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Introduction: Chest trauma or disease progression can lead to tension
pneumothorax, a condition where mounting pressurization of the pleural cavity
(the space between the chest wall and the lungs) leads rapidly to cardiac arrest.
In pre-hospital settings, tension pneumothorax is treated by venting the pleural
cavity via a needle introduced through the chest wall. Very high failure rates (up
to 94.1%) have been reported for pre-hospital needle decompression, however,
and the procedure can result in the accidental puncture of critical thoracic
tissues because it is performed blind. Instrumented needles could help operators
more reliably identify when the tool has entered the target space.

Methods: This paper investigates technical approaches to provide such support;
we created an experimental system that acquires needle force and position
signals, as well as the diffuse backscattered reflectance from white light
carried to and collected from the needle’s tip via two in-bore optical fibers.
Data collection occurred while two experimenters inserted a bevel-tipped
percutaneous needle into an ex vivo porcine rib section simulating human
chest anatomy. Four data-driven puncture-detection (DDPD) algorithms from
the literature, which are appropriate for use with the variable tool velocities
produced by manual insertions, were applied to the resulting data set offline.
Grid search was performed across key signal-processing parameters, high-pass
filters (HPFs) were applied to examine their impact on puncture detection, and
a first exploration of multimodal (ensemble) methods was performed.

Results: Combining high-pass filters with DDPD methods resulted in a 2.7-fold
improvement (from 8.2% to 21.9%) in the maximum overall precision (MOP)
produced by force signals. Applying this HPF + DDPD scheme to reflectance
data streams yielded a peakMOPof 36.4%, and combining reflectancewith force
generated the best MOP overall (42.1%); these results represent 4.4-fold and 5.1-
fold improvements, respectively, over the best MOP produced by the traditional
application of DDPD algorithms to force signals alone.

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1429327
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1429327&domain=pdf&date_stamp=2025-05-03
mailto:lorsa@is.mpg.de
mailto:lorsa@is.mpg.de
https://doi.org/10.3389/frobt.2025.1429327
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1429327/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1429327/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1429327/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


L’Orsa et al. 10.3389/frobt.2025.1429327

Discussion: These results strongly support the utility of high-pass filters
combined with both reflectance-only and multimodal reflectance-plus-
force data-driven puncture-detection schemes for needle decompression
applications.

KEYWORDS

tension pneumothorax, needle decompression, data-driven puncture detection, in-
bore optical fibers, reflectance, signal processing

1 Introduction

Tension pneumothorax (tPTX) is an urgent medical condition
where pressure from air trapped between a lung and the chest wall
cannot be vented (Figure 1a). When the volume of air increases
rapidly, it displaces critical structures like the lungs and drastically
limits the heart’s ability to pump blood (Spain et al., 2023).
Without rapid intervention, tPTX is lethal; it has been identified
as a preventable trauma-related cause of death, both for civilians
(Kleber et al., 2013) and in combat settings (McPherson et al., 2006).

Needle decompression (ND) can be used in a pre-hospital
setting or an emergency department to temporarily vent the
trapped volume of air, thus buying time for emergency transport
or surgical preparation (Jouneau et al., 2023). To perform ND, the
medical operator 1) identifies the recommended needle entry point,
2) angles the needle appropriately, and 3) inserts the needle tip
into the trapped volume of air, as illustrated in Figure 1b. The
needle bore provides a channel through which the pressurized
volume can be vented, but it is neither large enough to release
significant quantities of fluids (e.g., blood or pus) if they are
present, nor is it secure enough to provide long-term pressure relief
(Leatherman et al., 2017). The procedure is considered a failure if
the tPTX is not immediately diminished, and a complication occurs
when the needle unintentionally lacerates, punctures, or otherwise
damages critical adjacent structures such as the heart, nerves, or key
vasculature (Wernick et al., 2015).

Failure rates of up to 94.1% have been reported for pre-
hospital ND (Axtman et al., 2019), likely because this time-critical
procedure is performed infrequently and without image guidance.
Operators must thus rely on the assumption of normal patient
anatomy and their sense of touch to estimate when the needle
tip has reached its target. Novices are taught to feel for loss-of-
resistance (LoR) sensations transmitted through the needle that
should indicate the penetration of the tool through the parietal
pleura, i.e., the membrane that bounds the target volume of
air (Figure 1b). Unfortunately, needle-tip forces (and thus LoR
sensations) can be obscured by friction forces acting along the
needle’s shaft, and friction forces increase with the depth of needle
insertion (Washio and Chinzei, 2004). Natural variations in human
anatomy (Boyle et al., 2012) and tissue characteristics (Tenorio et al.,
2017) further compound the difficulty of needle-puncture detection
for operators when they must rely on haptic LoR sensations.

Although puncture detection has not yet been studied for
ND, some authors have proposed addressing this challenge for
other applications via the use of instrumented needles that
explicitly notify the operator when a puncture has occurred (e.g.,

Gonenc et al., 2014; Gong et al., 2014). We hypothesize that
instrumented needles could likewise assist operators in detecting
needle entry into the target space for ND, thus reducing failure and
complication rates, improving patient outcomes, and decreasing the
level of difficulty for operators. However, this approach requires
puncture-detection algorithms that perform reliably across a range
of patient anatomies, tissue characteristics, and the variable-velocity
needle-insertion profiles produced during the manual delivery
of ND. Therefore, this paper’s contributions are centered on the
challenging problem of reliable variable-velocity puncture detection
from needle-instrumentation data streams.

A large body of literature exists spanning 30 years of needle-
instrumentation research for non-ND applications, e.g., epidurals,
venipuncture, and needle steering. However, surprisingly few papers
discuss puncture detection directly, and of these, only a small
subset present puncture-detection algorithms (see Section 3). Early
investigations focused on capturing LoR primarily through force or
pressure measurements (e.g., Brett et al., 2000), and they employed
force sensors located at the base of the needle due to the difficulty
of manufacturing miniaturized, biocompatible, sterilizable sensors
that could be placed at the needle tip. However, Washio and
Chinzei (2004)’s assertion that needle tip forces are crucial for
puncture detection motivated increased research on two sensing
modalities that can meet the above-mentioned requirements for
sensor collocation: electrical bioimpedance and optical fiber-
based methods.

Although there has been a renewed interest in the use
of electrical bioimpedance for needle localization (i.e., the
instrumentation-based confirmation of needle-tip location during
insertion via the repeated characterization of tissue properties),
the body of literature surrounding this approach is still relatively
small. Furthermore, to the best of our knowledge, success
with this sensing modality has been demonstrated using only
supervised machine-learning methods (Kalvøy et al., 2017;
Halonen et al., 2019; Kudashov et al., 2022), and it is unclear whether
electrical bioimpedance would be useful in the context of puncture
detection when large data sets are not available for model training.
In contrast, substantially more literature is available for optical fiber-
based methods, and we thus focus on porting these well-developed
techniques to the puncture-detection problem.

