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Piloting an aircraft is a cognitive task that requires continuous verbal, visual,
and auditory attentions (e.g., Air Traffic Control Communication). An increase or
decrease in mental workload from a specific level can alter auditory and visual
attention, resulting in pilot errors. The objective of this research is to monitor
pilots’ mental workload using advancedmachine learning techniques to achieve
improved accuracy compared to previous studies. Electroencephalogram (EEG)
data were recorded from 22 pilots operating under visual flight rules (VFR)
conditions using a six dry-electrode Enobio Neuroelectrics system, and the
Riemannian artifact subspace reconstruction (rASR) filter was used for data
cleaning. An information gain (IG) attribute evaluator was used to select 25
optimal features out of 72 power spectral and statistical extracted features.
In this study, 15 classifiers were used for classification. Multinomial logistic
regression with a ridge estimator was selected, achieving a significant mean
accuracy of 84.6% on the dataset from 17 subjects. Data were initially collected
from 22 subjects, but 5 were excluded due to data synchronization issues. This
work has several limitations, such as the author did not counter balance the
order of scenario, could not control all the variables such as wind conditions,
and workload was not stationary in each leg of the flight pattern. This study
demonstrates that multinomial logistic regression with a ridge estimator shows
significant classification accuracy (p < 0.05) and effectively detects pilot mental
workload in real flight scenarios.

KEYWORDS

dry-electrode EEG, real flight conditions, artifact subspace reconstruction, auditory
attention, Enobio neuroelectrics system, passive brain computer interface

1 Introduction

Human errors, including pilot errors, are among the major causes of aviation
accidents (Li et al., 2001). According to NASA, in 2004, pilot error was listed as
the primary cause of 78.6% of fatal general aviation accidents in the United States
(Shively, 2013). The International Civil Aviation Organization (ICAO) also states
that pilot errors were a contributing factor in 60%–80% of aviation accidents. The
Flight Safety Foundation (FSF), another organization that provides information on
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FIGURE 1
Typical BCI system.

aviation safety reported in 2020 that human factors such as pilot
error, maintenance error, and air traffic control errors contributed to
approximately 70% of aviation accidents (Flight Safety Foundation,
2000). According to the Federal Aviation Administration, human
factors directly cause or contribute to many aviation accidents and
have been documented as a primary contributor in more than
70% of aircraft accidents (Duncan, 2016). In emergency situations,
the mental overload experienced by pilots can negatively impact
their vision and auditory senses, leading to pilot errors. To combat
this issue, the use of a brain–computer interface (BCI) system
has been proposed. BCIs enable direct communication between
the brain and an external device, such as a computer, without
relying on traditional motor output pathways. Among BCIs, a
passive brain–computer interface (pBCI) has been developed as a
specialized extension designed to monitor mental states such as
mental workload (Zander and Kothe, 2011; Aricó et al., 2017).
This systemutilizes biological signals, such as electroencephalogram
(EEG), electrocardiogram (ECG), and eye-tracking signals, to gain
insight into the psychological condition of the pilot (Wang et al.,
2020). By using portable measurement techniques, the labor-
intensive task of data collection is simplified.

BCIs consist of several components that enable the direct
communication of neural signals with external devices, bypassing
traditional motor pathways. These components include signal
acquisition, signal preprocessing, feature extraction and selection,
classification, and application, as shown in Figure 1. Signal
acquisition involves collecting neural signals from the user’s
brain, followed by preprocessing to enhance data quality. Feature
extraction and selection identify relevant information from
the signals, which are then classified using machine learning
algorithms. The final application component translates these
classified outputs into actions, such as controlling external devices
or monitoring cognitive states. Passive BCIs, as an extension of BCI,
focus specifically on monitoring mental states such as workload
without requiring active user engagement. The integration of these
components allows pBCIs to provide valuable insights into cognitive
states, offering applications in aviation and other high-stakes
environments.

Some other authors have also monitored mental workload
for different purposes using EEG signals, as shown in Table 1.
The feasibility of using EEG in actual flight conditions has been
investigated in previous studies (Sauvet et al., 2014; Di Stasi et al.,
2015; Sterman et al., 1988; Wilson et al., 1987). However, the
EEG system utilized by these authors employed wet electrodes,
which require the use of conductive gel on the scalp, making it

impractical for daily flight operations. To overcome this limitation,
the development of gel-free pre-amplified dry electrodes has been
initiated, which also allows for wireless communication protocols
(e.g., Wi-Fi and Bluetooth) and provides greater freedom of
movement for users during mobile recordings (Blum et al., 2017).
Although the use of dry electrodes remains challenging due to
their lower signal-to-noise ratio compared to that of wet electrodes
(Guger et al., 2012; Searle and measurement, 2000), and several
studies have successfully implemented offline pBCIs using dry-
electrode EEG systems in actual flight conditions (Dehais et al.,
2018; Scholl et al., 2016; Callan et al., 2015). However, the
cockpit environment is characterized by high levels of noise from
engine vibrations, pilots’ muscular activity, and electromagnetic
interference, which can affect the signal-to-noise ratio and, thus,
limit the efficacy of dry electrodes. Moreover, the use of multiple
channel systems (e.g., 32 or 64 electrodes) in these studies can
be cumbersome and uncomfortable for subjects over extended
periods of time. A similar approach is to reduce the number
of electrodes in the pilots’ headset, but this approach has its
own drawback as the reduction in electrodes prevents the use of
the independent component analysis (ICA) technique to identify
artifactual components (Delorme and Makeig, 2004). Artifact
subspace recognition (ASR) is a solution for the abovementioned
drawback because it removes short-time high-amplitude artifacts
automatically. Recently, Blum et al. (2019) explored Riemannian
ASR (rASR), an alternative method for artifact removal with lower
computational costs, higher reliability, and greater sensitivity to eye
artifacts in mobile EEG data compared to ASR. It is an open-source
project and is available as a MATLAB toolbox (rASRMatlab, 2025).

