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Long-term use and highly reliable batteries are essential for wearable
cyborgs including Hybrid Assistive Limb and wearable vital sensing devices.
Consequently, there is ongoing research and development aimed at creating
safer next-generation batteries. Researchers, leveraging advanced specialized
knowledge and skills, bring products to completion through trial-and-
error processes that involve modifying materials, shapes, work protocols,
and procedures. When robots can undertake the tedious, repetitive, and
attention-demanding tasks currently performed by researchers within facility
environments, it will reduce the workload on researchers and ensure
reproducibility. In this study, aiming to reduce the workload on researchers
and ensure reproducibility in trial-and-error tasks, we proposed and developed
a system that collects human motion data, recognizes action sequences, and
transfers both physical information (including skeletal coordinates) and task
information to a robot. This enables the robot to perform sequential tasks
that are traditionally performed by humans. The proposed system employs a
non-contact method to acquire three-dimensional skeletal information over
time, allowing for quantitative analysis without interfering with sequential tasks.
In addition, we developed an action sequence recognition model based on
skeletal information and object detection results, which operated independent
of background information. This model can adapt to changes in work processes
and environments. By translating the human information including the physical
and semantic information of a sequential task performed by humans into a
robot, the robot can perform the same task. An experiment was conducted
to verify this capability using the proposed system. The proposed action
sequence recognition method demonstrated high accuracy in recognizing
human-performed tasks with an average Edit score of 95.39 and an average
F1@10 score of 0.951. In two out of the four trials, the robot adapted to changes
in work processes without misrecognizing action sequences and seamlessly
executed the sequential task performed by the human. In conclusion, we
confirmed the feasibility of using the proposed system.
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cybernics, action sequence recognition, long-horizontal task execution, 3D human
skeletal information utilization, human robot interaction

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1462833
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1462833&domain=pdf&date_stamp=2025-06-19
mailto:kawamoto@golem.iit.tsukuba.ac.jp
mailto:kawamoto@golem.iit.tsukuba.ac.jp
https://doi.org/10.3389/frobt.2025.1462833
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1462833/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1462833/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1462833/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1462833/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Obinata et al. 10.3389/frobt.2025.1462833

1 Introduction

Japan has become a super-aging society ahead of the rest
of the world and is facing problems such as increasing medical
costs, labor shortages, and a shortage of physicians in rural areas
(Muramatsu and Akiyama, 2011; Cabinet Office Japan, 2024). To
address these problems, it is important to extend healthy life
expectancy, provide preventive healthcare, and offer telemedicine.
For example, the lower limb, lumbar, and single joint types
of Hybrid Assistive Limb can improve, support, enhance, and
regenerate the wearer’s physical functions according to their
intentions. These wearable cyborgs are widely used for treating
neuromuscular diseases and improving motor functions in the
elderly. Healthcare data collected by wearable vital sensing devices
monitor the health status of individuals and are expected to
be used by doctors for diagnosis and treatment. Ensuring a
safe and efficient power supply is crucial for wearable cyborgs
and wearable vital sensing devices worn for long-term use and
extended periods of time. Apart from commonly used lithium-
ion batteries, ongoing research and development are focused on
next-generation batteries incorporating graphene to achieve higher
safety standards (Cheng et al., 2011). Researchers with specialized
knowledge and skills conduct the assembly of products through
a trial-and-error process by varying the materials, shapes, work
content, and procedures. The development phase involves simple
repetitive tasks necessary for producing several to several dozen
products required for product testing or demonstration. However,
these tasks increase the workload of researchers and reduce the
time available for intellectual tasks. They also pose a challenge in
ensuring the reproducibility of quality due to human involvement
(Shimizu et al., 2020; Burger et al., 2020).

