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Deep reinforcement learning for
time-critical wilderness search
and rescue using drones

Jan-Hendrik Ewers*, David Anderson and Douglas Thomson

Autonomous Systems and Connectivity, University of Glasgow, Glasgow, United Kingdom

Traditional search and rescue methods in wilderness areas can be time-
consuming and have limited coverage. Drones offer a faster and more flexible
solution, but optimizing their search paths is crucial for effective operations. This
paper proposes a novel algorithm using deep reinforcement learning to create
efficient search paths for drones in wilderness environments. Our approach
leverages a priori data about the search area and the missing person in the
form of a probability distribution map. This allows the policy to learn optimal
flight paths that maximize the probability of finding the missing person quickly.
Experimental results show that our method achieves a significant improvement
in search times compared to traditional coverage planning and search planning
algorithms by over 160%, a difference that can mean life or death in real-world
search operations Additionally, unlike previous work, our approach incorporates
a continuous action space enabled by cubature, allowing for more nuanced
flight patterns.
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1 Introduction

Wilderness Search and Rescue (WiSAR) operations in Scotland’s vast and often
treacherous wilderness pose significant challenges for emergency responders. To combat
this, Police Scotland Air Support Unit (PSASU) and Scottish Mountain Rescue (SMR)
regularly use helicopters to assist in search operations (Carrell, 2022). However, the
deployment of helicopters can be slow, especially in the Scottish Isles where the PSASU’s
Eurocopter EC135 based in Glasgow can take multiple hours to arrive. Additionally,
operating helicopters is extremely costly.

Drones, also known as unmanned aerial vehicles, offer a cost-effective and agile solution
for aerial search. Both PSASU and SMR are placing small fleets of drones around Scotland
for rapid deployment in a WiSAR scenario. These fleets will never replace the requirement
for a helicopter due to the inherent lifting disparities between the two platforms but will
ensure that the search can begin as soon as possible.

The current approach to flying drones for PSASU is the pilot-observer model where
two personnel are required at a minimum per drone. In this setup, the observer is in
charge of maintaining visual line of sight at all times whilst the pilot can fly the drone
and inspect the live camera feed. Koester et al. (2004) identifies that a foot-based searcher
has a higher detection rate when not in motion, similar to the behaviour exhibited
by pilots (Ewers et al., 2023b). The cognitive load of being in-motion whilst searching is
evidently a barrier for pilots and offloading one aspect of this may lead to efficiency gains.
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To address this challenge and to also free up preciousmanpower,
search planning algorithms are employed to optimize drone flight
paths (Lin and Goodrich, 2009). While Deep Reinforcement
Learning (DRL) has not been explored in this context, its
success in other domains, such as video games and drone racing
(Mnih et al., 2015; Kaufmann et al., 2023), suggests its potential for
improvingWiSAR search planning.The ability of DRL to generalize
the problem and make decisions that maximise future gains based
on extensive training allows it to provide unique solutions to
the problem.

WiSAR search planning is an information rich task and the
effective utilization of prior information - such as the place last
seen, age, and fitness levels of the missing person - is critical.
This information can be used to generate a Probability Distribution
Map (PDM), which describes the probability of detecting the
missing person at a given location and informs the search stage
of the mission. Without this a priori information the search
problem converts into either a coverage or exploration problem.
The former assumes a uniform PDM whilst the later develops
an understanding of the environment in real-time. There are a
multitude of algorithms that can generate the PDM (Ewers et al.,
2023a; Hashimoto et al., 2022; Šerić et al., 2021) and as such it can
be assumed to be a known quantity during search planning.

The core contributions of this research to the field are
thus as follows:

• We propose a novel application of DRL to the search planning
problem which can outperform benchmark algorithms from
the literature (Lin and Goodrich, 2009; Subramanian et al.,
2020). This apporach leverages a priori information about the
search space without limiting its field of view and thus reducing
performance.