EEG data are crucial for monitoring and assessing mental
workload by analyzing neural activity patterns (Dan and Reiner,
2017). Alpha, beta, theta, gamma, and delta waves in EEG signals
have different frequencies and amplitudes, providing insights into
various cognitive states (Harmony, 2013). The higher frequency
and lower amplitude of beta waves mostly relate to higher activity
in the brain (Schmidt et al., 2019), whereas the higher amplitude
alpha waves diminish when the brain is hyperactive (Klimesch,
1999). Gamma waves indicate voluntary motor movement and
learning processes (Ulloa, 2022). Research related to neuroscience
considers non-invasive and invasive EEG recordings to be the
candidate techniques for BCI applications. Invasive techniques
require electrode implantation in the cortex, and recording EEG
is a time-consuming process, which might result in medical
complications. On the other hand, non-invasive EEGmethods avoid
such invasive procedures, reducing the likelihood of complications
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TABLE 1 Relative research contributions.

Authors name No. of
channels

Electrode
type

Technique
type

Objective Participants Accuracy

Winnie K. Y. So,
Savio W. H. Wong,
Joseph N. Mak, Rosa
H. M. Chan
(So et al., 2017)

1 Dry EEG Evaluate dynamic
changes in mental
workload

University students 65%–75%

Frédéric Dehais,
Alban Duprès, Sarah
Blum, Nicolas
Drougard, Sébastien
Scannella, Raphaëlle
N. Roy, Fabien Lotte
(Dehais et al., 2019)

6 Dry EEG Monitoring pilot’s
mental workload

Pilots 70%

Jordan J. Bird, Luis J.
Manso, Eduardo P.
Ribeiro, Anikó
Ekárt, Diego R. Faria
(Bird et al., 2018)

5 Dry EEG Mental state
recognition

University students 87%

Adil Deniz DURU
(Duru, 2019)

16 Dry EEG Determination of
increased mental
workload condition

University students 96%

Sushil Chandra,
Kundan Lal Verma,
Greeshma Sharma,
Alok Mittal
(Chandra et al.,
2015)

14 Dry EEG Cognitive workload
classification

University students 61.68%

Shouyi Wang, Jacek
Gwizdka, W. Art
Chaovalitwongse
(Wang et al., 2016)

14 Dry EEG Using wireless EEG
signals to assess
memory workload

University students 81% (Entire session
using all trials)

Sanay Muhammad
Umar Saeed, Syed
Muhammad Anwar,
Muhammad Majid,
Muhammad Awais,
Majdi Alnowami
(Saeed et al., 2018)

1 Dry EEG Human stress
classification

University students
or faculty member

83.33%

Gerald Matthews,
Lauren
Reinerman-Jones,
Julian Abich IV,
Almira Kustubayeva
(Matthews et al.,
2017)

9 Dry EEG To compare
alternate metrics of
EEG response to
cognitively
Demanding tasks as
indicators of
operator functional
status

University students 80.3% (Threat
detection)

Hongquan Qu,
Yiping Shan, Yuzhe
Liu, Liping Pang,
Zhanli Fan, Jie
Zhang, Xiaoru
Wanyan (Qu et al.,
2020)

32 Dry EEG Mental workload
classification
method based on
EEG independent
component features

University students 79.8% (Method 1)

(Continued on the following page)
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TABLE 1 (Continued) Relative research contributions.

Authors name No. of
channels

Electrode
type

Technique
type

Objective Participants Accuracy

Hamed Taheri Gorji,
Nicholas Wilson,
Jessica VanBree,
Bradley Hoffmann,
Thomas Petros
(Taheri Gorji et al.,
2023)

20 Dry EEG Discriminate the
aircraft pilot cognitive
workload during flight

Collegiate aviation
students

91.67%

Salvan L, Paul TS,
Marois A (32)

3 Dry EEG Dry EEG-based
mental workload
prediction for aviation

Random participants 76%

Wang Y, Han M, Peng
Y, Zhao R, Fan D,
Meng X (Blum et al.,
2019)

32 Dry EEG Learning local–global
EEG representations
for cognitive
workload
classification in
simulated flights

Random participants 91.19%

Ibrahim Alreshidi,
Irene Moulitsas, Karl
W. Jenkins
(Alreshidi et al., 2023)

20 Dry EEG Mental state detection Pilots 86%

Bas Verkennis, Evy
van Weelden,
Francesca L. Marogna,
Maryam Alimardani,
Travis J. Wiltshire,
Max M. Louwerse
(Verkennis et al.,
2024)

14 Dry EEG Mental workload
prediction

Pilots (virtual flight
simulation)

78%

Hernández-Sabaté A,
Yauri J, Folch P, Piera
MÀ, Gil D
(Hernández-
Sabaté et al., 2022)

14 Dry EEG Recognition of the
mental workloads

Pilots (in cockpit) 82.03%

Lee DH, Kim SJ, Kim
SH, Lee SW
(Lee et al., 2024)

34 Dry EEG + EOG Decoding EEG–based
workload levels

Pilots (in simulator) 86.13%

(Posada-Quintero et al., 2019). Experiments consisting of low- and
high-load conditions were carried out by Soeiro (2019). In low-load
conditions, the pilots observed, while the flight instructor handled
the flight, whereas in high-load conditions, they operated the plane
themselves. The analysis showed higher band power for theta and
alpha in the low-load condition, and 70% classification accuracy was
achieved through extracted frequency features (Soeiro, 2019).

