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The position and trajectory tracking control of rigid-link robot manipulators
suffers from problems such as poor accuracy, unstable performance, and
response caused by unidentified loads and outside disturbances. In this paper,
three control structures have been proposed to control a multi-input, multi-
output coupled nonlinear three-link rigid robot manipulator (3-LRRM) system
and effectively solve the signal chattering in the control signal. To overcome
these problems, three hybrid control structures based on combinations between
the benefits of fractional order proportional-integral-derivative operations
(FOPID) and the benefits of neural networks are proposed for a 3-LRRM. The
first hybrid control scheme is a neural network- (NN) like fractional order
proportional-integral plus an NN-like fractional order proportional derivative
controller (NN-FOPIPD) and the second control scheme is an NN plus FOPID
controller (NN + FOPID). In contrast, the third control scheme is the Elman
NN-like FOPID controller (ELNN-FOPID). The bat optimization algorithm (BOA)
is applied to find the best parameter values of the proposed control scheme
by minimizing the performance index of the integral time square error (ITSE).
MATLAB software is used to carry out the simulation results. Using the simulation
tests, the performance of the suggested controllers is compared without
retraining the controller parameters. The robustness of the designed control
schemes’ performance is assessed utilizing uncertainties in system parameters,
outside disturbances, and initial position changes. The results show that the NN-
FOPIPD structure demonstrated the best performance among the suggested
controllers.

KEYWORDS

trajectory tracking, neural network, neural network controller, PIPD controller,
PID controller, FOPID controller, bat optimization algorithm, 3-link rigid robotic
manipulator

1 Introduction

One of the most promising technologies is robots, which are extensively
employed in numerous applications in industries like drilling, medical procedures
(Chen et al., 2017), transportation (Wu et al., 2016), assembly (Fani et al.,
2018), and manufacturing (Sadrfaridpour et al., 2016). The three main
categories of robotic manipulator research are robot manipulator control,
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optimal trajectory planning for industrial manipulators (Ayten et al.,
2016), and robotic system design (Zemiti et al., 2007; Ayten et al.,
2017). Among these fields of study, robotic manipulator control
plays an important and vital role in tracking a reliable and accurate
path to the starting and finishing points of the work.

Robotic systems are time-varying nonlinear systems because of
external disturbances, modeling uncertainties, and the nonlinear
behavior of the system dynamics. Therefore, obtaining robotic
systems that track specified paths successfully and accurately
is challenging. Many sophisticated control techniques have
been developed to overcome these undesirable uncertainties
for various types of robotic systems (Tutsoy et al., 2023).
These techniques include fractional-order control (Viola and
Angel, 2015; Dhivakaran et al., 2022; Kaushik et al., 2024), H-
infinity control (Makarov et al., 2016), adaptive control (Huang,
2016; Tutsoy et al., 2024), neural network control (Sun et al.,
2017; Rajchakit et al., 2019), and sliding mode control (SMC)
(Dumlu et al., 2017; Basci et al., 2017).

Using a fractional-order scheme, several methods have been
integrated with other notable schemes to improve the performance.
The fractional-order SMC (FOSMC) was proposed by Dumlu
(2018) to illustrate a robotic manipulator’s ability to track position
practically. Ren et al. (2023) used a unique composite position
predictive control method that combines disturbance preview and
motion profile techniques to achieve accurate and smooth trajectory
regulation. Xia et al. (2019) proposed a control strategy combining
the modified terminal sliding mode with the double power reaching
law to precisely and quickly track tasks of rigid roboticmanipulators.
Using fractional calculus, Ullah et al. (2015) proposed a new fuzzy
FOSMC for a servo actuation system (). The results showed that the
suggested method’s tracking error is less than that of a traditional
SMC. For the doubly fed induction generator, Ebrahimkhani (2016)
developed an innovative, reliable FOSMC with a fractional-order
estimator. The outcomes have validated the suggested controller’s
robustness and efficacy in dealing with the effects of changing
disturbances and parameters. Andualem and Gebremichael (2020)
suggested using a hyperbolic tangent function instead of a signum
function in a fuzzy gain scheduling terminal SMC for controlling
and tracking the UR5 robot manipulator.