Using robots to handle the tedious, repetitive, and
concentration-intensive tasks traditionally performed by
researchers could substantially reduce the workload of these
researchers and enhance reproducibility, leveraging existing
facilities. However, achieving effective task delegation to robots
necessitates developing methods capable of accommodating
changes in task requirements resulting from trial-and-error in
human work environment, while managing tasks across multiple
processes. Moreover, completion of tasks in this study requires
precise positioning and adherence to specific sequences (Figure 1).
Furthermore, the environment contains multiple objects with
identical names, making it impractical to perform tasks by selecting
any one of them.

Conventional methods for teaching robots tasks include online
teaching, where a person with specialized skills instructs a robot
while operating it, and direct teaching, wherein a person physically
manipulates the robot to demonstrate tasks (Khatib and Siciliano,
2016). These methods require each step of a task to be explicitly
taught to the robot, and this process must be repeated whenever
there are changes in the work process or environment. This
makes it difficult to respond flexibly. In imitation learning, agents
learn to replicate the actions of experts using demonstration and
teleoperation data. Frameworks such as Mobile ALOHA, Play-LMP,
andMimicPlay have been proposed to enable robots to handle tasks
that involve multiple subtasks (Fu et al., 2024; Lynch et al., 2020;
Wang et al., 2023). These frameworks aim to achieve generalization
performance for latent plans, facilitating unseen transitions between
subtasks. Given a target state, it is possible to generate actions (latent
plans) that accomplish necessary subtasks to transition from the
current state to the target state. However, in MimicPlay, a previous
study, the success rate for tasks involving three or more subtasks
remains at approximately 70%. Handling transitions between
subtasks that are not included in the training data is challenging, and
it is impractical to prepare training datasets that comprehensively
cover all task variations arising from trial and error. A multimodal
robot task planning pipeline utilizing GPT-4V, a vision-language
model (VLM) trained on large datasets, has highlighted limitations
in understanding videos (Wake et al., 2024). They were able to
correctly transcribe task instructions from human-performed task
videos in only 20.7% of cases. Moreover, to generate executable
commands for robots, input text (prompts) must be provided to
the VLM. The model’s output heavily depends on how the prompt
is formulated, and since its internal structure is a black box, there
is no clear optimal way to design prompts. As a result, achieving
a high success rate for specific tasks remains challenging. Methods
for generating commands from videos outline task sequences but
do not account for spatial locations (Anh et al., 2018; Yang et al.,
2023). Merely conveying the names of actions via text or voice
proves insufficient. For these reasons, conventional approaches such
as imitation learning and command generation from videos have
difficulty adapting to task changes and enabling robots to share
sequential tasks with a high success rate.

Despite advancements in robot manipulation capabilities for
various tasks, achieving tasks that require execution at the
appropriate position and in the correct sequence, while adapting to
changing procedures, necessitates analyzing human tasks, acquiring
spatial information about the performed actions, and identifying

FIGURE 1
Examples of tasks in next-generation battery research and development: (A) Multiple toggle switches, each serving a different function. (B) Task
requiring to be performed at the precise time, place, and sequence.
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each action within a task, as demonstrated by humans to others.
Furthermore, developing a system for translating this information to
robots is essential. Our previous research focuses on a non-contact
measurement system for 3D skeletal coordinates for the entire body,
including fingers, and amethod for simultaneously recognizing full-
body and hand actions (Obinata et al., 2020; Obinata et al., 2023).
By measuring, analyzing, and leveraging this human information,
we believe robots can adapt to changes in work processes and
environments based on a single humandemonstration, evenwithout
specialized robot teaching expertise.

In this study, aiming to reduce the workload on researchers and
ensure reproducibility in trial-and-error tasks, we proposed and
developed a system that collects human motion data, recognizes
action sequences, and translates both physical information
(including skeletal coordinates) and the details of the task into
a robot task. This enables the robot to execute sequential tasks
demonstrated by humans. Furthermore, through a basic experiment
applying the proposed system to a human task and having the
robot perform the task in a simulated workplace, we confirmed the
feasibility of the proposed system.