Recent studies have used classifiers to predict outcomes; an
example is linear regression with a ridge estimator. The studies
show the use of regression analysis on predictors based on EEG
and heart rate to test the activeness of the brain while facing
obstacles (Kabir et al., 2016). Logistic regression (LR) is a widely
used method for classifying binary data. It aims to classify a dataset
into a categorical variable or binary using the logistic regression
function. LR is a specialized form of regression used to classify data
of an event according to Bernoulli distribution. Previous studies

often relied on EEG data collected under controlled settings, which
may not fully represent the noisy environment of the cockpit
(Wang et al., 2024). Advancements in technology have facilitated
the retrieval of EEG signals during the actual flight operations. Dry
EEG systems, such as the six-electrode system used in this study, are
easier to wear and are more practical for operational environments.
However, their lower signal-to-noise ratio can impact classification
accuracy, particularly in noisy cockpit environments, influenced by
vibrations and electromagnetic interferences (Lujan-Moreno et al.,
2014). In a prior study that utilized three dry electrodes (Salvan et al.,
2023), the accuracy was 76%. To improve the accuracy, this
study incorporates six dry electrodes, thereby enhancing the
richness and depth of data collection. This underscores the
robustness and effectiveness of assessing pilots’ mental workload
in real flight scenarios, thereby contributing to enhanced aviation
safety measures.
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This study proposes a mechanism that can minimize human
error and enhance passenger safety by monitoring the pilot’s
mental condition. This study processes data from a previous study
(Dehais et al., 2019). The data have already been preprocessed
(Dehais et al., 2019), and the focus of this study is to enhance the
accuracy using advanced machine learning techniques. In addition
to power features, statistical features were also extracted to increase
the accuracy. To optimize processing speed, the significant features
were selected using the information gain feature selection method,
as shown in Figure 12, implemented by WEKA. Various machine
learning classificationmodels, such as naïve Bayes, linear regression,
logistic regression, random forest, and decision tree, were studied
and applied sequentially usingWEKA to achieve enhanced accuracy,
as demonstrated in Figures 10, 11.

This study introduces significant advancements in monitoring
pilots’ mental workload in real flight scenarios. Unlike many prior
studies that relied on cumbersome EEG setups with multiple
electrodes (e.g., 16 or more), this research employs a six-dry-
electrode EEG system, overcoming these limitations and offering
a practical, user-friendly solution suitable for operational settings.
Additionally, the study is conducted under real flight conditions
with pilots as participants, addressing challenges such as cockpit
noise, vibrations, and electromagnetic interference. These factors
make the findings directly applicable to aviation safety, whereas
many previous studies relied on university students or pilots in
controlled laboratory environments. The incorporation of both
power and statistical features enhances the richness of the data,
while advanced feature selection through the information gain
method and classification usingmultinomial logistic regressionwith
a ridge estimator achieves a significant accuracy of 84.6%. The
study also emphasizes the importance of balancing accuracy and
computational efficiency, identifying a feature set that optimally
reduces classification time to just 0.03 s without compromising the
accuracy. Furthermore, statistical validation through a Student’s t-
test confirms the superiority of the proposed classifier, ensuring
reliability and reproducibility. By achieving competitive accuracy
with fewer electrodes, this research sets a new benchmark
for simplified and effective EEG-based monitoring systems in
aviation, demonstrating its potential to enhance safety and reduce
human error.

2 Materials and methods

2.1 Material

Twenty-two pilots operating under visual flight rules (VFR)
completed the experiment, and all of thempassed themedical fitness
test for flying. In the previous study, four subjects were excluded
due to data synchronization issues (Dehais et al., 2019). However,
during the preprocessing phase of this study, subject number 17
was identified with severe EEG signal inconsistencies that were not
previously detected. These inconsistencies were observed during
feature extraction and classification, leading to the exclusion of this
subject to ensure data reliability. As a result, a total of five subjects
were rejected in this study due to data synchronization issues.
The total duration of a subject’s session was approximately 1 hour.
The study was conducted using the ISAE-SUPAERO experimental

light aircraft, and the DR400 light aircraft was powered by a
180 HP Lycoming engine. The flight scenario consisted of two
consecutive traffic patterns, each divided into five flight phases
according to VFR (Figure 2). In the first traffic pattern, i.e., the
low-load condition, the participant (left-seated)monitored the flight
controlled by the flight instructor (right-seated). In the second traffic
pattern, i.e., the high-load condition, the participant was flying
the aircraft under the supervision of the flight instructor. Time
series plots (2-second duration) of all the channels of subject no.
1 under high- and low-load conditions are shown in Figures 3,
4, respectively. The EEG data were divided into successive, non-
overlapping epochs of 2 s, independent of stimuli onset. Each epoch
contained 1,000 samples (with a sampling frequency of 500 Hz).
This segmentation method was chosen to ensure a continuous
representation of the pilot’s mental workload during the flight,
rather than being tied to specific task events. Each traffic pattern
lasted approximately 500 s, and the total experiment duration was
approximately 20 min, covering the full flight process from takeoff
to parking. Prefatory experiments were conducted with four pilots
to pre-test the experimental scenario. NASA-TLX score confirmed
two different levels of mental workload (high-load condition = 6.7,
SD0.45; low-load condition 2.56, SD = 0.75) based on two elicited
conditions (Dehais et al., 2019).