• We propose the use of a continuous PDM, as opposed to an
image-based one (Lin and Goodrich, 2009; Subramanian et al.,
2020), to prevent undesired noisy rewards (Guo and
Wang, 2023; Fox et al., 2017). This further empowers the policy
to use a continuous action space which greatly increases the
degrees of freedom over the benchmark algorithms from the
literature.

• A framework for calculating the accumulated probability over
the search path through cubature (Ewers et al., 2024) is
introduced.Adifferent formulation for this calculation from the
literature is required due to the use of the continuous PDM and
action space.

Related work is discussed in Section 2, and the methodology
is presented in Section 3. Results are shown in Section 4, and a
conclusion is drawn in Section 5.

2 Related work

Coverage planning algorithms have been around
for decades (Galceran and Carreras, 2013) in various forms with
the most well-known, and intuitive, being the parallel swaths
(also known as lawnmower or zig-zag) pattern. This guarantees
complete coverage of an entire area given enough time. However,
for WiSAR applications, reducing the time to find is substantially

more important whilst also dealing with endurance constrained
systems like drones.

Lin andGoodrich (2009) approach the search planning problem
by using a gradient descent algorithm in the form of Local Hill
Climbing (LHC) that can advance into any of the surrounding eight
cells. However, LHC alone is not sufficient because Waharte and
Trigoni (2010) found that this class of algorithm does not perform
well due to their propensity in getting stuck around local maxima.
For this reason Lin and Goodrich (2009) introduces the notion of
global warming to break out of local maxima. This raises the zero
probability floor sequentially a number of times, storing the paths
and then reassessing them given the original PDM. Through this,
and a convolution-based tie-breaking scheme, LHC_GW_CONV
(local hill climb, global warming, convolution) is shown to have very
favourable results. However, only the adjacent areas are considered
at every time step.

In order to consider the area as a whole, sampling-based
optimisation approaches have been applied to the problem.
Morin et al. (2023) uses ant colony optimisation with a
discrete PDM and Ewers et al. (2023b) uses both genetic algorithm
and particle swarm optimisation with a pseudo-continuous PDM.
However, due to the nature of sampling-based optimisation
problems, they are prone to long computation times to converge
on a solution.

A core problem with the previously mentioned algorithms is the
inability to consider the PDM as a whole when making decisions.
Being able to prioritise long-term goals over short-term gains is a
key feature of DRL.

DRL is being used extensively for mission planning such as by
Yuksek et al. (2021) who used proximal policy optimisation to create
a trajectory for two drones to avoid no-fly-zones whilst tracking
towards the mission objective. This approach has defined start and
target locations, however the uses of no-fly-zones with constant
radius is analogous to an inverted PDM. Peake et al. (2020) uses
Recurrent-DDQN for target search in conjunction with A2C for
region exploration with a single drone to find missing people. This
method does not use any a priori information but rather explores the
area in real time. This shows that DRL is a suitable approach to the
search-over-PDM problem that a WiSAR mission requires.

As highlighted in Section 1, search and exploration planning
are very different problems. Exploration planning has seen many
different planning algorithms such as in work by Zhang et al. (2024)
which uses a partially observable markov decision process and
environment discretisation handle exploration and search in near
real time. Similarly, Talha et al. (2022) and Peake et al. (2020) use
DRL with environment discretisation to explore the environment
whilst searching. Ebrahimi et al. (2021) also uses DRL but localizes
missing people using radio signal strength indexes without prior
knowledge of the searchable domain. These algorithms do not have
any a priori knowledge available during the planning stage other
than what is discovered in real-time; a different problem.

A core aspect of DRL is having a fully observable environment
such that the policy can infer why the action resulted in the reward.
Thus, being able to represent the PDM effectively is a primary
goal. Whilst images can be used as inputs for DRL, as done by
Mnih et al. (2015) to play Atari 2600 computer games, the typically
large dimension can be prohibitive. However, since PDM generation
algorithms most commonly create discrete maps (Šerić et al.,

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2024.1527095
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ewers et al. 10.3389/frobt.2024.1527095

TABLE 1 Simulation parameters used for this study.