Since force has traditionally been the sensing modality of choice
and is still considered the gold standard for puncture detection,
much effort has gone toward producing fiber-based needle-tip force
sensors. Abushagur et al. (2014), Su et al. (2017), and Jiang et al.
(2023) provide overviews of these developments, yet of the papers
reviewed, only those produced by one research group propose novel
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FIGURE 1
(a) Tension pneumothorax interferes with heart motion when pleural cavity pressure is too high. (b) Insertion of a hollow bevel-tipped needle between
the ribs decompresses the pleural cavity to temporarily alleviate pathological compression.

puncture-detection algorithms. This group’s final publication on the
topic (Alamdar et al., 2021) reported mixed success using needle-
tip forces for puncture detection, and the group has since moved
to image-based puncture-detection algorithms (Kim et al., 2023).
Therefore, although needle tip-force sensors can generally provide
better puncture features than their non-collocated counterparts,
needle-tip force sensing is still not reliable enough for puncture
detection in safety-critical applications when used alone, and optical
needle-tip force sensors are no exception.

However, in-bore optical fibers also enable the use of other
light-based sensing modalities at the needle tip, such as diffuse
reflectance spectroscopy (DRS) and optical coherence tomography
(OCT). These approaches generally employ one or more fibers to
carry light to the needle’s tip and another bundle to collect its
reflections. Different tissues absorb and scatter light uniquely based
on their optical properties; DRS exploits this behavior by measuring
the light scattered by tissue. If its optical properties are characterized
in advance, the tissue can be identified from its properties during
medical treatment or diagnostics. In vivo applications of DRS
have often focused on tissue discrimination, either for real-time
diagnostics with respect to unhealthy tissues (e.g., Utzinger et al.,
2001; Lin et al., 2005; Bensalah et al., 2008; Maryam et al., 2022),
or for needle localization during surgical procedures (e.g., Lin et al.,
2001; Balthasar et al., 2012, or see Wilson and Eu, 2022 for a recent
overview). To the best of our knowledge, only two groups have
explicitly examined the use of DRS or OCT for puncture detection,
and a third group has proposed DRS for needle localization during
ND, as detailed in Section 2.

This paper explores the potential utility of DRS to improve
ND with respect to puncture detection. Similar to Gong et al.
(2014), our goal is to produce a compact, lightweight, portable
adjunct for needle instrumentation that notifies operators to
stop advancing the needle when a puncture occurs. The tube
thoracostomy literature–which is the closest analog to ND for which
extensive research is available–suggests that such an adjunct could
be especially useful when operators are inexperienced (Kong et al.,
2014; Sritharen et al., 2018), or in cases of unusual patient anatomy
(Kerger et al., 2007; Patel et al., 2021).

Specifically, this article carefully examines DRS, signal-
processing schemes, four puncture-detection algorithms, and

ensemble puncture-detection approaches for their usefulness
within the context of ND. Preliminary results from this study
were previously reported (L’Orsa et al., 2024), including a
basic description of the system, a brief confirmation that low-
and high-pass filtering affects the performance of the original
DDPD algorithm (Grace, 1995), and initial indications that
diffuse reflectance signals could be useful within the context of
puncture detection, directly motivating the current study. Here,
we substantially expand our analysis by i) optimizing high-pass
filter parameters, ii) comparing the performance of an additional
three prominent DDPD algorithms, and iii) combining needle-
base force and needle-tip reflectance data within multimodal
ensemble methods for puncture detection. To the best of our
knowledge, this is the first time these three topics have been
examined. Section 2 discusses the non-force-based optical-sensing
literature relevant to ND, and Section 3 presents the mathematical
formulations for the four DDPD algorithms considered herein.
Section 4 introduces the experimental apparatus and procedure
and then explains how data were processed and analyzed. Section 5
presents results, and Section 6 interprets outcomes, summarizes
insights, and suggests future work.

2 Optical fiber-based sensing
methods for needle decompression

Lee et al. (2021) proposed the use of DRS for needle localization
(rather than puncture detection) during ND. Specifically, they
described embedding a three-fiber, dual-wavelength, near-
infrared spectroscopy system into the bore of an over-the-
needle catheter device. Two of the fibers in this system delivered
light at dual wavelengths (690 nm and 850 nm) to the needle-
tissue interaction site, and the third fiber carried backscattered
reflections to a photodiode for detection. The authors reported
statistically significant changes in the optical density and the deoxy-
hemoglobin/oxy-hemoglobin concentrations estimated for each
punctured tissue type. They were able to distinguish the pleural
cavity from arteries, veins, muscle, fat, skin, and lung tissues using
these data, but the system added a 2-s signal-processing delay. This
scale of time delaywould either require operators to insert the needle
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extremely slowly, which would be infeasible given both the patient’s
respiratory motion and their urgent need for tPTX treatment, or it
would result in significant tool-tip overshoot of the target space. To
the best of our knowledge, these authors provide the only description
of DRS applied to ND in the literature.

Only two other groups have proposed the use of non-force-
based optical sensing modalities for puncture detection in other
applications. In one instance, Ting et al. (2010) presented the first in
a series of experiments using DRS to identify the target space during
epidural insertion.Theauthors added a bundle of fibers to the bore of
an epidural needle andmeasured the optical spectra during insertion
in a porcine model. They identified two wavelengths (532 nm and
650 nm) that differentiated the target space from the tissue bounding
it, and they achieved a classification success rate of about 80% using
linear discriminant analysis (Lin et al., 2012). The group initially
chose to provide operators with puncture notifications based on a
pre-determined amplitude threshold (Gong et al., 2014). However,
their more recent work simply presents operators with a real-
time graphical display of the optical sensor’s output (Lin et al.,
2019), which is appropriate only when the needle is
inserted slowly.

In contrast, Latus et al. (2021) employed a more sophisticated
OCT-based approach to the puncture-detection problem. The
relative velocity of tissue at the needle tip was estimated using
phase data from OCT A-scans, and an existing puncture-detection
algorithm applied to the tissue velocity estimate yielded an
overall accuracy between 91% and 94%. However, OCT requires
expensive hardware that does not lend itself to portability, as
well as complicated signal-interpretation methods that may not
be appropriate for pre-hospital deployment. Thus, the literature
contains no optical examples relevant to ND, and opportunities
remain to explore the use of DRS-based puncture detection in this
application.

3 Data-driven puncture-detection
algorithms

Providing puncture notifications for manual needle insertions
requires algorithms that can handle variable-velocity puncture
features. Puncture-detection algorithms can be roughly separated
into three categories, which we call model-based puncture
detection (MBPD), learning-based puncture detection (LBPD),
and data-driven puncture detection (DDPD). MBPD approaches
assume tool-tissue interaction models or statistical sensor output
distributions (e.g., Narayan et al., 2019); they are strongly
velocity dependent and are thus inappropriate for manual
needle insertions. LBPD approaches apply modern classification
techniques (e.g., Kudashov et al., 2022), which require large
data sets that are difficult to obtain for ND. DDPD methods
do not assume system models or statistical distributions,
nor do they require large training data sets. Thus, they are
presently the best choice for use with variable-velocity needle
insertions.