Recently, several research papers have proposed control
structures and hybrid controllers for a 2-LRRM that deals with
the path-tracking problem. Kumar et al. (2019) suggested a self-
regulated FOFPID controller with a backtracking search algorithm.
Mohamed et al. (2023) suggested six control structures as a hybrid
controller for a 2-LRRM that addresses the trajectory tracking
problem by combining the advantages of PID controllers with
integer and fractional orders, neural networks, and the Gorilla
Forces Troops Optimization algorithm. Six neural network-based
control structures with PID and fractional-order PID (FOPID)
controllers were proposed by Mohamed et al. (2024) for operating
a 2-LRRM for trajectory tracking. These controllers are referred to
as NN + PID, NN + FOPID, recurrent neural network-like PID,
set-point-weighted FOPID, set-point-weighted PID, and RNN-like
FOPID. The parameters of the suggested controllers’ conditions,
disturbances, and model uncertainties were modified using the
ZebraOptimization algorithm.Three control structures for 3-LRRM
were proposed by Mohamed et al. (2023) utilizing a neural network
in conjunction with PID actions. The Coot Optimization algorithm

is used to modify the parameters of the suggested controllers.
Based on the social behavior of spider monkeys, Spider Monkey
Optimization (SMO) is another optimization technique used to
control robotic manipulators (Abualigah et al., 2024; Agrawal et al.,
2023). The PID controller adjusts with SMO to find the best control
parameters in the robotic manipulator in order to enhance the
manipulator version (Agrawal et al., 2021). Wang et al. (2020)
proposed an adaptive PID control algorithm for multi-degree-
of-freedom (DOF) industrial robots, leveraging a fuzzy neural
network framework to enhance trajectory tracking performance.
Their research addresses the complexities inherent in industrial
robot control systems, characterized by nonlinearity, time-varying
dynamics, and strong coupling effects. By establishing a functional
relationship between control error and reaching degree, the authors
achieved self-adaptive adjustments of PID parameters, significantly
improving control accuracy and stability compared to traditional
PID methods. The effectiveness of their approach was validated
through simulations and joint experiments using the ADAMS
virtual simulation system, demonstrating superior performance
in trajectory tracking tasks. In the study conducted by Sau (2020), a
comparative analysis of fractional order controllers was performed
specifically for a three-link roboticmanipulator system.The research
highlights the significance of fractional order control strategies
in enhancing the dynamic performance and stability of robotic
systems. By employing fractional calculus, the study demonstrates
that these controllers can provide improved tuning flexibility
compared to traditional integer-order controllers. This flexibility
allows for more precise adjustments to the system's response
characteristics, which is crucial in applications requiring high
precision and reliability.

It is evident that each of the methods discussed above has
advantages and disadvantages in the majority of studies. They
were employed at the expense of accuracy and time due to
their complexity and time-consuming computations. Previous
investigations indicated that most of the studies did not resolve the
signal chattering in the control signal and addressed the suggested
controllers separately. In this paper, three control structures have
been proposed to control a multi-input, multi-output coupled,
nonlinear 3-LRRM system and effectively solve the signal chattering
in the control signal. It is well known that the FOPID controller is
more robust and flexible than the conventional PID controller. On
the other hand, the neural network has high flexibility in mapping
complex data. Hence, a hybrid controller consisting of FOPID
operations and a neural networkwill performbetter than the FOPID
controller alone.

The aim of this work is to design hybrid controllers
combining the benefits of FOPID operations and the benefits
of neural networks-based BOA for 3-LRRM by solving the
nonlinear problems of compensating robot manipulator control
with disturbances and uncertainties and achieving precise
trajectory tracking.

This work’s primary contributions are as follows:

1 Develop three structures of hybrid control based on
combinations between the benefits of FOPID operations
and the benefits of neural networks. These hybrid control
structures are neural network-like FOPIPD controllers (NN-
FOPIPDs), neural network plus FOPID controllers (NN +
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FOPIDs), and Elman neural network-like FOPID controllers
(ELNN-FOPIDs).

2 Apply the bat optimization algorithm (BOA) to determine the
optimal parameters for each suggested controller in order to
further improve the performance.

3 Conduct a comparative analysis among the suggested
controllers concerning changing the starting conditions,
outside disruptions, parameter uncertainty, and all
combined effects.

4 A new objective function suggestion to fine-tune the suggested
controller to generate the control signal with a minimum
amount of chattering.

The remaining sections of this work are organized as follows:
Section 2 explains the 3-LRRM’s dynamical system. Section 3
illustrates the suggested controllers. Section 4 displays the BOA,
and Section 5 displays the simulation’s results. The robustness test
is provided in Section 6. The conclusion is given in Section 7.

2 System modeling formulation

A robotic manipulator is constructed of several links joined by
joints at each end. Planar roboticmanipulators can onlymove in one
plane (Abdulameer and Mohamed, 2022). This research considers
three rotating joints on a planar robotic manipulator, and it is
assumed that each joint is actuated (Kumar et al., 2019). Figure 1
shows the 3-LRRM structure. The manipulator’s dynamic motion
equation is used to develop the fundamental control equations
for robots. The torques produced by actuators in a robotic system
cause the dynamic movement of the manipulator arms (Raafat and
Raheem, 2017). The following is the dynamic model of a 3-LRRM.