2 Methodology

Figure 2A provides an overview of the proposed system,
aimed at analyzing human-performed task and translating the
human information, including physical and semantic aspects, of
a sequential task into the robot. The proposed system acquires
three-dimensional (3D) skeletal information as motion data from
videos of humans performing tasks. Moreover, it identifies the
action sequences involved in these tasks. Subsequently, based on
the physical and semantic information from this analysis, the
actions that constitute the task and the corresponding 3D skeletal
information are communicated to the robot.The robot then executes
these actions and performs the task in the same manner as a
human would. Figure 2B illustrates the detailed structure of the
proposed system, including its major components.The functionality
of each block will be explained in the following sections.

2.1 Human information

2.1.1 3D skeletal coordinates measurement
As part of our analysis of human motion, we measured time-

series 3D skeletal coordinates using a noncontact method that
does not interfere with tasks. We recorded videos containing both
Red-Green-Blue (RGB) images and depth data using an RGB-
Depth (RGB-D) camera. By applying 3D hand pose estimation
to consecutive RGB frames, we extracted the time-series 3D
skeletal coordinates for both the left and right hands of the
worker. For 3D hand pose estimation, we utilized a pretrained
Mediapipe model (Zhang et al., 2020), which accurately and rapidly
estimates the 3D coordinates of 21 major joints of the hand. The
origin of these 3D skeletal coordinates is approximately at the
center of the hand, making them unsuitable for capturing spatial
movements. To accurately reflect hand movements, we adjusted the
origin of the skeletal 3D information for each hand to transform
the 3D coordinate values obtained using the RGB-D camera.

Subsequently, the coordinate system of the skeletal information
was transformed from the coordinate system of the camera to the
work coordinate system defined by a calibration board installed in
the work environment. The extrinsic camera parameters, necessary
for this transformation and representing the camera position and
orientation, were calculated using Zhang’s method (Zhang, 2000).
This process enabled us to measure the 3D skeletal coordinates of
the hands during the task.

2.1.2 Action sequence recognition
There are several methods for inferring the start and end times

of actions in videos, including temporal action segmentation and
temporal action detection (Wang et al., 2024; Ding et al., 2024).
The datasets commonly used to evaluate these methods include
GTEA, 50 Salads, Breakfast, and Assembly101, which focus on
cooking and assembly activities (Li et al., 2015; Stein and McKenna,
2013; Kuehne et al., 2014; Sener et al., 2022). However, since these
datasets do not include the specific actions targeted in our study,
we developed an action sequence recognition model using our
own dataset.

Image-based approaches often utilize pre-trained models such
as ResNet, I3D, which have been trained on large datasets, to
obtain feature tensors for single frames or a sequence of frames
within a certainwindow size. Subsequently, there have been attempts
to achieve high recognition accuracy by learning the temporal
relationships between actions using these feature tensors. However,
even with these large datasets, it is challenging to obtain features
with a universal spatial and temporal representation (Wang et al.,
2024). Since image features change with background variations, it
is difficult to develop models with sufficient recognition accuracy
unless training data from various environments is available.

Additionally, recognizing both action information (probes)
and object information is crucial for understanding the action
sequence of the target task. Robust skeletal inference and object
detection techniques capable of handling changes in the background
information have emerged. In this study, we developed a method to
recognize both motion and object information by utilizing skeletal
data and object detection results that are independent of background
variations.

There are two approaches for time-series motion recognition:
one involves sequentially taking inputs by applying a sliding window
to consecutive frames, and the other involves simultaneously
inputting all frames. The latter method often aims for highly
accurate recognition by leveraging repetitions and relationships
among actions during a task. However, in tasks where the order
of actions can change, this assumption may not hold, and the
recognition accuracy may suffer. Therefore, we adopted a method
that uses a sliding window to acquire input data for the action
recognition model, thereby enabling the recognition of time-series
action sequences through repeated action recognition.