DDPD algorithms involve the four-step process
illustrated in Figure 2. These algorithms apply mathematical
transformations (e.g., differentiation, multiplication by another
signal) to one or more raw data streams; the choice of transform

distinguishes between algorithms. A static positive or negative
threshold is applied to the transformed output, and puncture
events are identified whenever the transformed output exceeds the
threshold. These approaches can be formally defined as detecting a
puncture when:

F (s) > λ+ or F (s) < λ−,

where s is a set of input signals, F is a mathematical signal
transformation, λ+ is a positive threshold, and λ− is a negative
threshold. Performance is optimized via threshold selection, and
algorithm-specific parameters can also be optimized.

The first accessible introduction of a DDPD approach
comes from Grace (1995), which focused on decreasing tool-tip
overshoot when a needle punctured a synthetic membrane. Grace’s
algorithm transforms its input by estimating the signal’s first time
derivative. When applied to force, the algorithm seeks the force-
drop features that typically accompany a needle-puncture event, i.e.,
the LoR feature that clinicians are trained to recognize.We designate
this method as “Grace’s approach” moving forward, and it can be
mathematically expressed as follows:

d f
dt
< λ, (1)

where f is the force, t is the time, and λ is the threshold
(negative here).

Brett et al. (2000) developed a custom filter for their DDPD
transform, with the goal of semi-automating epidural needle
insertion. The authors used force measurements for robot-driven
constant-velocity needle insertions into ex vivo porcine spine
segments and syringe pressure for handheld variable-velocity needle
insertions into human cadavers. We designate their custom filter
design as “Brett’s approach”:

c [i] =
∑2

k=0
(−1)k ( 2

k
) f [i− 1+ k] + β∑3

k=0
(−1)k ( 3

k
) f [i− 1+ k]

f [i] ⋅max (c)
> λ,

(2)

where c is the filter’s output; i is the discrete sample index; k is an
index used for summation, calculation of the binomial coefficients,
and discrete sample selection; f is the input signal (e.g., force or
pressure); β is an empirically optimized coefficientmeant to improve
puncture-detection reliability; and λ is the threshold. Note that
inclusion of a maximum prevents real-time use.

Gonenc et al. (2016) proposed a series of increasingly
complex multimodal puncture-detection algorithms for retinal
vein cannulation focused on force and position. However, their
system included three separate force sensors located at different
points relative to the operator’s hand. Thus, only the portion of
their puncture-detection approach described as follows could be
employed in our single-force-sensor system:

d f
dt
⋅
dp
dt
> λ, (3)

where f is the force, p is the position, t is the time, and λ is
the threshold. We refer to this approach as “Gonenc’s approach”
henceforth.

Finally, Kowal (2017) presented a novel DDPD algorithm for the
detection ofmicro-needle punctures intomurine skin and lymphatic
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FIGURE 2
Data-driven puncture detection follows the four-step process of acquiring sensor data, transforming the signal, applying a threshold, and finally
detecting events when they occur.

tissue.The algorithm loads consecutive discrete sensor samples (e.g.,
force) into a ring buffer of even length, and it transforms the input
signal by calculating the absolute difference between the averages
of the first and last halves of the buffer contents. We designate this
method as “Kowal’s approach”:

ΔFavg =
2
N
|
N/2

∑
i=1

Bi −
N

∑
j=N/2+1

Bj| > λ, (4)

where N is the buffer length, i and j are summation indices, λ is the
threshold, and Bi and Bj are the older and newer buffer contents,
respectively.

4 Materials and methods

4.1 Experimental apparatus

The experimental apparatus contained two subsystems: a
dual-fiber diffuse reflectance system (DFDRS) that produces
a reflectance data stream and a needle-insertion system
(NIS) that collects all other data streams. The experimental
apparatus and its block diagram can be found in Figures 3i, ii,
respectively.

4.1.1 Dual-fiber diffuse reflectance system
The DFDRS transmits light to the needle’s tip with one optical

fiber and collects that light’s diffuse reflections with another.
The fibers were both approximately 45 cm long with 100 μm
cores (UM22-100 from Thorlabs, United States), and they were
secured in a 26G stainless steel tube such that the source-
detector separation (SDS) was about 125 μm. The steel tube was
positioned inside the bore of a 9 cm 18G percutaneous access
needle (Cook Medical, United States). The exposed fiber ends
emerged at the needle tip, and the tube was cemented in place
using epoxy. Both ends of both fibers were cleaved and polished
with a fiber polisher (Krell Technologies, United States) prior to
insertion into the metal tube, and the free ends emerging from
the needle’s hub were terminated with 2.5 mm ferrules (Thorlabs,
United States).

A warm white LED producing wavelengths within an envelope
of about 410–780 nm (XLamp XQ-E from CreeLED, United States)

was butt-coupled to the delivery fiber using custom components.
The LED was driven with a Howland current source generating
about 40 mA of peak-to-peak current around a 20 mA average. This
design led to about 200 μW optical power incident on the tissue,
which is sufficient for reflectance measurements (Bisht et al., 2024).
A homodyne measurement scheme was applied to minimize the
effects of ambient light, and the sinusoidal modulation frequency of
the drive current was set to 143 Hz. The collection fiber was butt-
coupled to a surface-mount photodiode (VBPW34S from Vishay
Semiconductor Opto Division, United States) mounted on a PCB
with a transimpedance amplifier (TIA) of 1 MΩ gain and 1 kHz
bandwidth. A multifunction I/O device (DAQ1: USB-6361 from
National Instruments, United States) supplied the Howland circuit’s
input voltage and sampled the output of the TIA circuit at a
rate of 2860 Hz. Supplementary Appendix 1.1 characterizes optical
aspects of the DFDRS.

4.1.2 Needle-insertion system
A desktop haptic interface (Touch from 3D Systems, United

States) formed the base of this subsystem and transmitted its joint
encoder values to the computer directly via USB. The device’s
motors were not powered during this study. The haptic interface sat
(unfixed) on top of theDFDRS’s Faraday cage, which in turn sat (also
unfixed) atopwooden risers.The risers could be reconfigured to alter
the relative height of the haptic interface, which was necessary to
align the haptic interface’s workspace with each row of intercostal
tissue in the ex vivo sample, but it precluded precise registration
between the two.

A custom mount suspended a 6-DoF force/torque sensor
(Nano17 Titanium from ATI Industrial Automation, United States)
below the haptic interface’s stylus (Figure 3iii). A second custom
mount secured the base of the needle to the force/torque sensor’s
tool adapter plate at its sensing reference frame origin. The
computer collected the amplified force/torque measurements via a
second multifunction I/O device (DAQ2: PCI-6280 from National
Instruments, United States).