Parameter Value Units

Ngaussian 4

σi diag(500,500)

xmin, ymax 0 m

xmin, ymax 150 m

λ 8 m

Rbuffer 2.5 m

Nwaypoint 64

ϵ 0.1

woob 1.0

wr 0.5

w0 0.5

2021; Hashimoto et al., 2022), finding a different representation
is required. To go from a discrete to continuous PDM, Lin and
Goodrich (2014) uses a gaussian mixture model to represent the
PDM as a sum of bivariate Gaussians. This can be easily used to
numerically represent the numerous bivariate Gaussian parameters
in an array which is a suitable format for a DRL observation.

There are many DRL algorithms to chose from with Proximal
Policy Optimisation (PPO) (Schulman et al., 2017) and Soft Actor-
Critic (SAC) (Haarnoja et al., 2018) being someof themost prevalent
in the literature (Yuksek et al., 2021; Mock and Muknahallipatna,
2023; Xu et al., 2019). Mock and Muknahallipatna (2023) found
that PPO performed well for low dimension observation spaces,
whilst SAC performed much better for larger ones. The need for a
large observation space comes from the fact that the policy would
need to have a sense of memory regarding where it had been to
encounter unseen probability to satisfy the markov decision process
that underpins DRL. Mock and Muknahallipatna (2023) found that
a recurrent architecture was comparable to including previous states
in the observation (also known as frame stacking). This shows that
frame-stacking with SAC is a suitable DRL architecture for the
current problem.

3 Methods

All parameters used in this study can be found in Tables 1, 2.

3.1 Modelling

3.1.1 Environment
The low level tasks of control (Tedrake, 2023; Fresk and

Nikolakopoulos, 2013; Wang et al., 2023), trajectory generation
(Yu et al., 2023), and obstacle avoidance (Richter et al., 2016;

TABLE 2 SAC hyperparameters used for this study from empirical
testing. Other variables were kept at the default values from Raffin et al.
(2021) v2.1.0.

Hyperparameter Value

Learning rate 10−6

Optimizer AdamKingma and Ba (2017)

Batch size 1024

Learning starts 8192

Buffer size 5× 106

Training frequency 10

Gradient steps 50

τ 10−4

Levine et al., 2010; Swinton et al., 2024) can be assumed to
be of a high enough standard as to achieve perfect waypoint
mission execution performance. The drone within the environment
is therefore modelled as a simple heading control model with
a constant step size λ. Thus, the position vector x ∈ ℝ2 is
updated via.

xt+1= xt + λ[

[

cosut
sinut
]

]
ut = π(at + 1) (1)

where at ∈ [−1,1] is the policy action at time-step t.
From Equation 1 it is clear that the state xt=T is dependent on the

states from t = 0 to t = Tmaking this model suitable for formulating
the drone’s motion as a markov decision process (MDP). We define
the tuple (S,A,P,R) where.

• s ∈ S = ℝ2 is the finite set of states, representing the possible
positions of the drone.

• a ∈ [−1,1] is the action space.
• P:S×A× S→ [0,∞] is the unknown transition
probability function.

• A:S×A→ℝ is the reward function.

We further define the reward function in Section 3.1.3 and
outline the training of the optimal policy π

∗
(s|a) in Section 3.2.

3.1.2 Probability distribution map
In a realWiSAR scenario, algorithms such as Ewers et al. (2023a),

Hashimoto et al. (2022), and Šerić et al. (2021) can be employed to
generate the PDM given the search mission profile - last place seen,
terrain, profile of the lost person, and more.This data is not publicly
available in any meaningful quantity and is thus not usable in this
scenario. Therefore, as is common within the literature, the PDM is
randomly generated for training and evaluation.