2.1.2.1 Target action
There are five types of target action: actions commonly

performed to operate mechanical devices, such as “flip a switch,”
“push a button,” and “turn a handle”; an action involving “move
while grasping an object” (in this case, moving a stage along a rail);
and an action classified as “others,” which does not fall into the
aforementioned categories.
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FIGURE 2
(A) Overview of the proposed system. (B) Detailed structural representation illustrating the major components and processing flow.

2.1.2.2 Action recognition model based on motion
information

In this study, we adopted a skeleton-based action recognition
model that is minimally affected by environmental changes such
as background and illumination and can geometrically respond
to variations in a camera’s angle of view. The 3D skeletal
coordinates, which serve as the model’s input, were obtained
by measuring the time series of the 3D skeletal coordinates, as
described in Section 2.1.1.

The 3D skeletal coordinates were represented as static
undirected graphs, with nodes (vertices) being the representative
points of the skeleton, each holding 3D coordinate values. In this
study, we used a Graph Convolutional Network (GCN), a type of
neural network capable of handling data with a graph structure, as
the action recognition model (Kipf and Welling, 2017). Specifically,
we adopted the Spatial-temporal graph convolutional networks (ST-
GCN), which efficiently aggregates information in both temporal
and spatial dimensions (Yan et al., 2018).

The action recognitionmodel based onmotion information was
pretrained using supervised learning on a custom dataset consisting
of the movements of a single participant.The number of epochs was
set to 50 and the batch size was 32. We employed the cross-entropy
loss function, and optimization was performed using stochastic
gradient descent with an initial learning rate of 0.1. The learning
rate decreased as the training progressed: it was set to 0.1 for the
first 15 epochs, 0.01 for the next 15 epochs, and 0.001 for the
remaining epochs.

2.1.2.3 Acquisition of target object information
To obtain object information in the vicinity of the hand, object

detection and hand-pose estimation were performed on first-person
videos. Yolo v8 was used for object detection, and Mediapipe was
employed for hand pose estimation (Zhang et al., 2020). Using
the coordinates of the fingertips and the distance between these

coordinates and the center of the bounding box obtained fromobject
detection, the closest object below a certain threshold distance was
identified as the object near the finger. If no object was within
the threshold distance, it was recorded as “Nothing.” The nearest
object was identified for both the thumb and index finger. The
object detection results were converted into 768-dimensional feature
vectors using CLIP’s text encoder (Radford et al., 2021). This
approach allows for the acquisition of information on objects near
the fingers, independent of background information.

2.1.2.4 Integration of the features of motion and object
information

The features related to the motion information were the 128-
dimensional intermediate output features of the model described
in Section 2.1.2.2. The 768-dimensional features for each finger,
acquired from the target object information, were mixed using
a 1 × 1 convolution, followed by batch normalization and
one-dimensional convolution. The object information was then
transformed into 128 dimensions, matching the feature dimensions
of the motion information, through fully connected (FC) layers.The
features of the motion and object information were concatenated
and passed through an FC layer, an activation function (ReLU),
and another FC layer to output a one-hot encoding representing the
class. An overview of themodel structure that integrates motion and
object information is shown in Figure 3.

Training of the model integrating features of motion and object
information was performed using supervised learning with an
original dataset consisting of actions from a single participant. The
number of epochs was set to 50 and the batch size to 32. A cross-
entropy loss function was used, with a combined weighted average
loss function applied to themotion information, object information,
and predicted labels after integration. The combined loss function
assigned 75% weight to the loss from the predicted labels after
integration, and 12.5% weight each to the losses from the motion
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FIGURE 3
Model structure outline integrating motion and object information.

and object information. Stochastic gradient descent with a learning
rate of 0.01 was used as the optimization algorithm. The learning
rate decreased sequentially with the number of epochs: 0.01 for
up to 15 epochs, 0.001 for up to 30 epochs, and 0.0001 for the
remaining epochs.

