordinate on the 2D
image. A value of 0 is assigned to the pixel point coordinate pi(ui,vi)
if the associated area is not covered by the projected 3D surface,
indicating that they did not influence the positioning.The landmark
voting map is generated by first projecting the landmark qj on a 3D
surface to a 2D plane to obtain 2D coordinates (Equation 13):

I j = P(qj,K,C) ∈ ℝ
2, (13)

whereK is the camera internal reference matrix and C is the camera
pose parameter. Each pixel belonging to an image patch containing
the coordinate qj is responsible for projecting a 2D direction vector
di ∈ ℝ2 pointing to qj. By unitizing this coordinate wth pi, the unit
vector is obtained (Equation 14):

di =
I j − pi
‖I j − pi‖2

(14)
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FIGURE 8
Comparison of Localization Trajectories on the Cambridge Landmark Dataset: VS-Net (A, C, E) vs. Improved Py-Net (B, D, F).

This vector is used to represent the orientation of the
landmarks on the 2D plane. Supervised training of the voting
segmentation network is possible by using the obtained
segmentation map and voting map as training truths. This in

turn establishes the relationship from 2D to 3D, thus enabling
camera relocation.

The Vote Segmentation Network uses a prototype-based ternary
loss function and a negative sample mining strategy to supervise
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FIGURE 9
Percentage of localization points within 5 cm 5° on the Cambridge
Landmark Dataset.

TABLE 2 Comparison of model sizes (MB).

VS-Net Py-Net

Model Size 236 170

Parameters 61,864,994 42,163,554

the training of the network. Training the network in this way
requires maintaining and updating a set of learnable class prototype
embeddings P. Where each class prototype embedding represents
a class and Pj represents the class prototype embedding of
the jth class. Therefore, the pixel embeddings belonging to the
jth category should be as close as possible to, and as far
away as possible from, the class prototype embeddings of other
categories.

Pixel embeddings can be obtained by voting on the
segmentation branches of the segmentation network and the
class of prototype embeddings P. Pixel embeddings can form a
pixel-by-pixel embedding graph E. The prototype-based ternary
loss function first first L2 normalizes each pixel embedding in
the embedding graph E, and then minimizes the error between
each pixel embedding Ei and the prototype embedding Pi
(Equation 15):

Lseg =∑
all i

max (0,m+ sim(Ei,Pi−) − sim(Ei,Pi+)) (15)

where

sim(a,b) = aTb
‖b‖ ∙ ‖b‖

is used to measure the cosine similarity between the pixel
embedding and prototype-like embedding. Pi+ denotes the true
value of prototype-like embedding corresponding to pixel i
and Pi− denotes the true value of prototype-like embedding
unrelated to pixel i. m denotes the boundary of the loss
function.

The voting decoder of the voting segmentation network is
then used to determine the landmark’s cast position in the 2D

image.The voting decoder is used to determine the casting position
of landmarks in a two-dimensional image. Inputting an image, the
voting decoder outputs a voting map d. For each pixel i in the input,
it generates a two-dimensional direction vector di, which points to
the two-dimensional position of the landmark. The voting decoder
is supervised trained under the voting loss function Equation 16:

Lvote(i) = ∑
all i

1(Si ≠ 0)‖d̂i − di‖ (16)

Where one denotes the indicator function and d̂i and di denote
the direction vectors predicted for pixel i and their direction vector
truth values, respectively. The overall loss function of VS-Net is
represented as in Equation 17:

Loverall = Lseg(i) + λLvote(i) (17)

where λ denotes the weight of voting loss.

3 Results

This section evaluates the performance of our method, Py-Net,
on the Cambridge Landmark dataset. We compared our results
with those of existing camera relocalization methods, and the
experiments demonstrated that the proposed method achieved
state-of-the-art accuracy. Finally, we conducted ablation studies to
investigate the contributions of individual components.

3.1 Dataset

The improvement in the proposed model was validated
using the Cambridge Landmarks (Kendall Alex et al., 2015) dataset
containing five outdoor landmarks scenes: Great Court, Kings
College, Old Hospital, Shop Facade, and St. Mary’s Church. The
dataset was more complex than indoor scenes; therefore, it better
demonstrated the robustness of themodel, as exterior environments
undergo drastic environmental changes. For instance, the outdoor
camera moves faster than the indoor camera, which may result in
blurry images.

3.2 Evaluation metrics

As the camera relocalization error in outdoor environments is
significant than that in indoor settings, using the a 1-cm distance
error and 1° angle error as well as 2-cm distance error and 2° angle
error are the evaluation metrics is not ideal. Therefore, the median
distance error within 5 cm and median angle error of 5° were used
as the evaluation metrics instead. We also report the percentage of
high-precision localization points with a distance error within 5 cm
and an angle error within 5°

3.3 Results and analysis

The performance of Py-Net was compared with existing
visual localization systems on the Cambridge Landmarks dataset.
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TABLE 3 Ablation experiment√ indicates the component is used, × indicates the component is not used.