FIGURE 1
The 3-LRRM structure.

The 3-LRRM’s dynamic model is defined by Lagrange dynamics
(Lewis et al., 2004). Equations 1–6 are the equations for the x and y
positions of links 1, 2, and 3:

x1 = Ln1 cos (φ1), (1)

y1 = Ln1 sin (φ1), (2)

x2 = Ln1 cos (φ1) + Ln2 cos (φ1 +φ2), (3)

y2 = Ln1 sin (φ1) + Ln2  sin (φ1 +φ2), (4)

x3 = Ln1 cos (φ1) + Ln2 cos (φ1 +φ2) + Ln3 cos(φ1 +φ2 +φ3), (5)

y3 = Ln1 sin (φ1) + Ln2  sin (φ1 +φ2) + Ln3 sin(φ1 +φ2 +φ3). (6)

Kinetic energy (KinE) is indicated in Equation 7:

KinE = 1
2
Mn1v

2
1 +

1
2
Mn2v

2
2 +

1
2
Mn3v

2
3. (7)

where Ln1, Ln2, and Ln3 and Mn1 , Mn2 and Mn3 are the lengths
and masses of the links. φ1, φ2, φ3 and v1, v2, v3 represent the
positions and velocities of the links, respectively. The velocities can
be written as Equation 8.

v1 = (ẋ21 + ẏ
2
1)

0.5, v2 = (ẋ22 + ẏ
2
2)

0.5, v3 = (ẋ23 + ẏ
2
3)

0.5 (8)

The kinetic energy (KinE) is presented in Equation 9:

KinE = 1
2
Mn1(ẋ21 + ẏ

2
1) +

1
2
Mn2 (ẋ22 + ẏ

2
2) +

1
2
Mn3 (ẋ23 + ẏ

2
3). (9)

The potential energy (PotE) is defined in Equations 10, 11:

PotE =
3

∑
i=1

Mnig hi(φ), (10)

where g represents the acceleration and hi(φ) represents
the height.

PotE =Mn1 gLn1 sin(φ1) +Mn2 g(Ln1 sin(φ1) + Ln2 sin(φ1 +φ2))
+ Mn3 g(Ln1 sin(φ1) + Ln2 sin(φ1 +φ2) + Ln3 sin(φ1 +φ2 +φ3))

(11)

Next, the Lagrangian (L) was determined using the Lagrange
dynamic, as shown in Equation 12:

L = KinE −PotE. (12)

The Euler–Lagrange equation is expressed by Equation 13:

d
dt
[ ∂L
∂ ̇φi
]− ∂L

∂φi
= Fφi, (13)

where Fφi represents the torque exerted on link i.
The basic principle dynamics of the manipulator are illustrated

in Equations 14–24 (Lewis et al., 2004):

Q(φ)φ̈+Pc(φ, φ̇2) +R(φ, φ̇iφ̇j) +G(φ) = τ, (14)

where the inertia matrix is denoted by Q(φ),centrifugal term
Pc,andCoriolis termR.

Q =
[[[[

[

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

]]]]

]

, (15)
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Q11 = (Mn1 +Mn2 +Mn3)L2n1 + (Mn2 +Mn3)L2n2 +Mn3L
2
n3

+ 2Mn3Ln1Ln3 cos (φ2 +φ3] + 2(Mn2 +Mn3)Ln1Ln2 cos(φ2)

+ 2Mn3Ln2Ln3 cos (φ3) (16)

Q12 = (Mn2 +Mn3)L2n2 +Mn3L
2
n3 +Mn3Ln1Ln3 cos(φ2 +φ3)

+ (Mn2 +Mn3)Ln1Ln2 cos(φ2) + 2Mn3Ln2Ln3 cos (φ3), (17)

Q13 =Mn3L
2
n3 +Mn3Ln1Ln3 cos(φ2 +φ3) +Mn3Ln2Ln3 cos (φ3),

(18)

Q21 =Mn2L
2
n2 +Mn3L

2
n2 +Mn3L

2
n3 +Mn3Ln1Ln3 cos(φ2 +φ3)

+Mn2Ln1Ln2 cos(φ2) +Mn3Ln1Ln2 cos(φ2)

+ 2Mn3Ln2Ln3 cos (φ3), (19)