Commercially available ex vivo baby back pork ribs served as the
tissue sample, as recommended by Joseph and Verelst (2021). The
ribs were secured vertically in the tissue mount with their pleural
membrane facing away from the haptic interface. TwoUSBwebcams
(C922 Pro HD Stream from Logitech, Switzerland) provided the
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FIGURE 3
(i) The experimental apparatus consists of a) an instrumented needle, b) a haptic interface, c) a Faraday cage, d) a contact camera, e) a puncture
camera, and f) a buzzer. The needle interacts with a row of g) intercostal tissue, and the operator attempts to space insertions as illustrated by the
white dots in h). (ii) Block diagram of the experimental apparatus. (iii) The haptic interface's j) stylus suspends k) a custom ferrule holder, the LED's
supply PCB, and l) the force/torque sensor, via custom mount 1. The second custom mount attaches the force/torque sensor to m) the needle and
provides an angled channel through which the fibers exit the base of the needle hub.

image streams for the apparatus, and a piezo buzzer was fastened
between the two cameras. A signal from a third multifunction I/O
device (DAQ3: Q8-USB from Quanser, Canada) commanded the
buzzer to produce sounds that were used to synchronize the image
and data stream collection. DAQ3 also enabled synchronization
of the DFDRS and NIS data streams by feeding a clock
signal to DAQ1.

4.1.3 Data collection software and computer
Free, open-source video-streaming software (OBS Studio from

H. Bailey andOBS Project contributors) recorded the image streams
from the two cameras side-by-side in the same canvas at a rate of
60 frames per second (fps). All NIS data streams were collected
using real-time control software (QUARC 2019 SP1 from Quanser,
Canada, embedded in Simulink 10.0 from MathWorks, United
States), which produced an average sampling rate of 1,000.3± 0.1 Hz.
However, DAQ1was not compatible with this software, so customC
code was used to save the data it recorded. A custom-built desktop
Windows 10 computer with an i9-9900 processor, 64 GB of RAM,
and an NVIDIA GeForce RTX 2060 SUPER graphics card recorded
all image and data streams.

4.2 Procedure

On the day of the experiment, the refrigerated tissue sample
was procured, warmed naturally to room temperature (21°C), and

secured in the tissue mount. Two authors served as operators, and
they practiced the puncture task on the first row of intercostal
tissue. For each of the remaining nine rows of tissue, the
following occurred:

1. A MATLAB script randomly assigned the operator role.
2. The operator confirmed that the haptic interface’s workspace

could reach the appropriate row of tissue.
3. The camerasweremanually centered and focused in the image-

streaming software.
4. Image streaming and data collection were initiated.
5. Five seconds of sensor outputs were collected, and the

mean of each data stream was subtracted to remove
sensor bias.

6. Two synchronization buzzes were issued.
7. The operator inserted the needle as many times as possible

from left to right in their row of intercostal tissue.

Operators were instructed to i) keep a horizontal distance
of about 1 cm between neighboring insertions, ii) maintain a
perpendicular alignment between the needle and the tissue sample,
iii) maintain a parallel alignment between the needle and the floor,
iv) insert the needle at the vertical midpoint between the two
ribs bounding the row of intercostal tissues, and v) halt needle
advancement when they feel a ‘pop’. This last instruction is the
primary guidance given to medical professionals when they learn
ND, and it is meant to help an operator identify when they’ve
punctured the parietal pleura.
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The webcam images were not visible to the operator, no form
of cleaning was applied to the needle between insertions, and the
tissue sample’s parietal pleura was misted frequently with water to
maintain its moisture levels. This procedure yielded recordings of
93 potential needle-puncture trials.

4.3 Data processing

The analyses in this paper consider only the reflectance (R),
the axial insertion force ( f), and the Cartesian positions (px, py,
and pz) collected from the haptic interface. For every trial, the
synchronization buzzes were manually identified in the first time
derivative of the audio signal and aligned with the matching
buzzer activation voltage command from DAQ3. Each insertion
was segmented, and the image streams were manually labeled
by an experimenter. All data streams and labels are publicly
available (L’Orsa et al., 2025).

4.3.1 Event labeling
Single-frame labels were identified for each of five events, which

we abbreviate as events E1 through E5:

1. Contact (E1): First frame where the needle appears to contact
the tissue (as seen in the contact camera).

2. Tip puncture (E2): First frame where the needle tip appears
to puncture through the parietal pleura (as seen in the
puncture camera).

3. Bevel puncture (E3): First frame where the entire needle bevel
is visible from the puncture camera.

4. Shaft puncture (E4): First frame where the needle shaft (below
the bevel) is visible from the puncture camera.

5. Maximum advancement (E5): Last frame where the needle
visibly advances.

Tip puncture frame labels are used as ground-truth puncture
events in this work.

4.3.2 Insertion phases and metrics
An insertion includes all data samples from the last sample

before E1 to the first sample after E5, a puncture includes all data
samples from the last sample before E2 to the first sample after E4,
and an operator’s reaction period includes all data samples from
the last sample before E4 to the first sample after E5. Therefore,
the duration (ti) of an insertion, the duration of a puncture (tp),
and the time taken for an operator to react to a puncture before
stopping the needle (i.e., their reaction time, tr) were calculated as
the difference between the time stamps of the appropriate first and
last samples.

The needle’s displacement along its axis of insertion was
approximated by zeroing the Cartesian position vectors at the
start of each insertion and then calculating the magnitude of the
vector (‖p‖). The needle penetration depth was approximated as
pd = ‖p‖e5 − ‖p‖e1 , and the tool-tip overshoot was estimated as
OS = ‖p‖e5 − ‖p‖e2 . The needle velocity was estimated as v = d‖p‖

dt
,

where a positive value indicates advancement. A moving-average
low-pass filter (LPF) with window length lwin = 219 was applied to
v prior to statistical analysis.

4.3.3 Reflectance demodulation
Reflectance data were demodulated by first calculating the in-

phase component (Rcos = cos (2π fi ⋅ tR) ⋅R) of the reflectance and its
quadrature counterpart (Rsin = sin (2π fi ⋅ tR) ⋅R), where fi = 143 Hz
is the frequency of the LED’s drive current and tR is the reflectance
sample time. A Butterworth LPF with a cutoff frequency of
fc = 6 Hz isolated the DC components of Rcos and Rsin, yielding
R′cos and R′sin. Finally, the demodulated reflectance was calculated as
Rdemod = √(R

′
sin)

2 + (R′cos)2.
Partial and full demodulation was accomplished using first- and

sixth-order Butterworth LPFs, respectively, in the demodulation
process described above. We also calculated the period-wise
average of the extrema (ae) of the raw and partially demodulated
reflectance signal. To do so, the signal minimum and maximum
values were found within sliding windows of 30 reflectance
samples, and the average within each window was calculated as
Rae,win = (Rmin,win +Rmax,win)/2.