EEG data were recorded using six dry-electrodes from the
Enobio Neuroelectrics system (Fz, Cz, Pz, Oz, P3, and P4 sites)
positioned according to the 10–20 system at 500 Hz, as shown
in Figure 5. DRL and CMS were used as reference electrodes
(Dehais et al., 2019). For rASR calibration, cleaned data were
used, and all EEG analyses were run using EEGLAB (V14.1.2) and
MATLAB (). In data preprocessing, frequency domain analysis was
used, where data were high-pass (0.5 Hz) filtered and then processed
using the rASR plugin to remove noise (Dehais et al., 2019). Noisy
portions of data (e.g., trials) were cleaned using the RiemannianASR
(rASR) version of the clean raw data MATLAB toolbox. The toolbox
contains the core functionality clean_asr to correct data segments
that can be applied if short parts of the data are artifactual or only a
minor portion of all channels is affected. Parameters used for clean_
asr were as follows: flatline criterion = 5, highpass = [0.25 0.75],
channel criterion = 0.85, line noise criterion = 4, burst criterion
= 70, and window criterion = 0.10. The experiment was approved
by the European Aviation Safety Agency (EASA60049235). The
methods were carried out in accordance with approved guidelines,
and participants provided their informed written consent.

2.2 Methods

2.2.1 Feature extraction
Feature extraction includes extracting the features, also known

as input attributes, that will be used in the classification of mental
workload. Following the literature review (Dan and Reiner, 2017;
So et al., 2017; Duru, 2019), it is observed that the main feature
for mental workload classification is the band power of delta, theta,
alpha, beta, and gamma channels. For six channels, the extracted
power features (band power of delta, theta, alpha, beta, and gamma x
6) are 30, and some statistical features, which includemean, standard
deviation, maximum, variance, area under the curve, skewness,
and kurtosis, were also used. The total number of extracted
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FIGURE 2
Flight scenario.

FIGURE 3
Time-series plot of EEG signals under high-mental workload (subject no. 1).

temporal and spectral features was 72, including both power and
statistical features. The statistical features were calculated using
MATLAB’s built-in functions for efficiency and accuracy. These
features included mean (mean), standard deviation (std), maximum
(max), the area under the curve (trapz), kurtosis (kurtosis), variance
(var), and skewness (skewness). These computations were applied
to the amplitude time series of EEG signals from each channel to
extract relevant features for classification.

2.2.2 Feature selection
In machine learning and statistics, feature selection, also

known as variable selection, attribute selection, or variable
subset selection, is the process of selecting a subset of
relevant features for use in model construction. Feature
selection techniques are used for several reasons, which include

simplifying models to enhance interpretability for researchers/users
(James et al., 2013), reducing training times, avoiding the curse
of dimensionality, and improving generalization by reducing
overfitting (Bermingham et al., 2015) [formally, reduction of
variance (Bermingham et al., 2015)]. In this study, the objective
of feature selection is three-fold, which includes improving the
prediction performance of the predictors, providing faster andmore
cost-effective predictors, and providing a better understanding
of the underlying process that generated the data (Guyon and
research AEJ of machine learning, 2003).

For feature selection, the information gain attribute evaluator
(InfoGainAttributeEval) and correlation attribute evaluator
(CfsSubsetEval) were used to compare the optimal evaluator
with nine-fold cross validation. Information gain evaluates the
relevance of each feature by measuring the reduction in entropy
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FIGURE 4
Time-series plot of EEG signals under low-mental workload (subject no. 1).

FIGURE 5
Electrode positioning (10–20 system).

when a feature is included in the model, while the correlation-
based feature selection method selects the subsets of attributes that
are highly correlated with the class variable but exhibit minimal
correlation with each other, reducing redundancy. The Ranker
searchmethod (weka.attributeSelection.Ranker)was applied to rank
features individually. The Ranker search was configured to generate
ranking (generateRanking = True), ensuring that the attributes were
ranked based on their individual evaluation scores. All features were

initially considered for ranking (numToSelect = −1), meaning that
no attributes were removed unless explicitly set by a threshold. The
threshold was left at its default value (−1.7976931348623157E308),
ensuring that no attributes were discarded unless they contributed
negligibly to classification performance. The startSet parameter was
left empty to allow the evaluation of all features during the ranking
process. Multinomial logistic regression was used as a fitness model
benchmark to select the optimal attribute evaluator. The InfoGain
attribute evaluator with 25 features, as shown in Figure 12, was
selected as the optimal evaluator, as shown in Tables 2, 3. Feature
selection and classification were performed using an Intel Core
i5-4210U CPU @ 1.70 GHz with 4 GB RAM and implemented
using WEKA (Partners, 2020).

2.2.2.1 Information gain attribute evaluator
Information gain (IG) shows how much an attribute contributes

to predicting the output by measuring the reduction in entropy.
Its value varies from 0 to 1, where 0 shows no information,
meaning that the attribute can be removed from the dataset, while
1 shows that this attribute plays a maximal role in predicting
the output. WEKA (Partners, 2020) supports feature selection
via information gain using the InfoGainAttributeEval attribute
evaluator with the ranker search method.