Q22 =Mn2L
2
n2 +Mn3L

2
n2 +Mn3L

2
n3 + 2Mn3Ln2Ln3 cos (φ3), (20)

Q23 =Mn3L
2
n3 +Mn3Ln2Ln3 cos (φ3), (21)

Q31 =Mn3L
2
n3 +Mn3Ln1Ln3 cos(φ2 +φ3) +Mn3Ln2Ln3 cos (φ3),

(22)

Q32 =Mn3L
2
n3 +Mn3Ln2Ln3 cos (φ3), (23)

Q33 =Mn3L
2
n3. (24)

The centrifugal term (Pc) is defined as illustrated in
Equations 25–28:

Pc =
[[[[

[

Pc1

Pc2

Pc3

]]]]

]

, (25)

Pc1 = −Ln1(Mn3Ln3 sin(φ2 +φ3) +Mn2Ln2 sin(φ2) +Mn3Ln2 sin(φ2))

× φ̇2
2 −Mn3Ln3(Ln1 sin(φ2 +φ3) + Ln2 sin(φ3))φ̇

2,
3 (26)

Pc2 = Ln1(Mn3Ln3 sin(φ2 +φ3) +Mn2Ln2 sin(φ2) +Mn3Ln2 sin(φ2))
× φ̇2

1 −Mn3Ln2Ln3 sin (φ3)φ̇
2
3, (27)

Pc3 =Mn3Ln3(Ln1 sin(φ2 +φ3) + Ln2 sin(φ3))φ̇
2
1 +Mn3Ln2Ln3 sin (φ3)φ̇

2
2.

(28)

The Coriolis term R is defined as presented in Equations 29–32:

R =
[[[[

[

R1

R2

R3

]]]]

]

, (29)

R1 = −2Ln1(Mn3Ln3 sin(φ2 +φ3) + (Mn2 +Mn3)Ln2 sin(φ2))

× φ̇1φ̇2 − 2Mn3Ln3(Ln1 sin(φ2 +φ3) + Ln2 sin(φ3))φ̇2φ̇3,

− 2Mn3Ln3(Ln1 sin(φ2 +φ3) + Ln2 sin(φ3))φ̇1φ̇3 (30)

R2 = −2Mn3Ln2Ln3 sin(φ3)φ̇1φ̇3 − 2Mn3Ln2Ln3 sin (φ3)φ̇2φ̇3, (31)

R3 = 2Mn3ln2ln3 sin (φ3)φ̇1φ̇2. (32)

The potential energy term, G, is defined in Equations 33–36:

G =
[[[[

[

G1

G2

G3

]]]]

]

, (33)

G1 = (Mn1 +Mn2 +Mn3)gLn1 cos(φ1) + (Mn2 +Mn3)gLn2
× cos (φ1 +φ2) +Mn3gLn3 cos (φ1 +φ2 +φ3), (34)

G2 = (Mn2 +Mn3)gLn2 cos(φ1 +φ2) +Mn3gLn3 cos (φ1 +φ2 +φ3),
(35)

G3 =Mn3gLn3 cos (φ1 +φ2 +φ3). (36)

Using forward kinematic (Kumar et al., 2019), the joint angles
φr1, φr2,andφr3 provide the coordinates for 3-LRRM’s end effector,
as indicated by Equations 37, 38:

Regarding the reference trajectory,

xr = Ln1 cos(φr1) + Ln2 cos(φr1 +φr2) + Ln3 cos(φr1 +φr2 +φr3),
(37)

yr = Ln1 sin(φr1) + Ln2 sin(φr1 +φr2) + Ln3 sin(φr1 +φr2 +φr3).
(38)

where φr1, φr2 andφr3 are the desired trajectories.
Table 1 (Mohamed et al., 2023) provides a detailed

description of the robot parameter settings used in
this work.

TABLE 1 Nominal values of 3-LRRM parameters.

Parameter name Nominal parameter value

Ln1 0.8 M

Ln2 0.4 M

Ln3 0.2 M

Mn1 0.1 Kg

Mn2 0.1 Kg

Mn3 0.1 Kg

g 9.81 M/ S2

3 Proposed controller structures

Detailed information regarding the proposed hybrid
neural network controllers’ structures is presented in this
section. The closed-loop block diagram of the NN-like FOPID
is given in Figure 2, where φri(t) is the desired position, φai (t)
is the actual position, ei(t) is the error position, and φri(t) is the
control signal.
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FIGURE 2
Schematic diagram of combined NN with FOPID controller.

3.1 Neural network-like FOPI and FOPD
controller

The fundamental structure of the NN-FOPIPD controller is
demonstrated in Figure 3, where the variables λ and μ are fractional
values in the range of 0–2.