We designate the raw (R1), partially demodulated (R2), fully
demodulated (R3), sliding-windowed ae of the raw (R4), and sliding-
windowed ae of the partially demodulated (R5) reflectance signals
via subscripts one through five, respectively. We refer to the set
{R1, R2, R3, R4, R5} as R, and individual elements are called signal
variations.

4.3.4 Low-pass filtering
Two different LPFs were applied to both reflectance and force

signals: a moving average filter and a fifth-order Savitzky-Golay
filter. We designate signals filtered with the moving average and
Savitzky-Golay filters via m and s subscripts, respectively, and we
indicate the lwin used to calculate the output of a filter by adding it to
the subscript. For example, px,m9 represents the x-axis position, low-
pass filtered using a moving average filter with a window length of
nine samples. Note that unfiltered force data streams are indicated
via ‘raw’ in the subscript, while we use ‘u’ to indicate elements
of R that have not been explicitly low-pass filtered (LPF’ed),
since R2 through R5 have been modified compared to the raw
values of R1.

We applied a grid search to optimize DDPD
performance using lwin = {9, 16.7, 25, 50, 75, 220} ms, which
translated into {9, 17, 25, 49, 75, 219} samples for force and
{25, 47, 71, 143, 215, 629} samples for reflectance.Thus, for example,
the full set of partially demodulated reflectance signals after low-pass
filtering (LPF’ing) is represented as follows:

R2,LPF = {R2,u, R2,m25, R2,m47, R2,m71, R2,m143, R2,m215, R2,m629, …

R2,s25, R2,s47, R2,s71, R2,s143, R2,s215, R2,s629}

We refer to a set of LPF’ed signals as L, and each element in L
is also called a signal variation.

4.3.5 DDPD signal transformations
DDPD outputs were calculated for the raw force signal or each

signal in R or L, as appropriate, as described below.

4.3.5.1 Grace’s approach
The first time derivatives in Equation 1 were approximated via

single backwards differencing. A Hampel filter with three neighbors
was applied to force derivatives to reduce the effects of sampling
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TABLE 1 Input signal combinations defining the various versions of Gonenc’s method explored. Column shading is used to differentiate Gonenc’s
original approach (as applied using Cartesian position components) from the new variations we explored.

gon1 gon2 gon3 gon4 gon5 gon6 gon7

Signal 1 df
dt or dR

dt
df
dt or

dR
dt

df
dt or

dR
dt

dR
dt

dR
dt

dR
dt

dR
dt

Signal 2
dpx
dt

dpy
dt

dpz
dt

df
dt ( dfdt ⋅

dpx
dt ) ( dfdt ⋅

dpy
dt ) ( dfdt ⋅

dpz
dt )

rate variability, after which L was calculated. The “der” subscript is
used henceforth to describe signals to which Grace’s approach has
been applied.

4.3.5.2 Brett’s approach
Theoriginal parameters listed by Brett et al. (2000) were used for

Brett’s approach, i.e., β = 0.01 and binomial coefficients ( 2k) and (
3
k)

for the first and second summations, respectively, in Equation 2.The
“bre” subscript is used henceforth to describe signals to which Brett’s
approach has been applied. Rather thanL, raw signals served as the
input to Brett’s approach.

4.3.5.3 Gonenc’s approach
As shown in Equation 3, Gonenc’s approach thresholds

the product of two input signals: df
dt

and dp
dt

. Since the
haptic interface was not registered to the tissue sample, three
variations of Gonenc’s approach were calculated when either
force or reflectance served as the first algorithm input. The
“gon1,” “gon2,” and “gon3” subscripts are used henceforth to
identify the use of px, py, and pz, respectively, as the second
algorithm input.

When Gonenc’s approach was applied to reflectance signals,
another four variations (“gon4” through “gon7”) were included to
examine how crucial force signals are for the success of Gonenc’s
approach. Table 1 clarifies these input signal combinations and their
identifiers.

Regardless of the choice of first input, the second input to the
algorithm was always LPF’ed using a moving average filter with
lwin = 219 to minimize the amplification of signal noise. Since the
reflectance and force/position sampling rates differed, all input
signals were decimated by finding their maximum signal envelopes
within a given video frame, such that frame-wise products could be
calculated within the algorithm itself.

4.3.5.4 Kowal’s approach
Applying Equation 4 requires judicious selection of the buffer

size. A buffer size of N = 40 samples was selected for modulated
reflectance signals because this number represents roughly two
modulation periods given the 143 Hz drive frequency. Buffer
sizes of N = 20 samples and N = 6 samples were selected for
demodulated reflectance signals and force signals, respectively. The
“kow” subscript is used henceforth to describe signals to which
Kowal’s approach has been applied.

4.3.6 High-pass filtering
Finally, a set of high-pass filters (HPFs) was applied to the

output of each DDPD algorithm to investigate the recommendation
of seeking high-frequency post-puncture needle/tissue oscillations

(Kowal, 2017). Preliminary coarse grid searches in the training
data set indicated that cutoff frequencies fc of around 200 Hz
produced the best DDPD results (L’Orsa et al., 2024), so we explored
fc = {175, 200, 225} Hz in this work. However, these cutoff
frequencies exceed the Nyquist frequency when Gonenc’s approach
is applied to reflectance signals, so fc = {5, 15, 25} Hz were
used in those groups. We indicate the application of HPFs using
the subscript h coupled with the appropriate fc. For example,
fraw−gon2−h200 denotes the raw needle insertion force, multiplied by
the y-axis position, and subsequently high-pass filtered (HPF’ed)
with fc = 200 Hz. We refer to a set of HPF’ed signals as H, and as
with R and L, each element in H is also called a signal variation.

4.4 Algorithm application

After the removal of invalid insertions (Supplementary
Appendix 1.2), a 50/20/30 split was applied randomly to
the remaining 81 insertions on a per-row basis to produce
training/validation/test sets of insertions with equal row
representation.

4.4.1 Threshold sets
For each DDPD method, we searched a grid of 1,000 positive and

1,000 negative thresholds to identify one optimal threshold, λ
∗
MOP, for

eachDDPDmethod (see Section 4.4.3). To generate a set of thresholds
for a given signal variation, the appropriate global signal extremum
(the globalmaximum,𝕄max, for positive threshold sets and the global
minimum,𝕄min, fornegative threshold sets)was found in the training
set of insertions. A negative or positive threshold increment (δλ) was
calculated that would produce 999 thresholds spanning from 0% to
99.999% of the global signal extremum, and then a final threshold
increment was added to address the scenario where a puncture
cannot be detected. Therefore, negative threshold sets spanned λ− =
{x ∈ ℝ : 0 ≤ x ≤ (𝕄min + δλ−) and  x

δλ−
∈ ℤ} and positive threshold

sets spanned λ+ = {x ∈ ℝ : 0 ≤ x ≤ (𝕄max + δλ+) and  x
δλ+
∈ ℤ},

and the full set of thresholds describing the optimization search space
is λ = {λ−, λ+}.