The PDM is modelled as a sum of Ngaussian bivariate Gaussians
(Yao et al., 2019) such that a point on the ground at coordinate x ∈ ℝ2
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FIGURE 1
An example multi-modal bivariate Gaussian PDM.

has a probability of containing the missing person.

p (x) = 1
Ngaussian

Ngaussian

∑
i=0

exp[− 1
2
(x− μi)

Tσ−1i (x− μi)]

√4π2detσ i

∀i ∈ [0,G] ,μi ∼ U ([xmin,xmax] , [ymin,ymax]) (2)

where μi and σ i are the mean location and covariance matrix of
the ith bivariate Gaussian respectively. If the bounding area were
infinite, that is xmin = ymin = −∞ and xmax = ymax =∞, then∑p(x) =
1. However, as can be seen from Figure 1, the area enclosed by
the rectangular bounds contain less than this. Section 3.1.3 further
discusses how this is handled such that the available probability is
normalized.

3.1.3 Reward
As the agent moves a constant distance sm every step, it is

assumed that the camera follows this path continuously at a fixed
height whilst pointing straight down at all times. Therefore, to
represent the seen area for a given path at time-step t, the path is
buffered by Rbufferm to give the polygon ht. All probability from the
PDM enclosed within ht is then seen and denoted by pt. This value,
the seen probability, is calculated through

I (H) = ∫
H
p (x)dH

with H = ht. p(x) is from Equation 2. Thusly,

pt = I(ht)

The integral is calculated using a cubature integration
scheme (Ewers et al., 2024) with constrained Delaunay
triangulation (Chew, 1987) to subdivide H into triangles as seen
in Figure 2B.

Other than allowing easy calculation of the accumulated
probability, the buffering of the path prevents revisiting of an area
contributing the same probability multiple times. This can be seen
at the cross-over point (2.5,2.5)m in Figure 2A.

In order to correlate action to reward, only the additional
probability that has been accumulated

Δpt = pt − pt−1 (3)

is used. To normalize this value, the scaling constant k is introduced.
This scales Δpt by the ratio of the area of an isolated step dm to the
area of the total search area aaream2. This is defined as

k =
aarea

Rbuffer (πRbuffer + 2λ)
(4)

with further spatial definitions from Figure 3.
As highlighted in Section 3.1.2, the enclosed probability by the

bounds is not equal to 1. To handle this, Δpt is scaled by the total
available probability within the search area pA = I(A). Combining pA
with Equations 3, 4, gives the reward

r = k
pA

Δpt

The enclosed probability can then be used to calculate the
probability efficiency at time-step t with

ep,t =
pt
pA

(5)

and ep,t ≤ 1.
Finally, reward shaping is used to discourage future out-of-

bounds actions and to penalize visiting areas of low probability
or revisiting previously seen sections. The latter is easily handled
by the buffering of the path as seen in Figure 2A, where the areas
highlighted in red will contribute no value to the reward resulting in
a penalty of −woob. The augmented reward r′ is then defined as

r′ =
{{{{
{{{{
{

−woob, xt ∉ [xmin,xmax] × [ymin,ymax]

wrr, Δpt > ϵ

−w0, else

3.2 Training algorithm

SAC is a DLR algorithm particularly effective for continuous
control tasks and it addresses the exploration-exploitation dilemma
by simultaneously maximizing expected reward and entropy. The
interaction of the policy with the environment can be seen in Figure
4. Entropy, ameasure of uncertainty, encourages the agent to explore
the environment, preventing it from getting stuck in suboptimal
solutions.

SAC employs an actor-critic architecture consisting of the
following key components:

• Policy Network (Actor): Denoted as πϕ(a|s), it represents
the current policy parameterized by ϕ. SAC is a stochastic
algorithm and thus actions are sampled from the policy through
at ∼ πϕ(at|st).

• Q-function Networks (Critics): SAC uses two soft Q-networks,
Qθ1(s,a) and Qθ2(s,a), parameterized by θ1 and θ2 respectively.
These estimate the expected cumulative reward for taking
action a in state s and following the policy thereafter.
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FIGURE 2
Visualizations of concepts related to the buffered polygon representation of the seen area. (A) An example of how the buffered path polygon h
automatically deals with re-seen areas. Note that the highlighted areas are just for demonstration and are not a part of the algorithm. (B) The polygon
from (A) triangulated using the Delauney constrained triangulation.