The difference between the desired position φri(t) and actual
position φai(t) of the i link is known as the error  eφi(t). The
equations describing the controller from the error signal eφi(t) to
the control signal Ti(k) are shown below in Equations 39–48.

The single-processing element input layer is represented as
eφi(t).

The first hidden layer has four processing elements: proportional
operation P1 , fractional integral operation I, proportional operation
P2, and fractional derivative operation D, as follows:

P1(t) = KP1eφi(t) or P1(k) = KP1eφi(k), (39)

I(t) = K ID
−λ eφi(t) or I(k) = K ID

−λ eφi(k), (40)

P2(t) = KP2 eφi(t) or P2(k) = KP2 eφi(k), (41)

D(t) = KDD
μ eφi(t) or D(k) = KDD

μ eφi(k), (42)

Where:

[[[[[[[

[

NET1
1(k)

NET1
2(k)

NET1
3(k)

NET1
4(k)

]]]]]]]

]

=

[[[[[[[

[

z11 z12 0 0

 z21 z22  0 0

0 0 z33 z34

0 0 z43 z44

]]]]]]]

]

[[[[[[[

[

P1(k)

I(k)

P2(k)

D(k)

]]]]]]]

]

, (43)

[[[[

[

Out11(k)
Out12(k)
Out13(k)
Out14(k)

]]]]

]

=
[[[[

[

H(NET 1
1(k))

H(NET 1
2(k))

H(NET1
3(k))

H(NET1
4(k))

]]]]

]

+
[[[[

[

z13×Out11(k − 1)
z14×Out12(k − 1)
z23×Out13(k − 1)
z24×Out14(k − 1)

]]]]

]

+
[[[[

[

z31×Out21(k − 1)
z32×Out22(k − 1)
z41×Out23(k − 1)
z42×Out24(k − 1)

]]]]

]

,

(44)

Where:

H = 4
(1+ e−net)

− 2, (45)

[
Out21(k)
Out24(k)

] = [
zz11 zz12
zz21 zz22

][
Out11(k)
Out14(k)

] + [
zz13×Out21(k − 1)
zz23×Out24(k − 1)

] +[
zz14×T(k − 1)
zz24×T(k − 1)

],

(46)

[
Out22(k)
Out23(k)

] = [
zz31 zz32
zz41 zz42

][
Out12(k)
Out13(k)

] + [
zz33×Out22(k − 1)
zz43 × Out23(k − 1)

] + [
zz34×T(k − 1)
zz44×T(k − 1)

],

(47)

T i(k) = T i(k − 1) +wz1 × Out21(k) +wz2 × Out
2
2(k) +wz3

×Out23(k) +wz4 × Out
2
4(k), (48)

3.2 Design of NN+FOPID

This controller contains two parts, as shown in Figure 4.The first
part is the neural network; the input layer has three input elements,
 eφi(k),eφi(k − 1) and eφi(k − 2) or A, B, and C elements.The second
part of the controller is the FOPID controller with a filter; both are
merged and connected with the system in cascade.

The equations describing the controller from the error signal
eφi(t) to control signal Ti(k) are shown below in Equations 49–62.

Where:

[[[[

[

NET1
1(k)

NET1
2(k)

NET1
3(k)

]]]]

]

=
[[[[

[

z11 z12 z13

z21 z22 z23

z31 z32 z33

]]]]

]

[[[[

[

eφi(k)

eφi(k− 1)

eφi(k− 2)

]]]]

]

+
[[[[

[

NET1
1(k− 1)

NET1
2(k− 1)

NET1
3(k− 1)

]]]]

]

,

(49)

The first hidden layer’s output is defined in Equation 50:

[[[[

[

Out11(k)

Out12(k)

Out13(k)

]]]]

]

=
[[[[

[

H(NET1
1(k))

H(NET1
2(k))

H(NET1
3(k))

]]]]

]

, (50)

[[

[

NET2
1(k)

NET2
2(k)

NET2
3(k)

]]

]

= [[

[

zz11 zz12 zz13
 zz21 zz22  zz23
zz31 zz32 zz33

]]

]

[[

[

Out11(k)
Out12(k)
Out13(k)

]]

]

et+[[

[

NET2
1(k− 1)

NET2
2(k− 1)

NET2
3(k− 1)

]]

]

.

(51)

The second hidden layer’s output is indicated in Equation 52:

[[[[

[

Out21(k)

Out22(k)

Out23(k)

]]]]

]

=
[[[[

[

H(NET2
1(k))

H(NET2
2(k))

H(NET2
3(k))

]]]]

]

. (52)
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FIGURE 3
Neural controller PIPD controller.