4.4.2 Event windows
The needle becomes visible beyond the parietal pleura only in

the frame that follows puncture occurrence. Therefore, the actual
puncture event happens before the E2 ground-truth frame label, so
we define an event window as a block of data samples that precedes
E2 and is most likely to contain the true puncture event. We set
the length of an event window to three video frames (recorded at
60 fps) because the streaming software generally alternates between
cameras but drops a frame at least once per second.This behavior can
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FIGURE 4
Top: The force generated during insertion 3 in row 2, with vertical ticks denoting video frames and background coloration indicating both tip puncture
(E2) and the event window. Bottom: df

dt
, shown with its negative frame-wise signal envelope and an arbitrary negative threshold, generates algorithm

hits when the envelope exceeds the threshold in the negative direction. The most prominent hit in the event window is designated as the true positive
(TP), and hits outside the event window are deemed false positives (FPs).

intermittently result in a scenario where a new frame is not obtained
from the puncture camera until two frame periods have passed.

Ground-truth labels are frames rather than samples, which
necessitates the calculation of the appropriate (negative or positive)
frame-wise envelope for any given signal variation prior to threshold
application. An algorithm hit occurs in each frame where the
envelope exceeds the threshold in the appropriate (negative or
positive) direction, and the algorithm achieves a TP when a hit
occurs within the event window. To avoid generating more than
one TP per insertion due to the three-frame window length, TP
status is assigned to the frame in which the envelope exceeds the
threshold by the largest amount, and any other hit-containing frames
in the event window are designated as true negatives (TNs). The
outcome of this classification process is illustrated in the bottom
subplot in Figure 4, where TNs are omitted to improve visibility. If
the threshold exceeded the TP, then this frame would be designated
as the unique false negative (FN).

4.4.3 Performance metric
Precision ( TP

TP+FP
) is zero (0%) when the lone positively labeled

frame is missed and one (100%) when it is found without any
FPs. If both the TP and a single FP are identified, the precision
drops to 0.5 (50%), and it approaches zero as the number of FPs
increases. Therefore, this metric is stringent; higher precision is
desirable, and a precision of one (i.e., 100%) is the goal.The precision
was calculated at each threshold in λ for each insertion, and the
threshold-specific precision was averaged across all insertions in a
given set of insertions. This process yields 2000 threshold-averaged
precision (TAP) values for λ, multiplied by 13 LPF variations, four
HPF variations, and six signals ( f or R).

We call the maximum value of the TAP for λ− or λ+
the maximum overall precision (MOP), and we designate the
threshold at which it is found with the MOP subscript (λMOP).
A signal variation and its λMOP are an optimal pair (Po). Thus,
P−o and P+o identify the Po that yield the largest MOP in λ− and

λ+, respectively. The most performant Po in L is called PLPF
o .

Similarly, the most performant Po in H are denoted using the
appropriate HPF identifiers, e.g., Ph200

o . Finally, Po∗ indicates the
most performant Po overall for a given DDPD approach, i.e.,
P
∗
o = max(PLPF

o Ph175o Ph200o Ph225o ). Figure 5 clarifies how each
of these identifiers is assigned during the analysis of a single DDPD
approach. Note that PLPF

o represent the best performance achieved
by the original DDPD algorithms, and thus they provide the baseline
puncture-detection performance. In this capacity, we refer to them
as base pairs, and we use them to assess the performance effects of
HPFs and ensembles.

4.4.4 Ensemble selection criteria
The most performant Po∗ from the training set were identified

according to the procedure outlined in Supplementary Appendix 1.3.
These Po

∗ were evaluated in the validation set of insertions, and
the degree of generalization for each Po

∗ was estimated based on
the percent change in MOP (ΔMOP) between the training and
validation sets. Any Po

∗ with MOP < 10% in either the training
or validation set was discarded, as was any Po with ΔMOP < − 10%.
Next, the average of the MOP∗ values obtained in training and
validation was used as a decision-making metric (DM), and Po

∗ with
DM < 35 were also discarded. These limits were selected arbitrarily
as a means of decreasing the number of Po

∗ for advancement.
Finally, the remaining subset of Po

∗ was ranked in descending
order according to DM. The top-ranked force Po

∗, the top-
ranked reflectance Po

∗, and the next-highest-ranked Po
∗ overall

(across all DDPD methods) were selected from this subset for
ensemble testing.

4.4.5 Ensembles
Four types of basic signal combinations were considered, where

each combination takes as input the frame-wise envelopes of two or
more signal variations from the three Po∗ identified via the ensemble
selection criteria:
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FIGURE 5
A sequential process identifies the most performant signal-threshold pairs (Po) in the training set. First, the threshold-averaged precision (TAP) is
calculated for each threshold. The largest TAP value is the maximum overall precision (MOP) for each of λ− and λ+, and it confirms which threshold
sign performs best for a given signal variation. The Po with the largest MOP in L yields the base pair for a given sensor. The largest MOP across L and
H indicates a sensor’s most performant signal-threshold pair overall (P

∗
o), and these P

∗
o can then be compared between sensing modalities. The values

listed in this figure are for illustrative purposes only and do not reflect actual results.

1. Multiplication (EM): the input envelopes are multiplied
together, element by element (as inGonenc’s original approach,
but without the focus on force and position as input signals).

2. Weighted sum (EWS): a weight is chosen for each input
envelope such that they are all transformed to a similar order
of magnitude, and then the weighted envelopes are summed
together in an element-wise fashion.

3. Logical operations (ELO): AND, OR, and XOR operations are
applied to the hit/no-hit arrays generated by applying λMOP to
each input envelope.

4. Voting (ESUM): the individual hit/no-hit arrays generated by
λMOP application are summed on an element-wise basis, and a
majority vote is applied to this sum.

We compared all possible combinations of the three ensemble
input signals, where the global extrema for the EM and EWS
signals were found for threshold set construction as described in
Section 4.4.1. The λ∗MOP was selected from the training set for
EM and EWS, and the λ∗MOP for individual ensemble input signals
were used for ELO and ESUM. Ensemble results were collected for
both the training and validation sets, and the relevant portions
of the selection criteria described in Supplementary Appendix 1.3
were applied. Finally, the most performant base pairs, the most
performant optimal pairs overall, and all ensemble results were
compared in the test set of insertions.

5 Results

5.1 Descriptive statistics

Basic descriptive statistics are provided for f and v on a per-
operator basis in Table 2. The Shapiro-Wilk test and Q-Q plots

suggested non-normal distributions for the mean and maximum
f and v, so the Kruskal–Wallis test was used to confirm whether
these values differed between operators with a level of significance of
α = 0.05.The test confirmed that the two operators produced similar
mean forces (p = 0.58) but different maximum forces (p = 0.013),
mean velocities (p = 0.007), and maximum velocities (p = 0.00065)
over the course of their insertions, i.e., from E1 to E5.

Table 2 also contains the mean and maximum values of f
and v during puncture, i.e., from E2 to E4. The Kruskal–Wallis
test showed statistically significant differences between the mean
puncture forces, mean puncture velocities, and maximum puncture
velocities produced by operators (p < 0.0001, p = 0.0014, and
p = 0.046, respectively), but not their maximum puncture forces
(p = 0.84).