The entropy of Y is shown in Equation 1 as follows:

H(Y) = −∑
y∈Y

p(y)log2(p(y)), (1)

where p(y) is the marginal probability density function for the
random variable Y.Then, the entropy of Y after observing X is shown
in Equation 2 as follows:

H(Y
X
) = −∑

x∈X
p(x)∑

y∈Y
p(

y
x
)log2(p(

y
x
)), (2)
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TABLE 2 Subject-specific classification performance using information gain-based feature selection with nine-fold cross-validation.

Subject
No.

40 features 35 features 30 features 25 features 20 features

Time
(Sec)

Accuracy
%

Time
(Sec)

Accuracy
%

Time
(Sec)

Accuracy
%

Time
(Sec)

Accuracy
%

Time
(Sec)

Accuracy
%

1 0.3 94.68 0.05 95.53 0.05 95.10 0.03 96.81 0.03 97.02

2 0.06 87.66 0.05 87.02 0.04 85.74 0.06 86.38 0.03 85.53

3 0.04 85.53 0.04 85.10 0.03 82.13 0.02 83.40 0.01 82.77

4 0.1 82.55 0.07 82.77 0.04 82.77 0.04 83.19 0.03 82.34

5 0.15 82.77 0.07 81.70 0.06 82.34 0.03 83.62 0.02 76.81

6 0.1 63.19 0.02 56.38 0.02 61.70 0.01 60.00 0.01 56.60

7 0.07 85.96 0.04 86.60 0.05 84.47 0.02 84.68 0.02 83.19

8 0.05 87.23 0.04 88.30 0.04 88.94 0.03 88.94 0.03 86.17

9 0.11 90.43 0.07 91.49 0.06 91.06 0.03 90.85 0.02 91.06

10 0.09 82.77 0.05 82.77 0.07 82.98 0.03 83.83 0.03 83.19

11 0.07 96.38 0.06 96.60 0.05 97.23 0.02 98.08 0.04 97.23

12 0.02 75.74 0.01 75.96 0.01 76.17 0.01 74.68 0.01 74.25

13 0.41 92.76 0.2 93.62 0.12 93.61 0.08 94.25 0.04 94.89

14 0.03 71.27 0.03 70.64 0.03 71.70 0.02 71.06 0.02 71.06

15 0.33 91.70 0.18 93.19 0.04 92.34 0.03 92.76 0.02 92.76

16 0.03 77.23 0.01 73.40 0.01 72.34 0.01 71.91 0.01 71.06

18 0.09 92.13 0.05 92.77 0.04 94.04 0.04 93.83 0.03 94.47

Mean 0.121 84.70 0.06 84.34 0.05 84.39 0.03 84.6 0.02 83.55

Std 0.11 8.82 0.05 10.49 0.02 9.65 0.01 9.97 0.01 11.01

where p (y |x) is the conditional probability of y given x. Given the
entropy is a criterion of impurity in a training set S, we can define
a measure reflecting additional information on Y provided by X
that represents the amount by which the entropy of Y decreases.
This measure is known as IG. It is given by the formula for IG
is shown in Equation 3 as follows

IG =H(Y) −H(Y
X
) =H(X) −H(X

Y
). (3)

The information gained on Y after observing X is equal to the
information gained on X after observing Y. A weakness of the IG
criterion is that it is biased in favor of features withmore values even
when they are not more informative (TELFOR JN, 2009).

2.2.2.2 Correlation attribute evaluator
Correlation shows the relationship between features and the

target variable. The optimal features are those that are more

related to the targeted variable. Correlation can be positive (an
increase in one value of the feature increases the value of the
target variable) or negative (an increase in one value of the feature
decreases the value of the target variable). The correlation attribute
evaluator (CAE) evaluates subsets of features on the basis of
the following hypothesis: “good feature subsets contain features
highly correlated with the classification, yet uncorrelated to each
other” (Hall, 1999; Senliol and Gulgezen, 2014). The merit of a
feature subset S consisting of k features is shown in Equation 4
as follows:

Meritsk =
krcf

√k + k(k − 1)rf f
. (4)

Here, rc f is the average value of all feature–classification
correlations, and r f f is the average value of all feature–feature
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TABLE 3 Subject-specific classification performance using correlation-based feature selection with nine-fold cross-validation.

Subject
No.

40 features 35 features 30 features 25 features 20 features

Time
(Sec)

Accuracy
%

Time
(Sec)

Accuracy
%

Time
(Sec)

Accuracy
%

Time
(Sec)

Accuracy
%

Time
(Sec)