FIGURE 3
The anatomy of the area calculation of an isolated step of length λ
with buffer Rbuffer as used in Equation 4.

FIGURE 4
Top-level representation of a typical reinforcement learning data flow.
The agent is also commonly referred to as the policy.

• Value Network: While not explicitly maintained, the soft state-
value function V(s) is implicitly defined as:

TABLE 3 Definition of the five state observations.

Sub-state Symbol Definition

Path spath (x‖02×Nwaypoints−t)T

PDM sPDM [μ0,σ0,…,μG,σG]
T

Position spos xt

Out-of-bounds soob xt ∈ [xmin,xmax] × [ymin,ymax]

Number of steps ssteps t

V(st) = 𝔼at∼πϕ [Q(st,at) − α logπϕ (at|st)]

The use of two soft Q-networks helps to reduce positive bias
in the policy improvement step, a common issue in value-based
methods. The soft Q-networks can be trained to minimize the soft
Bellman residual:

JQ (θ) = 𝔼(st,at)∼D [
1
2
(Qθ (st,at) − (r(st,at) + γ𝔼st+1∼p [V ̄θ (st+1)])))

2]

SAC incorporates an automatic entropy tuning
mechanism (Haarnoja et al., 2019) to adjust the temperature
parameter α during training. This allows the algorithm to adapt
the degree of exploration based on the policy’s performance. α is
learnt by minimizing the following loss before the target network is
updated with:

J(αt) = 𝔼at∼πt [−αt logπt (at|st;αt) − αtH (πθ (⋅|st))]

where H(πθ(⋅|st)) is the entropy of the policy πθ given the state st.
By automatically tuning α, SAC can maintain an appropriate

balance between exploration and exploitation throughout the
learning process, adapting to the complexity of the task and the stage
of learning.
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3.2.1 Policy network
The core of the policy network πθ,core consists of a fully

connected network with Nlayers layers, each with a width of
Nwidth. The observation definitions are given in Table 3 resulting
in 2Nwaypoints + 6G+ 4 observation inputs. The policy πϕ is
constructed to handle multiple input observation spaces and
is defined in Figure 5. The inner workings of the policy are
defined in Algorithm 1.

4 Results

4.1 Experimental setup

In order to effectively benchmark the proposed algorithms, two
additional baselines are implemented; lawnmower (Galceran and
Carreras, 2013) and LHC_GW_CONV (Lin and Goodrich, 2009).
These were chosen due to the former being ubiquitous for coverage
planning, and the latter being a optimisation-based implementation
that struggles to fully explore the PDM. To ensure compatibility
in the comparison to the proposed algorithm, the parallel lines for
lawnmower are offset by the step size λ and the grid dimensions for
LHC_GW_CONV are (xmax − xmin,ymax − ymin)/λ. The maximum
number of waypoints Nwaypoint are converted to a maximum
distance Dmax = λNwaypoint and the generated paths are truncated at
this point.

The results for the algorithm implemented in this research, titled
SAC-FS-CNN from here on in, is the cumulation of three separate
training runs with random starting seeds. This aligns with the best
practices outlined by Agarwal et al. (2022) to ensure robust analysis
for DRL results. Each model was trained for a minimum of 21 days
(5× 108 global steps) with 32 workers on a local Ubuntu 22.04

machine with a AMD Ryzen 9 5950X CPU, a NVIDIA RTX

A6000 GPU, and 64GB of RAM.
One evaluation of an algorithm involves generating the random

PDM, then creating the resultant search path. This is labelled one
run. Each algorithm was evaluated at least 5× 103 times and this
generated data is base of the following analysis.