Table 3 shows performance metrics averaged across all
insertions for each operator. The tool-tip overshoot is broken
out into its extrema for emphasis, and the maximum overshoot
is highlighted because it represents the source of complications
in ND. The Kruskal–Wallis test suggested that the average pd and
OS produced by the two operators were not significantly different
(p = 0.82 and p = 0.22, respectively), but their average ti, tp, and
tr were (p = 0.0014, p = 0.00073, and p < 0.0001, respectively).
Note that it is possible for operators to produce very small tool-
tip overshoots (i.e., less than 1 mm) under ideal conditions, but the
maximum values produced herein (over 1 cm, on average) could
be dangerous for an ND recipient when the needle is incorrectly
positioned or angled.

5.2 Training set results

Since only the most performant optimal pairs were advanced
to the test set of insertions, performance comparisons between
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TABLE 2 Top: The number of rows punctured (nr), the total number of insertions across all rows (ni), and the mean and maximum force ( f) and velocity
(v) during insertion for each operator. Bottom: The mean and maximum force ( f) and velocity (v) during puncture for each operator. Standard deviations
are included as appropriate.

Insertion

Operator nr ni f [N] max ( f) [N]∗ v [mm/s]∗∗ max (v) [mm/s]∗∗∗

1 5 52 0.74 ± 0.13 1.50 ± 0.27 6.12 ± 2.47 14.12 ± 6.91

2 4 29 0.77 ± 0.16 1.42 ± 0.43 8.17 ± 3.21 18.28 ± 6.90

Both 9 81 0.75 ± 0.14 1.49 ± 0.38 6.85 ± 2.89 16.10 ± 8.39

Puncture

Operator f [N]∗∗∗ max ( f) [N] v [mm/s]∗∗ max (v) [mm/s]∗

1 0.75 ± 0.13 1.30 ± 0.21 8.20 ± 2.90 12.20 ± 3.98

2 0.98 ± 0.16 1.37 ± 0.45 11.54 ± 5.84 15.11 ± 6.95

Both 0.83 ± 0.14 1.35 ± 0.36 9.40 ± 4.43 13.59 ± 6.18

The annotations ∗, ∗∗, and ∗∗∗ denote statistically significant differences between operators with p < 0.05, 0.01, and 0.001, respectively.

TABLE 3 The penetration depth (pd); minimum, mean, and maximum tool-tip overshoot (OS); insertion duration (ti); puncture duration (tp); and
reaction time (tr) of each operator, averaged across all needle insertions. Standard deviations are included for all variables except OS.

Operator pd [mm] min (OS)
[mm]

OS [mm] max (OS)
[mm]

ti [s]
∗∗ tp [s]

∗∗∗ tr [s]
∗∗∗

1 15.58 ± 3.59 1.07 3.71 12.80 2.76 ± 0.94 0.13 ± 0.06 0.41 ± 0.28

2 15.29 ± 2.08 0.61 2.91 8.74 2.03 ± 0.89 0.09 ± 0.04 0.17 ± 0.05

Both 15.48 ± 3.10 0.61 3.42 12.80 2.50 ± 0.98 0.11 ± 0.06 0.32 ± 0.26

algorithms and factor effects were evaluated in the training set of
insertions.

5.2.1 Comparison of algorithms
The left subplot in Figure 6 shows a box plot containing all

signal-threshold pairs in the training set of insertions. The results
are grouped according to the sensor and the DDPD approach, which
highlights thatKowal’s approach performed the best in both force and
reflectance data streams.

5.2.2 High-pass filter effects
The middle subplot in Figure 6 clarifies that HPFs improve

performance when the most performant DDPD algorithm (Kowal’s
approach) is applied to data from either sensor. This subplot
also shows that increasing fc decreases the MOP for force but
slightly increases it for reflectance; hence, HPFs must be tuned
separately for each sensing modality. These training set results with
respect to high-pass filtering (HPF’ing) are representative of all four
DDPD methods.

5.2.3 Comparison of reflectance signal variations
The top subplot in Figure 7 shows how the modulated signal
(R1) and its sliding-window-extrema-averaged counterpart (R4)
changed at tip puncture during a representative insertion, whereas
the bottom subplot shows the response of the demodulated signals.

As expected, both R1 and R2 contain substantial sinusoidal content.
R1 contains a prominent puncture feature that is aligned with the
event window; R4 is much smoother than its raw counterpart, but
the sliding-window averaging both attenuates the puncture feature
and smears it into the next frame. A similar pattern emerges for
R2 and R5, though the smoothing applied to R2 during partial
demodulation further delays, attenuates, and widens the puncture
feature. Indeed, these repeated smoothing operations delay R5’s
small puncture feature so much that it is no longer aligned with
the event window. Therefore, although smoothing is desirable to
improve signal-to-noise ratios, it can delay, decrease, and even
destroy puncture features and must thus be applied very carefully
within DDPD schemes. A prime example of this effect can be seen
in the fully demodulated R3 data stream, which does not contain
a puncture feature at all. Unsurprisingly, R3 performs very poorly
compared to other R signal variations, as shown in the right
subplot of Figure 6.

5.2.4 Gonenc’s method in reflectance
Recall that it was unclear how best to apply Gonenc’s

method to reflectance data streams. Figure 8’s left subplot
compares the performance of the seven reflectance-based Gonenc
variations (see Table 1). Clearly, dR

dt
⋅ df
dt

(i.e., gon4) performs the
best, and the right subplot clarifies that this best performance is
achieved using negative thresholds. This result suggests that, despite
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FIGURE 6
Left: Boxplots comparing training set results for all four DDPD algorithms. Boxes span the interquartile range (IQR: from the 25th to the 75th
percentiles), with a bar indicating the median. Whiskers span the range up to 1.5⋅IQR, and outliers appear as circles. The vast majority of
signal-threshold pairs perform poorly, and the top outliers represent the most performant optimal pairs. Middle: HPF’ing signals prior to puncture
detection produces substantial performance improvements, though the cut-off frequency ( fc) should be tuned for each signal. Right: R4 is the most
performant reflectance signal, whereas R3 retains substantially fewer puncture features.

FIGURE 7
Top: Comparison of reflectance signal variations at tip puncture (E2) during insertion 5 of row 2. R1 is the raw signal, and R4 is the sliding-windowed
average of its extrema. Bottom: R2 and R3 are the partially and fully demodulated signals, and R5 is the sliding-windowed average of the extrema of R2.

its poor individual performance, the insertion force can still be
valuable for puncture detection when it is combined with other
sensing modalities, such as reflectance.