2.2 Transfer of human information to the
robot

Based on the results of the action sequence recognition obtained
from the task analysis in Section 2.1, the 3D skeletal coordinates
(trajectory information) from the start to the end of each action
were compiled and transferred to the robot. From the action labels
for each frame obtained through action sequence recognition,
we extracted intervals between “others” actions. Next, to mitigate
the effects of over segmentation, we selected the most frequently
occurring action labels within each interval. If the interval was
smaller than half the window size of the action recognition model,
it was excluded. The measured 3D skeletal coordinates included
outliers from inference process failures, fluctuations in 3Dhandpose
estimation, and noise in the depth information from the RGB-D
camera. We removed outliers by applying a Hampel filter with a
window size of 15, and reduced noise by applying a simple moving
average filter with a window size of 3 to smooth the data.

2.3 Robot task execution

2.3.1 Robot execution of each action
Based on the action sequence recognition results and the 3D

skeletal trajectory information from the start to the end of each
action provided by the proposed system, the robot performed each
action and completed the entire task. Initially, the end effector
was moved to the 3D coordinates of the skeleton at the start of
a given action. Subsequently, the robot reached the target object
while detecting it using a camera mounted on the end effector.

FIGURE 4
The robot employed: (A) Robotic arm [adapted from (Kinova inc.,
2018)]. (B) Custom end effector.

Yolo Tiny, a lightweight model with fast inference, was used for
object detection (Bochkovskiy et al., 2020). The objects targeted
by the detection model include toggle switches, push switches,
and handles.

2.3.2 Robot
In this study, we utilized the Kinova JACO2 robotic arm,

specifically designed to assist individuals with physical disabilities
in their daily activities, and to operate in environments where
humans and robots interact. This robotic arm features six degrees
of freedom and an end effector with three fingers. Additionally,
as depicted in Figure 4, an RGB-D camera (Realsense L515, Intel
Corporation) was mounted on the end effector to calibrate the
robot’s position and orientation, as well as for object recognition. A
gel-like resin with properties similar to those of the human skin was
applied to the fingertips to compensate for positioning errors during
object manipulation, alongside enhancing the gripping force.
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2.3.3 Calibrating the robot’s coordinate system
To make the measured time-series 3D skeleton information

usable for controlling the robot arm, it is crucial to establish a
homogeneous transformation matrix between the robot coordinate
system and the work coordinate system. When the robot is
installed in its environment, a homogeneous transformation matrix
can be accurately obtained at the design stage or through
direct measurements. However, when a robot arm is installed as
needed, a calibration method is required to derive the appropriate
homogeneous transformation matrix. Therefore, we calibrated the
position and orientation of the robot using an RGB camera
mounted on the end effector. The homogeneous transformation
matrix between the robot and camera coordinate systems was
calculated based on the joint angles of the robot arm. Once the
homogeneous transformation matrix between the work and camera
coordinate systems is determined, it can be multiplied by the
transformation matrix between the robot and camera coordinate
systems to obtain the transformation matrix between the robot and
work coordinate systems. The homogeneous transformation matrix
between the camera and work coordinate systems was calculated
using Zhang’s method (Zhang, 2000).

3 Experiments

To confirm the feasibility of the proposed system, we conducted
an experiment to verify that the robot can correctly recognize the
names and sequences of each action that constitutes a human-
performed task, and that the robot can perform the task using
the action sequence recognition results and the 3D skeletal
coordinates of the time series for control. The experimental
environment simulated an actual work environment (Figure 5). The
participants were three males aged 22–26 years, one of whom
was used as training data for the action sequence recognition
model (the person who performed Trial D). Consent was obtained
from the participants before the experiment. The participants
used their left and right hands to perform tasks in different
sequences. Four different tasks (Trials A, B, C, and D) were
performed. Figure 6 shows a graphical representation of the action
sequence for each task along with their positions in the simulated
environment.

We captured videos of a human performing a task using three
RGB-D cameras (one installed at the top and two positioned
behind the left and right sides). Using the proposed system, human
information (such as action sequences and 3D skeletal coordinates)
from the captured video was transferred to the robot. Subsequently,
the robot executed the tasks accordingly. If errors were found in the
recognition results, they were corrected to the correct action names,
and any unnecessary actions were eliminated.