FIGURE 4
Neural network plus FOPID controller.

As can be noticed in Equation 52, the activation function
is a sigmoid.

H = 2
(1+ e−net)

− 1. (53)

Equation 54 displays the output of the third and last
hidden layer.

[[[[

[

Out31(k)

Out32(k)

Out33(k)

]]]]

]

=
[[[[

[

NET3
1(k)

NET3
2(k)

NET3
3(k)

]]]]

]

=
[[[[

[

wz11 wz12 wz13

wz21 wz22 wz23

wz31 wz32 wz33

]]]]

]

[[[[

[

Out21(k)

Out22(k)

Out23(k)

]]]]

]

.

(54)

The three FOPID control operations are displayed in
Equations 55–61.

P(t) = eφi(t) or P(k) = eφi(k). (55)

I(t) = D−λ eφi(t) or I(k) = D−λ eφi(k). (56)

fφi(s) =
N

s+N
eφi(s); Thefilterofderivative. (57)

D(t) = Dμ fφi(t)or D(k) = D
μ fφi(k). (58)

u1(k) = KP (Out
3
1(k) + P(k)). (59)

u2(k) = KI (Out
3
2(k) + I(k)). (60)

u3(k) = KD (Out
3
3(k) +D(k)). (61)

Equation 62 illustrates the control signal equation.

Ti(k) = u1 (k) + u2 (k) + u3 (k). (62)

3.3 Design of the Elman NN-FOPID

The Elman neural network FOPID controller’s structural layout
is depicted in Figure 5.

The difference between a required position φri(t) and an actual
positionφai(t) of the i link is known as the error eφi(t).The equations
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FIGURE 5
The structure of the Elman neural network-like FOPID controller.

describing the controller from the error signal eφi(t) to control signal
Ti(k) are shown below in Equations 63–72.

The representation of the input layer with a single input element
is eφi(t).

The first hidden layer has three processing elements
(proportional operation P, integral operation I, and derivative
operation D); the input to each node is the error eφi(t) multiplied
by a certain gain, while the activation functions represent one of the
operations P, I, and D, and the output of each node is the result of its
operation as described in Equations 63–65:

P(t) = KPeφi(t) or P(k) = KPeφi(k), (63)

I(t) = KID
−λ eφi(t) or I(k) = KID

−λ eφi(k), (64)

D(t) = KDD
μ eφi(t) or D(k) = KDD

μ eφi(k), (65)

[[[[

[

NET1
1(k)

NET1
2(k)

NET1
3(k)

]]]]

]

=
[[[[

[

∑1
1
(k)

∑1
2
(k)

∑1
3
(k)

]]]]

]

=
[[[[

[

z11 z12 z13

 z21 z22  z23

z31 z32 z33

]]]]

]

[[[[

[

P(k)

I(k)

D(k)

]]]]

]

, (66)

and

[[[[

[

G1
1(k)

G1
2(k)

G1
3(k)

]]]]

]

=
[[[[

[

O1
1(k− 1) + r1×G

1
1(k− 1)

O1
2(k− 1) + r2×G

1
2(k− 1)

O1
3(k− 1) + r3×G

1
3(k− 1)

]]]]

]

. (67)

The second hidden layer’s output is indicated in Equation 68:

[[[[

[

O1
1(k)

O1
2(k)

O1
3(k)

]]]]

]

=
[[[[[

[

H(∑1
1
(k))

H(∑1
2
(k))

H(∑1
3
(k))

]]]]]

]

+
[[[[

[

zc11 zc12 zc13

 zc21 zc22  zc23

zc31 zc32 vc33

]]]]

]

[[[[

[

G1
1(k)

G1
2(k)

G1
3(k)

]]]]

]

.

(68)

According to Equation 69, the activation function is a
sigmoid function.

H = 2
(1+ e−net)

− 1. (69)

[[[[

[

G2
1(k)

G2
2(k)

G2
3(k)

]]]]

]

=
[[[[

[

O2
1(k− 1) + rr1×G

2
1(k− 1)

O2
2(k− 1) + rr2×G

2
2(k− 1)

O2
3(k− 1) + rr3×G

2
3(k− 1)

]]]]

]

. (70)

The output of the third hidden layer is displayed in Equation 71:

[[

[

O2
1(k)

O2
2(k)

O2
3(k)

]]

]

= [[

[

zz11 zz12 zz13
 zz21 zz22  zz23
zz31 zz32 zz33

]]

]

[[

[

O1
1(k)

O1
2(k)

O1
3(k)

]]

]

+[[

[

zzc11 zzc12 zzc13
 zzc21 zzc22  zzc23
zzc31 zzc32 zzc33

]]

]

[[

[

G2
1(k)

G2
2(k)

G2
3(k)

]]

]

.