5.2.5 Ensemble component selection
By applying the selection criteria described in

Supplementary Appendix 1.3, the 5512 signal-threshold
combinations evaluated in the training set of insertions were pruned
down to 56 optimal pairs and 56 base pairs for evaluation in the
validation set. The 56 optimal pairs were ranked according to their
DM, and the following three Po

∗ were selected for application within
the ensembles, as per Section 4.4.4:

1. R1,u−der−h225 with λ = − 283.7826 V/s (DM = 40.9),
2. R5,s25−der−h175 with λ = 3.0292 V/s (DM = 38.6), and
3. fm9−kow−h175 with λ = 1.239× 10−4 N (DM = 30.9).

For ease of reference, we henceforth refer to these three ensemble
inputs as eR1, eR5, and e f , respectively.

5.3 Test set results

The set of 56 base pairs, the set of 56 optimal pairs, and all
ensemble permutations were applied to the test set of insertions.
Figure 9 illustrates the performance of base and optimal pairs from
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FIGURE 8
Left: Boxplots comparing training set results when reflectance was the first input to Gonenc’s algorithm. Right: The gon4 version with negative
thresholds performs the best.

FIGURE 9
Box plots comparing the best force (left), reflectance (middle), and ensemble (right) performance in the test set, grouped by the DDPD method or
ensemble type. Base pair results are included for each of the two sensors, and signal combinations are included for the ensembles. Triangular markers
are added to boxes with zero standard deviation to improve their visibility.

each sensor in the test set (left and middle subplots for force and
reflectance, respectively), and the right subplot shows ensemble
results. Dotted horizontal lines emphasize the best performance
from each group. Numerical results are provided in Table 4, which
we report as our final results.

6 Discussion

6.1 Major outcomes

The left subplot in Figure 6 illustrates that all DDPD approaches
applied to reflectance can outperform any DDPD approach applied
to force measured at the base of the needle, and Figure 9 confirms
that the traditional force-only approach might not be very useful
in the context of needle decompression and similar applications.

Although force is the current gold standard for puncture detection, it
tends to performpoorlywithin the context ofDDPD for two reasons.
First, tool-tissue interactions from non-target tissues can produce
sensor features that overshadow the target puncture features.
Second, variations in tissue properties and/or needle insertion
velocities render the selection of generalizable static thresholds
nearly impossible when relying on force alone. These two results,
which have been previously observed bymultiple DDPD researchers
investigating other clinical applications, motivated our proposal
to explore both reflectance and multimodal (ensemble) puncture-
detection approaches.

Despite these issues, the performance of force-only DDPD
schemes can be improved substantially with the inclusion of
higher-frequency signal content, as suggested by Kowal (2017) and
implemented here via HPFs. Table 4 confirms that the test set MOP
increased from 8.2% for the best base pair in the traditional force-
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TABLE 4 Quantitative comparison of best optimal pairs and ensemble results in the test set of insertions.

Type Signal Ensemble
identifier

λMOP MOP (train)
[%]

MOP
(validate) [%]

MOP (test)
[%]

Optimal pair
Base pair

fz,m9−kow−h175
fz,m25−der

e f
–

0.000 123 9
−4.9676

30.5
10.2

31.3
7.6

21.9
8.2

Optimal pair
Base pair

R4,s25−kow−h225
R2,s47−der

–
–

0.0155
10.1914

43.5
33.1

34.4
38.0

36.4
34.3

Optimal pair
Optimal pair

R1,u−der−h225
R5,s25−der−h175

eR1
eR5

−283.7826
3.0292

41.2
37.6

40.6
39.6

35.6
29.5

Ensemble
Ensemble
Ensemble

EM (e f ,eR1,eR5)
EWS (e f ,eR5)
EM (eR1,eR5)

–
–
–

0.0245
16.506

764.6

41.1
40.2
42.9

51.0
48.4
37.5

42.1
41.0
39.4

only approach to 21.9% in the best force optimal pair. Therefore,
a 2.7-fold performance improvement was achieved due to HPF
application in force data streams acquired from the base of the
needle. In contrast, HPF’ing had a more modest effect in reflectance
data streams: the test set MOP increased from 34.3% for the best
reflectance base pair to 36.4% in its best optimal pair, i.e., only a
1.06-fold improvement.

Regardless, our results show that puncture detection using
simple diffuse backscattered reflectance substantially outperforms
any DDPD method applied to the output of a base-mounted force
sensor–with or without the addition of an HPF. Indeed, the highest
reflectance MOP from the test set was 4.4 times larger and 1.7 times
larger, respectively, than the highest base pair MOP and the highest
optimal pair MOP for force. Clearly, the inclusion of DRS provides
substantial improvements over the standard approach.

Better yet, multiplying data streams together (as proposed
by Gonenc with position and force) yields even greater
performance improvements. Specifically, the best ensemble result
provided a 5.1-fold improvement over the traditional force-only
approach in the test set of insertions, which is an especially
impressive result given the exceptionally lightweight nature of
DDPD algorithms.

6.2 Limitations and future work

The baby back ribs used in this experiment had characteristics
that are representative of human tissues, but they lacked the portion
of the chest wall from the skin to the ribs. These missing tissues
would have generated higher friction forces on the needle shaft,
thus obscuring LoR sensations and potentially leading to higher
overshoot.The tissue samplewas stationary, it did not bleed ormove,
and itwas ergonomically positioned for ease of insertion.These three
factors likely decreased the difficulty of the needle insertions. The
needle exit location was not clinically accurate given its exposure to
ambient light, and it lacked the underlying tissues whose accidental
puncture would have constituted an ND complication. To improve
the clinical accuracy of future experiments, the needle must exit the
tissue into a dark space filled with air, ideally with critical structures
positioned just beyond the air gap. Such a configuration would
allow for an evaluation of system utility in terms of the reduction

of ND complications. Performance should also be evaluated during
insertions that do not puncture the pleural membrane, which would
test our proposed approach in the context of failed insertions.

Additionally, the laboratory environment employed in the
reported study was far too quiet, calm, and comfortable to be
representative of an emergency department or an accident scene.
Increased realism during the ND task would almost certainly
increase needle overshoot. Future experiments should attempt to
heighten the realism by purposefully stressing and/or distracting
operators. The robustness of the needle instrumentation should also
be improved to protect the optical fibers from accidental breakage
during more realistic use.

Though they are exciting, our results may not be representative
of population means, since this validation experiment employed a
single tissue sample and only two operators.Thus, our results are also
limited by the small sample size. Although the quantitative results
of this experiment yielded promising patterns, these patterns may
not be reproducible in amore comprehensive data set. Furthermore,
our results shed no light on the performance of expert operators.
It will be important to test the clinical utility of puncture-detection
notifications to identify scenarios where the instrumented needle-
insertion adjunct we envision could be deployed to assist medical
operators. As such, a large-scale user study is warranted; ideally, the
study should include both naïve and expert participants to explore
how reliably each type of operator canminimize overshoots based on
tool sensations alone. It could also be beneficial to carefully compare
the varied existing approaches employed by clinicians (e.g., syringe
aspiration and/or auditory cues) with the DDPD methods proposed
in this work.
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