Components “√” considering component “ⅹ” excluding component

Py-layer + CA ⅹ ⅹ √

DoConv ⅹ √ √

Great Court 0.22 m, 0.2° 0.22 m, 0.1° 0.19 m, 0.1°

Kings College 0.16 m, 0.3° 0.16 m, 0.2° 0.15 m, 0.2°

Old Hospital 0.16 m, 0.4° 0.16 m, 0.3° 0.16 m, 0.3°

Shop Facade 0.06 m, 0.2° 0.06 m, 0.3° 0.06 m, 0.2°

St. Mary’s Church 0.08 m, 0.4° 0.08 m, 0.3° 0.07 m, 0.2°

Average 0.14 m, 0.3° 0.14 m, 0.2° 0.13 m, 0.2°

Detailed results are shown in Table 1, where the primary
indicators for evaluating the accuracy of camera relocalization
are compared: translation error (m) and rotation error (°).
Experimental results indicate that Py-Net considerably outperforms
the existing methods. The translation error decreased by 40%
using the SCR method than DSAC. This indicates that the voting
segmentation network can considerably reduce the number of
outliers in the scene and improve the relocalization accuracy.
Py-Net outperformed VS-Net, which also employs a voting
segmentation architecture, in the majority of scenes, particularly
in the Great Court scene, where the translation and rotation
errors decreased by 14% and 50%, respectively. This suggests that
using Py-layer to enhance the backbone encoder, the network
can learn multiscale features. Thus, the ability of backbone
encoder to extract scene information enhances, resulting in better
performance.

Figure 7 compares the scene coordinate prediction between VS-
Net andPy-Net. In outdoor scenes, the enlarged scene scale results in
a substantial number of invalid scene coordinate points. This affects
the prediction accuracy and limits the scene information available
for camera relocation.

However, as shown in Figure 7A, Py-Net provides higher
amounts of usable information within the predicted scene
coordinate maps. In the Great Court scene, Py-Net generates
a scene coordinate map with an increased level of scene
information (Figure 7A). In the Kings College scene, the
scene coordinate map predicted by Py-Net contains noticeably
increased usable information (Figure 7B). The Shop Facade
scene contains a substantial amount of usable scene information,
with fewer background pixels representing the sky (Figure 7C).
This indicates that incorporating depthwise separable
convolutional modules into the scene coordinate decoder
effectively enriches the amount of scene information, thereby
enhancing the information representation capability of
the network.

Figure 8 shows the positioning trajectories of the improved Py-
Net on the Cambridge Landmark dataset. The figure compares
the distance errors between VS-Net and Py-Net. Panels (a),

(c), and (e) show the positioning trajectories of VS-Net, and
panels (b), (d), and (f) show the positioning trajectories of
the improved Py-Net. When zooming in on the positioning
errors in the Great Court scene, a certain degree of reduction
in distance errors can be observed. In the Kings College scene,
Py-Net reduces the distance errors of marked points. As the
test samples of the Shop Facade scene were limited, only
a few positioning points with reduced errors are shown in
the figure.

Figure 9 shows that in multiple scenes, Py-Net outperforms
existing methods in the proportion of high-precision points with
a distance error of less than 5 cm and an angle error of less than
5°. The increase in the proportion of high-precision localization
points indicates that the number of invalid localization points
in the scene has decreased, meaning that outliers have been
filtered out.

The Py-layer and depthwise separable convolution were
introduced to enhance the performances of the main encoder and
decoder, respectively. As a result, the size of Py-Net considerably
compared with that of VS-Net (Table 2). Specifically, the model
size decreased from 236 to 170 MB, and the parameter count
was only 68.15% of the original. This improvement considerably
enhanced the applicability of the model on devices with limited
storage space.

Ablation experiments were conducted to demonstrate
the effectiveness of the improvements proposed herein. By
introducing the Py-layer and coordinated attention mechanism,
Py-Net can effectively extract outdoor scene information and
filter out invalid localization points in the scene. Thus, the
model performance is improved across various scenes. In
the Great Court scene, the distance error decreased by 16%,
whereas in the Shop Facade and St. Mary’s Church scenes,
the angle error decreased by 33%. As shown in Table 3, after
incorporating the depthwise separable convolution module,
the angle error of the network considerably increased across
multiple scenes. This indicates that Py-Net can retain more
scene information, thus achieving more accurate estimation
results.
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4 Conclusion

This section summarizes the methods employed and the
key findings of the study. The methods involved enhancing the
performance of VS-Net for camera relocalization in outdoor
scenes by optimizing its backbone network and improving feature
extraction capability. The study resulted in a 14% increase in
average translation accuracy on the Cambridge Landmark dataset,
accompanied by a 30% reduction in model size.

Regarding potential real-time applicability, the optimized VS-
Net model shows promise for real-time camera relocalization
applications, particularly in outdoor environments. Future research
directions may include further exploration of feature extraction
techniques, investigating the model’s robustness in various
environmental conditions, and integrating additional sensor
modalities for improved performance and versatility.
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