(71)

Theoutput layer consists of a single node, as shown inEquation 72:

Ti(k) = wo1 ×O2
1(k) +wo2 ×O

2
2(k) +wo3 × O

2
3(k), (72)

where KP,KI,KD,zij,zcij,zzij,zzcij,woi, ri,and rri, all are design
parameters.

4 Bat optimization algorithm

This algorithm is inspired by the diverse emission rates
and pulse intensities displayed by microbats during echolocation
(Yang and He, 2013). Three primary rules can be used to
explain the bat optimization algorithm: The first rule is to use
the echolocation phenomenon to find the best distance to the
food. According to the second rule, the bats fly at random
with a fixed frequency and velocity at a particular search space
location. However, the bats’ loudness and wavelength can vary
based on their overall distance from their current location and
the distance from the food. Lastly, the bat algorithm’s third
rule is to linearly reduce the bat loudness factor’s behavior
(Nor’Azlan et al., 2018). The following is the BOA procedure
(Sambariya and Paliwal, 2016):

Step 1: Set initial values of the algorithm, including the
issue’s dimension (dim), the highest value of iterations (Iter),
the size of the population (N), and the minimum and
maximum frequencies (Fmin and Fmax), respectively. Additional
variables are the bats’ initial velocity (v), their loudness
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(Al), their pulse emission rate (Υ), and their initial pulse
emission rate (ro).

Step 2: Equation 73 can be used to generate a random initial
population of bats, which is a feasible solution for each bat
position.

xij = x
l
j + r and( ) ∗ (x

u
j − x

l
j). (73)

The dimensions’ upper and lower bounds, j, are represented by
xlj and xuj , respectively, and i = 1, …, N, j = 1, …, dim,

Step 3: Calculate the cost function (MSE) for every bat using
Equation 74, and save the results in the cost vector.

MSE(i) = 1
N
∑N

i=1
(R−Y)2, (74)

where the desired signal is represented by R and the signal
produced by Y.

Step 4: Determine the bat with the smallest (MSE) value as the
(Fmin) among all bats in the vector is the best bat position (x∗).

Step 5: As indicated in Equations 75–77, update the it™ bat’s
frequency, velocity, and position.

Fi = Fmin + (Fmax − Fmin) ∗ r and( ), (75)

viii = v
ii−1
i + (x

ii−1
i − x

∗) ∗ Fi, (76)

xiii = x
ii−1
i + v

ii
i , (77)

where ii = 1, …, Iter.

TABLE 2 ITSE and each control’s sign change at two initial positions
(0.15, −0.55, −0.85) rad and (−0.15, −0.85, −1.15) rad when the nominal
plant is applied.

Type of controller ITSE Number of slope
sign

Change in all
control signals

NN-FOPIPD 2.49695 × 10−5 78

NN + FOPID 4.31033 × 10−5 64

ELNN-FOPID 8.09808 × 10−5 164

Step 6: When a random number is less than the ith bat’s
pulse emission rate (Υi), a local search is conducted. A new
solution is generated using a random walk for the bat in position
i to improve the diversity of possible solutions, as indicated
in Equation 78.

xnewi = x
∗ + ϵ ∗ ⟨Ai⟩

ii. (78)

At the ii iteration, the total bats’ average noise level is represented
by < Ai > ii, and ϵ is a scaling factor that is generated at random
within the range [−1, 1].

Step 7: Utilizing Equation 74, determine the cost function value
(MSEi) for the ith bat and enter the result in the variable.

Step 8: If the ith bat’s loudness (Ali) is greater than a randomly
generated number, its updated value of the objective or cost
function is less than its previous value. Subsequently, the loudness,
pulse rate, and updated cost function are computed, as shown in
Equations 79–81, respectively.

Costi = CostN , (79)

Ali = α ∗ Ali, (80)

Υi = ro ∗ (1– exp (‐β ∗ ii)), (81)

where [0, 1] is the range of constants α and β.

Step 9: Using Equations 82–83, theminimum frequency (Fmin) and
best bat position (x∗) for the ith bat can be updated if its cost CostNi
is smaller than Fmin.

x∗ = xij, (82)

F(min ) = costNi. (83)

Step 10: Proceed to Step 11 if themaximumnumber of bats (N) has
been attained. If not, proceed to Step 5.