4.2 Probability over distance (POD)

Maximising the probability efficiency (Equation 5) at all times is
critical. This directly correlates to increasing the chances of finding
a missing person in a shorter time. It is important for the POD
of SAC-FS-CNN to out-perform the benchmark algorithms at all
times. If this is not the case, the search algorithm selection becomes
dependent on the endurance and mission. However, if the POD is
better at all times then one algorithm will be superior no matter
the application. To calculate the POD, the probability efficiency is
evaluated at

d =
(Nsteps − i)D

Nsteps
∀i ∈ {Nsteps,Nsteps − 1,…,1,0} (6)

with Nsteps = 50.
From Figure 6A it is clear that SAC-FS-CNN sufficiently

outperforms the benchmark algorithms at all distances. This is
further highlighted by the ep,D for SAC-FS-CNN at 238% of that
of lawnmower, and 158% for LHC_GW_CONV from Table 4. This
is corroborated by the median ep,D values in Figure 6C. Notably,
however, LHC_GW_CONV has a substantial amount of high
ep,D outliers.

Likewise, the performance profile from Figure 6B follows the
trend. It can be seen that SAC-FS-CNN has close to 100% of runs

FIGURE 5
Policy network πϕ. πθ,path uses a 2D CNN architecture from Mnih et al. (2015).
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FIGURE 6
Probability efficiency analysis over all runs. The shaded regions in (A, B) show the 95% confidence interval. (A) Mean ep with d showing SAC-FS-CNN
outperforming the benchmark algorithms at all distances. (B) Performance profile of ep,D. SAC-FS-CNN has a close to 100% of runs with ep,D > 0.1
compared to the < 50% for the other algorithms. (C) Median ep,D for all runs. SAC-FS-CNN has a higher median than the other algorithms.
LHC_GW_CONV registers large outliers.

TABLE 4 Mean POD with the standard deviation as error.

Method pD ep,D N

LHC_GW_CONV 0.09± 0.06 0.12± 0.08 9.3× 103

Lawnmower 0.06± 0.04 0.08± 0.06 10× 103

SAC-FS-CNN 0.15± 0.04 0.19± 0.04 9.8× 103

with ep,D > 0.1 and 50% at approximately ep,D > 0.2. This aligns with
results from Figure 6C and Table 4.

It is of note that LHC_GW_CONVhas the largest range of values
going from 0.0 to 0.5 whilst SAC-FS-CNN only goes from 0.02 to
0.41.This shows that LHC_GW_CONVcan perform verywell given
the right PDM or poorly given the wrong one.The DLR approach of
SAC-FS-CNN, on the other hand, does not suffer from this due to
its ability to find a general solution to the problem.

4.3 Distance to find (DTF) and percentage
found (PF)

Whilst POD shows the theoretical effectiveness of an algorithm,
the intended use-case is finding a missing person whilst searching
within a bounded area. The mission statement is reducing
the time it takes to find the potentially vulnerable person
to save lives.

To quantify this requirement, we introduce DTF and PF.
The former gives a clear answer on the capabilities on the
various algorithms, whilst the latter should align with the POD
results from Table 4 for validation.

Firstly, Gumbel-Softmax (Li et al., 2021) is used to sample
Nsamples positions from the PDM to give the set χ ∈ ℝ2×Nsamples

containing all samples. The path is then traversed in incremental
steps using Equation 6 with Nstep = 104. At each step, a euclidean
distance check is done from the current position x to each entry in
χ with any points within Rbuf fer being marked as seen. The updated
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FIGURE 7
Median d to find. Similarly, the whisker markers across the algorithms
shows the broad distribution of results from this experiment.
SAC-FS-CNN ultimately has the lowest median score.

TABLE 5 DTF with the standard deviation as error.

Method PF [%] Mean DTF [m] N

LHC_GW_CONV 11.86± 0.32 249.37± 145.70 5× 106

Lawnmower 7.77± 0.27 282.63± 146.62 5× 106

SAC-FS-CNN 19.00± 0.39 239.61± 138.16 10× 106

set of positions to search for in the next step is then

χ′ = {χ i ∈ χ:‖x− χ i‖ > Rbuf fer}

From Figure 7, it is clear to see that SAC-FS-CNN outperforms
the benchmark algorithms with a lower median DTF as well as
a lower inter-quartile range. Table 5 shows that the mean DTF
is 15.22% lower than lawnmower, and 4.07% lower than LHC_
GW_CONV. This is in line with expectations from the results
in Section 4.2. Likewise, the PF values closely match to the ep,D
values from Table 4 showing that this test correlates to the theory.