Accuracy
%

1 0.29 94.68 0.08 95.53 0.03 96.38 0.02 97.23 0.03 96.80

2 0.11 88.93 0.04 88.94 0.05 87.87 0.03 87.65 0.03 87.87

3 0.09 94.89 0.04 96.17 0.04 95.74 0.03 79.57 0.01 78.51

4 0.06 81.06 0.04 81.28 0.04 81.49 0.03 80.64 0.01 79.36

5 0.08 85.74 0.05 85.95 0.04 84.04 0.02 81.70 0.02 82.98

6 0.03 89.15 0.03 89.15 0.02 66.60 0.01 62.77 0.01 61.28

7 0.04 84.47 0.04 84.47 0.03 82.97 0.01 82.55 0.05 81.70

8 0.03 67.45 0.03 67.65 0.03 68.30 0.02 61.91 0.01 61.91

9 0.1 90.64 0.09 89.78 0.04 89.36 0.03 90.21 0.02 89.79

10 0.05 85.32 0.05 84.68 0.04 85.32 0.04 85.32 0.03 83.40

11 0.09 95.32 0.09 95.96 0.08 97.23 0.04 98.30 0.03 98.51

12 0.03 75.11 0.02 74.89 0.02 76.38 0.01 76.38 0.01 74.89

13 2.95 92.34 0.36 93.19 0.17 93.40 0.05 93.83 0.03 94.47

14 0.03 70.64 0.03 68.30 0.02 67.66 0.01 69.15 0.01 67.02

15 0.11 93.19 0.05 93.62 0.04 93.83 0.04 93.83 0.03 92.98

16 0.02 72.12 0.02 72.13 0.01 72.13 0.01 70.21 0.02 70.43

18 0.08 91.49 0.14 91.91 0.04 93.40 0.11 93.19 0.03 93.83

Mean 0.25 85.44 0.07 85.5 0.04 84.24 0.03 82.61 0.02 82.102

Std 0.69 9.07 0.08 9.54 0.03 10.62 0.02 11.52 0.01 11.90

correlations. The CFS criterion is shown in Equation 5
as follows:

CFS =maxSk
[[[[

[

rcf 1 + rcf 2 + · · ·rcf k

√k + 2(rf 1f 2 + · · ·rf if j + · · ·rf kf k−1)

]]]]

]

. (5)

2.2.3 Classification
In machine learning, the classification technique is used to

distinguish between two or more than two classes. For mental
workload detection, 15 classifiers have been used in this study,
as shown in Figures 10, 11, and the maximum accuracy has been
achieved by multinomial logistic regression with a ridge estimator
implemented byWEKA.Todetermine the best-performing classifier
for this study, multiple machine learning algorithms are applied
and evaluated using the WEKA tool. These algorithms included
naïve Bayes, multinomial logistic regression, multilayer perceptron,

simple logistic regression, SMO, decision trees, and several others.
The performance of each classifier was assessed based on its mean
classification accuracy from nine-fold cross validation, as depicted
in Figure 10. Among the tested algorithms, multinomial logistic
regression emerged as the best-performing classifier, achieving
the highest mean accuracy of 84.6%, as shown in Figure 10.
This methodology ensured an objective comparison by selecting
the classifier that demonstrated the most reliable and accurate
predictions for the dataset.

This classifier extends traditional logistic regression by
incorporating a ridge penalty (ridge = 1.0E-8) to mitigate overfitting
while maintaining model stability. The optimization of model
parameters was performed using the quasi-Newton method, which
is well-suited for handling high-dimensional datasets. Missing
values within the dataset were handled using WEKA’s built-
in ReplaceMissingValuesFilter, preventing inconsistencies in the
training process. Additionally, the classifier was configured with a
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batch size of 100 to optimize processing efficiency. The maximum
number of iterations (maxIts) was set to −1, allowing the model to
iterate until convergence. The doNotCheckCapabilities setting was
kept at false, ensuring that the classifier constraints were validated
before execution to maintain consistency in model training and
evaluation.

Standardization or normalization prevents potential biases from
certain attributes within the dataset. In this study, no explicit
normalization or standardization of the feature sets was performed
prior to training the algorithms. This approach leverages the
preprocessing capabilities of the WEKA tool, which ensures that
if the instance weights are not uniform, the data are resampled
with replacement based on the weights before being passed to the
base classifier. Therefore, WEKA served the purpose and prevented
potential biases from certain attributes within the dataset.

For classification, the authors used nine-fold cross validation
to evaluate the model performance. The dataset was divided into
nine subsets, with each subset serving as the test set once, while the
remaining eight subsets were used for training. Model parameters
were also finalized based on cross-validation performance using a
nine-fold cross-validation approach. This ensured that the selected
parameters generalize well to unseen data while minimizing
overfitting. Additionally, default WEKA settings were retained for
hyperparameters where prior experimentation indicated stability.

2.2.3.1 Multinomial logistic regression
Multinomial logistic regression is one of the most important

classifiers for analyzing categorical data (El-Habil, 2012).Thismodel
deals with one nominal/ordinal response variable that has equal or
more than two categories, whether it is a nominal or ordinal variable.
Thismodel has been applied to data analysis inmany areas, including
health, social sciences, behavioral studies, and education (El-Habil,
2012). By using this classifier, the mean classification accuracy of
84.6% and mean classification time of 0.03 s were achieved, and the
remarkable accuracy among all of them is shown in Figures 10, 11.

3 Results

3.1 Feature selection results

Feature selection has been performed using two main feature-
selection algorithms known as information gain and correlation
implemented by WEKA. Multinomial logistic regression with a
ridge estimator has been used as a benchmark classifier to select
the best feature selection method. For this purpose, the model has
been classified using 40 features, 35 features, 30 features, 25 features,
and 20 features, with both feature selection methods, as shown in
Tables 2, 3. Mean classification time and accuracy are shown in
Figures 6–9. Correlation-based feature selection with 35 features
shows the highest mean accuracy of 85.5%, while correlation-
based feature selection with 20 features shows a mean accuracy
of 82.1%, as shown in Figures 8, 9. It is concluded that when the
number of features decreases, the accuracy also decreases, and
the classification time also reduces. To monitor the pilot’s mental
workload, the classification time should be as low as possible, so in
terms of classification, time correlation-based feature selection with
35 features is not a preferred solution. A more efficient solution is

the one with high accuracy and less classification time, so it is a
tradeoff between accuracy and time. Information gain-based feature
selection with 25 features shows a mean accuracy of 84.6% and a
mean classification time of 0.03 s, as shown in Figures 6, 7, which is
a preferred solution.The EEG signal of each subject differs from that
of the others, which leads to variations in the best-selected features
for each subject, as shown in Figure 12. However, the percentage
distribution of features remains consistent across subjects, with
an average of approximately 50% power-based features and 50%
statistical features being selected.