We calculated the Edit score, which indicates the closeness of
the recognized action sequence to the correct action sequence,
and F1@k, which evaluates the temporal segmentation quality
of the action sequence (Lea et al., 2016; Lea et al., 2017). The
success or failure of the robot task execution was evaluated
based on whether the robot could perform each action and
complete the entire task. The success conditions for each action
are listed in Table 1. Furthermore, the feasibility of the proposed
system was confirmed by its ability to seamlessly transition from

FIGURE 5
Simulated environment.

recognizing action sequences performed by humans to executing the
same tasks by robots.

4 Results

4.1 Accuracy in recognizing action
sequence

Figure 7 displays the results of the action sequence recognition
for each trial. In Trial A, there was an unnecessary recognition of
the action “Move while grasping an object,” and in Trial B, “Flip a
switch” was misrecognized as “Turn a handle” (indicated by the blue
arrows in Figure 7 for trials A and B, respectively). Table 2 lists the
F1@{10, 25, 50} and the Edit scores for each trial.

4.2 Robot task execution

Figure 8 shows a robot executing tasks in chronological order.
We confirmed that all the actions met the respective success criteria.
In addition, the time required to complete each trial, from the first
action to the last, was 130.23 s for Trial A, 133.80 s for Trial B,
133.87 s for Trial C, and 204.47 s for Trial D. The longer completion
time for Trial D was attributed to the greater number of actions
involved, as Trial D consisted of 10 actions, whereas Trials A, B, and
C consisted of 7 actions each.

5 Discussions

5.1 Considerations of the proposed system

The average Edit score for all four trials was 95.39, indicating the
high accuracy of themodel in recognizing human-performed action
sequences.The Edit score decreased due to unnecessary recognition
in Trial A and misrecognition in Trial B. The unnecessary
recognition in Trial A was caused by the participant opening
their fingers widely while reaching the toggle switch, leading the
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FIGURE 6
Action sequence for each task (Trials (A–D)), along with their positions in the simulated environment.

TABLE 1 Success condition for each action.

Action Success conditions

Move while grasping an object Whether the handle was turned successfully

Flip a switch Whether the toggle switch was operated
successfully

Push a button Whether the button was pressed successfully

Turn a handle Whether the object was moved to the
designated position successfully

system to incorrectly identify the neighboring object as a handle
instead of the toggle switch. Improving the method for acquiring
object information is expected to reduce unnecessary recognition.
In Trial B, the action recognition results before post-processing
showed correct recognition at the “Flip a switch” point, but there
were misrecognitions of “Turn a handle” before and after that
point. Consequently, the action transmitted to the robot was
incorrectly labeled as “Turn a handle.” Increasing the training data
and improving the recognition accuracy of the action recognition
model are expected to achieve more accurate recognition of action
sequences. The average F1@10 score was 0.951, whereas the average
F1@50 score, whichwas themost stringentmeasure, was 0.716. “Flip
a switch” was the most common action that resulted in a decrease
in the F1@50 score. This action is shorter in duration compared
to other actions, making it difficult to distinguish from “other”
actions before and after it during the annotation of the training data.
Improvements, such as reviewing the training data annotations and
changing the input data for the action recognition model to the
differences in skeletal information between frames, are expected to
improve temporal recognition accuracy and reduce misrecognition.