Whilst SAC-FS-CNN outperforms the benchmarks in the
median DTF, it is of note that the variances of the three algorithms
are almost identical as shown by the whiskers in Figure 7. This is
due to the manner in which the positions are sampled from the
random PDM making it likely for there to be a very small subset
of positions near the start and end of the path. It is evident that this
is the cause because the variances of the three algorithms range from
approximately 0 to 512 which is the full simulation distance.

4.4 Area efficiency

A path with corners has overlapping regions when considering
the buffered pathwhich is evident fromFigure 2A.Themost efficient
path in this formulation is thus a straight line such that the area

FIGURE 8
Area efficiency of the three algorithms. Lawnmower has many straight
segments which result in a high score of 0.97 and no variance because
it does not change. SAC-FS-CNN on the other hand outperforms the
other environment-dependent algorithm LHC_GW_CONV in
this metric.

Input: Observations defined in Table 3

Output: Action a

Extract PDM latent space zPDM← πθ,PDM(sPDM);

Extract path history latent space

zpath← πθ,path(spath);

Concatenate remaining observations and latent

spaces z← zPDM ∪zpath ∪ [soob,spos,ssteps];

Sample from policy to get action a ∼ πθ,core(z)

Algorithm 1. Policy Network πϕ Input Process.

efficiency is ea,D = 1. Using Equation 4, this value is calculated with

ea,D =
abuffer,D

Rbuf fer (πRbuf fer + 2Dλ)

where abuffer,D is the total area of the buffered path, and D is the
number of waypoints in the path.

The aggregated metrics can be seen in Figure 8 which shows a
significant difference in area efficiency between the three methods.
The lawnmower method consistently achieves the highest area
efficiency values, with a median value of 0.97. This suggests that
lawnmower generates paths with minimal overlapping regions
within the buffer, resulting in efficient utilization of the search buffer.
However, lawnmower has no variance in area efficiency as it is a
coverage planning algorithm and as such always generates the same
path. In contrast, the SAC-FS-CNN method demonstrates lower
area efficiency, with a median value around 0.90. This indicates that
SAC-FS-CNN paths tend to have more overlapping areas within the
buffer, leading to suboptimal utilization. LHC_GW_CONVmethod
exhibits the lowest area efficiency, with amedian value of 0.86 due its
inability to make trade-offs now for future gains due to its local hill
climbing formulation. This, however, is not the case for LHC_GW_
CONV as an infinite-horizon discounted reward is at the core of the
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SAC algorithm meaning that the current action is taken in order to
maximise the future rewards.

5 Conclusion

Our research proposed SAC-FS-CNN for search planning
in WiSAR operations, leveraging a priori information. This was
identified as a solution to the challenge of maximizing accumulated
probability over a given area due to the powerful capabilities of
machine learning to identify patterns and make generalizations in
complex tasks.

The results indicate that SAC-FS-CNN can outperform
benchmark algorithms in the probability efficiency by up to 250%
for lawnmower, and 166% for LHC_GW_CONV. A similar trend is
identified when comparing mean DTF with DRL outperforming the
aforementioned algorithms by 15.22% and 4.07% respectively. The
critical result, however, was that SAC-FS-CNN found 160% more
simulated missing people than LHC_GW_CONV.This translates to
a substantial advantage in locating missing individuals, potentially
saving countless lives during WiSAR operations.

While SAC-FS-CNN exhibits lower area efficiency compared to
lawnmower, this trade-off is justified by its superior performance
in terms of POD and DTF. Future work could focus on improving
area efficiency while maintaining its strong performance in these
critical metrics.

The integration of DRL into WiSAR mission planning holds
great potential for the future of search, offering a powerful tool with
potential to significantly increase the success rate of WiSAR efforts.
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