The IG and CAE feature selection methods have key differences
in terms of mean accuracy and computation time. IG demonstrates
better stability in accuracy across varying feature subsets,
maintaining a consistent performance as the number of features
decreases.The accuracy of IGdecreases from84.7% for 40 features to
83.55% for 20 features. In contrast, CAE starts with higher accuracy
for larger feature sets, achieving 85.44% for 40 features, but accuracy
decreases significantly as the number of features decreases, reaching
82.1% for 20 features. Moreover, regarding computation time, IG is
faster, taking only 0.12 s for 40 features and 0.03 s for 25 features,
while CAE requires significantlymore time for larger feature subsets,
such as 0.25 s for 40 features.Thismakes IGmore efficient, especially
in time-sensitive applications.

For real-time classification tasks such as monitoring the
pilot’s mental workload, minimizing classification time is critical.
CAE with 35 features, despite offering higher accuracy, is not a
preferred solution due to its relatively longer classification time.
The best solution lies in achieving a balance between accuracy
and computation time. IG with 25 features, as shown in Figure 12,
achieves a mean accuracy of 84.6% and a mean classification
time of just 0.03 s, making it a more suitable choice for real-time
applications. This tradeoff between accuracy and time shows the
importance of selecting a method that ensures significant accuracy
while maintaining low classification time.

3.2 Classifier selection results

Fifteen classifiers, namely, naïve Bayes, naïve Bayes updateable,
simple logistic regression, multinomial logistic regression,
multilayer perceptron, SGD, SGDText, SMO, VotedPerceptron,
attribute-selected classifier, MultiScheme, decision stump,
Hoeffding tree, J48, and stacking, were used to select the optimal
classifier, as shown in Figures 10, 11. Information gain-based feature
selection with 25 features has been used as a benchmark to select
the optimal classifier. Multinomial logistic regression with a ridge
estimator shows the significant mean classification accuracy from
nine-fold cross validation of 84.6% (mean precision = 85.07% and
mean recall = 84.6%) and a mean classification time of 0.03 s, as
shown in Figures 10, 11. The study shows that statistical features can
also be used along with power features, as shown in Figure 12, to
increase the classification accuracy and decrease the computational
cost and time; the information gain feature selection performs better.
For classification purposes, multinomial logistic regression with a
ridge estimator shows the optimal solution, as shown in Figures 10,
11. The null hypothesis/significant test was also performed using
the Student’s t-test (two tailed distribution), as shown in Table 4.
The Student’s t-test with a two-tailed distribution was performed to
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FIGURE 6
Mean classification accuracy using multinomial logistic regression (cross validation = 9 folds) for information gain-based feature selection (error bars
represent standard deviation).

FIGURE 7
Mean classification time using multinomial logistic regression (cross validation = 9 folds) for information gain-based feature selection (error bars
represent standard deviation).

statistically compare the classification performance of multinomial
logistic regression with that of other classifiers. This test used the
accuracy results from multiple classification runs to determine
whether the observed differences in performance were statistically
significant or occurred by chance.The results show thatmultinomial
logistic regression significantly outperformed classifiers such as
naïve Bayes and naïve Bayes updateable (p-values = 1.42971E−07),
providing strong statistical evidence of its superior performance.
This analysis validates the observed differences in accuracy,
reinforcing the conclusion that multinomial logistic regression is
a more effective classifier in this context.

4 Discussion

In actual flight conditions (Sauvet et al., 2014; Di Stasi et al.,
2015; Sterman et al., 1988), EEG has been tested by the pioneering
work of Wilson et al. (1987). However, these authors used a wet-
electrode-based EEG system that might not be feasible for daily
flight operations due to the use of conductive gel on the user’s scalp.
With advancements in technology, the development of gel-free, pre-
amplified dry electrodes has started. Furthermore, the use ofwireless
communication protocols (e.g., Wi-Fi and Bluetooth) provides
freedom of movement for a user and enables signal processing
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FIGURE 8
Mean classification accuracy using multinomial logistic regression (cross validation = 9 folds) for correlation-based feature selection (error bars
represent standard deviation).

FIGURE 9
Mean classification time using multinomial logistic regression (cross validation = 9 folds) for correlation-based feature selection (error bars represent
standard deviation).

during mobile recordings (Blum et al., 2017). As classical wet/gel
electrodes have a higher signal-to-noise ratio than dry electrodes,
the use of dry electrodes remains challenging (Guger et al.,
2012; Searle and measurement, 2000). The cockpit environment
is particularly noisy due to vibrations (e.g., engine), pilots’
muscular activity, and electromagnetic interferences, so the signal-
to-noise ratio issue might be critical. Despite all these technical
challenges, some authors tested dry-electrode EEG systems in
actual flight conditions and implemented offline pBCIs successfully

(Dehais et al., 2018; Scholl et al., 2016; Callan et al., 2015). In these
studies, multiple channel systems (32 or 64 electrodes) were used,
which are cumbersome and cannot be worn by subjects for long
periods of time. A similar approach is to reduce the number of
electrodes in the pilots’ headset, but this approach has the drawback
of preventing the use of the ICA technique to identify artifactual
components (Delorme and Makeig, 2004).