Trial D was performed by an individual whose data were used
to train the action-recognition model. The Edit score was 100,

and the F1@10 and F1@25 scores were 1.00, indicating that the
action sequence was accurately recognized over the time axis.
Furthermore, trials A, B, and C, conducted by participants not
included in the training data, achieved similarly high recognition
accuracies with F1@10 scores of 0.938, 0.933, and 0.933, respectively,
with the edit score of 100 in trial C. This demonstrates that
the action recognition model trained on the actions of a specific
individual can also accurately recognize the action sequences of
the tasks of other individuals. We considered the developed action
sequence recognition model to be sufficient to recognize the target
task. Additionally, these results suggest the potential to reduce
the cost of collecting learning data in real-world settings and
to enable the recognition of other researchers’ action sequence
based on the data from a single researcher. This capability may
be attributed to our approach of integrating motion and object
information. Unlike conventional image- and video-basedmethods,
this approach reduces the learning burden and enables explicit
action understanding. The results of action sequence recognition
experiments confirm that action sequence recognition is feasible
through the integration of motion and object information.

From the perspective of the success rate of tasks performed
by robots, end-to-end methods, including reinforcement learning
and imitation learning from environmental recognition to control,
have become capable of dealing with unseen environments in
manipulation tasks. However, even with large-scale datasets and
large networks, such as Open-X, the success rate remains relatively
low at approximately 62% (Maddukuri et al., 2023). In all four
trials (31 actions), the robot was able to move the end effector to
the position of the 3D skeletal coordinates at the start time given
by the proposed system and perform the corresponding actions,
successfully completing the task in each trial. This indicated that
the control of the implemented robot was sufficient for the target
task. In the implemented robot control, the time required for the
robot to complete the tasks was longer than that of a human. In
this experiment, task execution accuracy was prioritized as a critical
evaluation metric. Consequently, software limiters on movement
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FIGURE 7
Results of action sequence recognition for each task [Trials (A-D)].

TABLE 2 F1@{10, 25, 50} scores and the Edit score.

Trial F1@10 F1@25 F1@50 Edit score

A 0.938 0.875 0.500 88.24

B 0.933 0.933 0.800 93.33

C 0.933 0.933 0.800 100.00

D 1.000 1.000 0.762 100.00

Average 0.951 0.935 0.716 95.39

speed for safety and the accumulation of waiting time to enhance
object detection reliability resulted in longer task execution times
compared to humans. Nevertheless, all actions successfully met
the predefined success criteria, demonstrating the robot’s ability
to perform tasks with a comparable level of accuracy to humans.
While this highlights the current challenges in achieving both high
accuracy and efficiency, future research should focus on improving
task execution efficiency by optimizing control algorithms and
enhancing hardware capabilities. In action sequence recognition, the
action “move while grasping an object” is treated as a single label,
but in reality, it encompasses movements in different directions.
By simultaneously acquiring skeletal information while analyzing
a human task, the action label can be transferred to the robot
without distinguishing between all the movement patterns in action
sequence recognition. Furthermore, by using the trajectory of the
acquired skeletal information for control, the robot can respond to
movements in different directions without having to prepare the
control for all movement patterns.

In Trials C and D, the robot successfully completed the tasks
without any modifications to the action sequence recognition. This
confirms the feasibility of the proposed system. Due to errors in
the recognition results of the action sequence in Trials A and
B, it was not possible to seamlessly transfer the task information
performed by the human to the robot. However, in both Trials A
and B, there were no missed actions due to errors in the recognition
results; instead, the errors involved incorrect action names and the
recognition of extra sequences. It is easy to correct incorrect action
names and delete unnecessary sequences by simply reviewing the
video of the task. In addition, the robot could complete the task by
making corrections and deletions, demonstrating the practicality of
the proposed system for task analysis. In this study, misrecognitions
in action sequence recognition were manually corrected; however, a
self-correction mechanism for the robot is necessary. For example,
an incorrect action may be detected when the robot moves its end-
effector to the starting position of an action but finds that the object
is missing. In such cases, the robot could revise its recognized action
sequence by utilizing real-time information about the current state
of the environment. Additionally, when the interval between two
distinct actions is very short, humans can reasonably judge that it is
unlikely to represent two separate actions based on common sense,
allowing them to revise it as a single continuous action. To address
these challenges, not only improving the accuracy of action sequence
recognition but also incorporating post-processing mechanisms
that enable the robot to utilize common-sense reasoning will be
necessary in the future topic.