This study employs a novel approach to monitor pilots’ mental
workload using a six-dry-electrode EEG system in real flight
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FIGURE 10
Mean classification accuracy (cross validation = 9 folds) of different classifiers without feature selection (error bars represent standard deviation).

FIGURE 11
Mean classification time (cross validation = 9 folds) of different classifiers without feature selection (error bars represent standard deviation).

conditions. Previously, Taheri Gorji et al. (2023) achieved 91.67%
accuracy with a 20-electrode system, demonstrating the potential
of advanced setups, but it was at the cost of increased complexity
and reduced practicality. Similarly, Matthews et al. (2017) reported
an accuracy of 80.3% using nine electrodes for cognitive task
detection, and Wang et al. (2016) achieved 81% accuracy with
14 electrodes. The approach in this study outperforms both while
utilizing fewer electrodes. A recent study using 32 electrodes
achieved commendable accuracies of 91.19% based on cross-clip
data and 83.26% based on cross-session data (Blum et al., 2019), and
this study demonstrates competitive accuracy with six electrodes,
reaching 84.6% accuracy. This achievement showcases the efficacy
of this approach in accurately assessing pilot mental workload
during real flight conditions. By leveraging advanced machine

learning techniques and optimizing feature selection, this study sets
a new benchmark for cognitive workload assessment in aviation,
emphasizing the importance of simplicity and effectiveness in EEG-
based monitoring systems.

In this study, data from a previous paper (Dehais et al.,
2019) were used. The proposed data were already preprocessed
(Dehais et al., 2019), so the main objective of this study was to apply
advanced machine learning techniques to enhance classification
accuracy. Other than power features, statistical features have been
used to increase the accuracy, as shown in Figure 12. In order to
optimize the processing speed, the most relevant features have been
selected using information gain. Multiple classification models of
machine learning, such as naïve Bayes, linear regression, logistic
regression, random forest, and decision tree, have been studied
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FIGURE 12
Best features of all subjects using information gain.

TABLE 4 Student t-test (independent) with two-tailed distribution of
multinomial logistic regression classifier vs. the other classifiers (p-value
<0.05).

Classifier p-value t-statistic

Naïve Bayes 1.42971E-07 6.70

Naïve Bayes updateable 1.42971E-07 6.70

Simple logistic regression 0.045126165 2.08

Multilayer perceptron 0.047 2.06

SGD 0.002686 3.25

SGDText 2.13217E-15 14.23

SMO 3.80618E-05 4.77

VotedPerceptron 2.68812E-06 5.68

Attribute selected classifier 0.052322881 2.01

MultiScheme 2.13217E-15 14.23

Decision stump 0.002548924 3.27

Hoeffding tree 9.90234E-08 6.83

J48 0.048 2.05

Stacking 2.13217E-15 14.23

and applied one by one in order to obtain significant accuracy,
as shown in Figures 10, 11. Considering the same scenario—using
a six-channel dry electrode EEG system to monitor pilot mental
workload in real flight conditions—this study achieves the highest
reported accuracy of 84.6% to the best of the author’s knowledge.

This study achieved better accuracy compared to previous
studies due to several reasons. First, the author extracted a total of
72 features, including power and statistical features, usingMATLAB,
which allowed for a more comprehensive analysis of the data.
Second, the careful selection of relevant features and the use of
appropriate classification techniques further improved the accuracy
of the results. Therefore, this study demonstrates the effectiveness
of these methods in achieving higher classification accuracy in
monitoring the pilot’s mental workload. Specifically, this study
achieves an accuracy of 86.4% usingmultinomial logistic regression,
highlighting its reliability for this application. This study has some
limitations. The first limitation of this study was that the author did
not counterbalance the order of the scenario. All the pilots started
in the low-load/pilot monitoring condition and then in the high-
load/pilot flying condition. The second limitation of this work is
that the author could not control for all the variables, such as wind
conditions, as these experiments were conducted under realistic
settings. The third limitation of this work is that one has to consider
that the workload was not stationary in each leg of the flight pattern
(namely, takeoff, crosswind, downwind, base, and final). However,
the goal was not to compare each of these legs, especially as long
as the duration of these legs is not equal, thus making it difficult to
perform statistical comparisons across these legs without having the

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2025.1441801
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Haseeb et al. 10.3389/frobt.2025.1441801

same number of data points. The authors believe that this approach
is valid as long as the first and second traffic patterns include
the same legs.

The final limitation is that themodel’s performance was assessed
using nine-fold cross-validation, which, while providing a robust
estimate of classification accuracy, does not fully account for real-
world generalization on unseen data. Since model parameters
were selected based on cross-validation performance, there is a
possibility of dataset-specific biases influencing the results. Future
work will focus on evaluating the model with an independent,
unseen dataset collected under real flight conditions to further assess
its generalizability and practical applicability in aviation settings.
Additionally, incorporating external validation with different pilot
groups and flight conditions will strengthen the reliability of
this approach.

5 Conclusion

This study demonstrates a high degree of accuracy in detecting a
pilot’s mental workload using a six-dry-electrode EEG system under
real flight conditions.This offers a promisingmethod formonitoring
the brain performance in realistic settings with only a few electrodes.
By selecting important features and using an optimal classification
method, accuracy can be improved while reducing computational
costs and time. However, increasing the number of electrodes and
using wet electrodes may not be practical for real flight conditions.
In the next phase, mental workload estimation for both the pilot
and co-pilot could help optimize task allocation based on workload
distribution.
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