The purpose of this study is to confirm that a robot can perform
sequential tasks for frequently changing work procedures in the
research and development process based on human demonstrations.
In this study, we evaluated the recognition accuracy of action
sequences through a basic experiment in a controlled simulated
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FIGURE 8
Results of robot task execution.

environment and confirmed that the robot successfully executed
the task. However, in real-world environments, background clutter
may affect the performance of the proposed system. In this
study, we use skeletal information for action recognition based

on motion information, and in the integration of object and
motion information, object information features are represented
as linguistic embeddings using CLIP. As a result, the system
is less susceptible to environmental variations. Nevertheless, the
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object detection module, which extracts object information, may
be influenced by environmental factors. The framework of the
proposed method itself is not inherently dependent on the
environment. By incorporating a more robust object recognition
method, the system can be adapted to different environments.

Using the proposed system, researchers can perform their
tasks as usual without making specific changes, and the robot can
perform sequential tasks. The proposed system reduces the effort
required for coding and adjustments compared to the conventional
teaching playback process, which involves repeated operation and
positioning of the robot. Furthermore, as researchers repeat their
daily tasks, the proposed system allows the accumulation of data for
the robot’s imitation learning.

5.2 Future works

In this study, we achieved high recognition accuracy even with
a model trained on data from a single participant. In the future,
we plan to incorporate motion data from participants with diverse
physiques and movement styles to further improve recognition
accuracy and robustness. The action sequence recognition of the
proposed system was designed to achieve consistent accuracy, even
when the background information varied, although we have not
yet evaluated the system under these conditions. In the future, we
plan to validate the system in actual production environments to
confirm that it maintains high recognition accuracy in different
settings. In the robot control of the developed system, execution
is currently limited to feedforward control based on pre-defined
motion patterns. As a result, for real-world deployment, it is
necessary to integrate mechanisms for adaptation to environmental
and situational changes, as well as learning capabilities, into the
robot’s edge device. Brain-inspired motion control approaches offer
the potential to achieve such adaptability through learning while
maintaining low power consumption and real-time performance
(Yang et al., 2022). By incorporating these models into the robot’s
edge system, stable task success rates can be expected even under
varying environmental and situational conditions. Additionally, the
developed action sequence recognitionmethod requires continuous
operation of the recognition module, even during static periods.
However, in real-world applications, this results in unnecessary
computations on low-information segments unrelated to the target
actions. This leads to inefficiencies in computational and energy
resources—particularly when processing is confined to edge devices.
In this context, approaches based on spiking neural networks
(SNNs) offer promising potential, as their event-driven processing
architecture performs computations only in response to input,
thereby avoiding redundant processing (Yang et al., 2024; Yang
and Chen, 2023b; Yang and Chen, 2023a). The adoption of SNNs
for action sequence recognition may thus represent as an effective
approach toward constructing practical and energy-efficient systems
from the perspective of Embodied AI. In addition, we plan to
evaluate the usability and acceptability of the proposed system.
Furthermore, the proposed system could sequentially recognize
tasks performed by humans and quantify their techniques as skeletal
movements. This capability is expected to be useful in fields that
depend onmanual human skills such as life science experiments and

cell manufacturing. We also plan to verify the applicability of the
proposed system to these and other areas.

6 Conclusion

In this study, we aimed to reduce the workload on researchers
and ensure reproducibility in trial-and-error tasks by proposing
and developing a system that enables robots to perform sequential
tasks executed by humans by collecting 3D skeletal information of
human movements, recognizing action sequences, and translating
both physical information (including skeletal coordinates) and the
details of the task into the robot task. We conducted a basic
experiment where we applied the proposed system to a human
task and had the robot replicate it. The proposed system accurately
recognized the action sequences of the human-performed task. In
twoout of four trials, the robot successfully and seamlessly replicated
the human tasks. These results confirmed the feasibility of the
proposed system.
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