Step 11: End the procedure if the largest number of iterations (Iter)
has been achieved. If not, repeat steps 5 through 11.

5 Simulation results

The trajectory tracking performance of the 3-LRRM nominal
model with the proposed controllers is shown below. The proposed
controllers for the 3-LRRM tracking problem are implemented
using the MATLAB code. The torque limits for each link are
set at (−200 to 200) N-m, the simulation period is taken 10 s,
and the simulation’s step size is 1 msec. Moreover, the 11th-order
Oustaloup’s approximation (N = 5), having a range of frequencies
of (0.001, 1000) rad/s, is used in the fraction operator design. Each
link’s controller is tuned via its parameters to track the required link.
The overall performance goodness of all links will determine to what
extent the accuracy of the manipulator end effector can maintain
the required path. The basic objective for each link controller is to
follow the desired path for this link with reduced error and match
the desired pathmore quickly. In this work, the sum of ITSE for each
link is used as the classical objective function in tuning all proposed
controllers. The objective function is stated in Equation 84:

min J = ∫(t × e1(t)2 + t × e2(t)2 + t × e3(t)2)dt. (84)
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TABLE 3 Specifications of the controller for each link when using a nominal system with starting positions (x1 = 0.15 rad, x2 = −0.55 rad, and x3 =
−0.85 rad).

Controller
Type

No of link Rise
Time

Settling
Time

Overshoot
%

ITSE
×10−5

NN-FOPIPD

L1 0.040 0.060 5.778 0.34448

L2 0.084 0.084 0.0014 0.41969

L3 0.039 0.106 8.1747 0.42887

NN + FOPID

L1 0.039 0.457 32.889 1.50855

L2 0.026 0.371 39.995 1.06976

L3 0.026 0.093 18.209 0.24544

ELNN-FOPID

L1 0.052 0.219 21.086 0.93473

L2 0.046 0.229 25.885 1.15868

L3 0.053 0.366 21.697 1.49175

The suggested controllers’ parameters are adjusted using the
BOA algorithm in order to minimize the ITSE for each link. The
controller is assessed according to the total tracking error ITSE
for the three links between the reference paths and the calculated
paths. Two initial positions (−0.15, −0.85, −1.15), (0.15, −0.55,
−0.85) rad for Phi-1, Phi-2, and Phi-3, respectively, are taken into
consideration in simulation to strengthen the training process for
all suggested controllers. The fitness of a candidate solution is
determined by adding the ITSE from these two executions.TheBOA
algorithm setting is a population size of 200, and the maximum
value of iterations is 1500. Each suggested controller’s performance
is assessed using ITSE computation.The controller that produces the
lowest amount of ITSE is the best. Before discussing the outcomes
of each suggested controller, we observed through numerous tests
that the resulting control signal was typically highly chattering
and inapplicable. This indicates that the design is unreliable and
that the controller generates a control signal that the actuator
cannot apply. In fact, neural networks have a high capability to
map complicated underlying data structures, which is one of their
key advantages. This capability produces the most complex high-
frequency control signals in neural network controller design (i.e.,
chattering phenomenon). A chattering signal is actually impractical
to use. Consequently, to solve this issue, the objective function is
changed as follows:

The classical objective function is to minimize the ITSE, as
expressed Equations 85, 86:

t × e(t)2 = t × e1(t)2 + t × e2(t)2 + t × e3(t)2, (85)

min J = ∫ t × e(t)2dt. (86)

The new objective function is as follows as presented in
Equation 87:

min J = ∫ t × e(t)2dt +Co× σ . (87)

σ is a small number chosen as 10−8

Co is a count of sign alterations in the control signal’s slope.
In the competition between the candidate solutions, this

modified objective function will eliminate the solution that exhibits
a high chattering control signal.

The desired trajectories φr1, φr2 and φr3 for link 1, link 2, and
link 3 are provided in Equations 88–90, respectively:

φr1 = sin (0.2πt). (88)

 φr2 = sin(0.2πt −
π
4
). (89)

 φr3 = sin (0.2πt −π/2). (90)

where the initial condition for φr1 = 0,φr2 = − 0.7,and φr3 = − 1
rad, and x (0) = 1.0769, y (0) = −0.4580 m.

Now, all of the nominal model and simulation data are
available. First, to minimize the ITSE, we use the BOA to tune all
the parameters of each proposed controller when using nominal
model parameters. Because of the stochastic nature of the BOA,
ten simulation runs were performed to get the best results for
each controller simulation. Table 2 displays the performance index
ITSE value for each suggested controller when a nominal plant
is applied with two initial positions. Table 3 lists the features of
each link’s control for all proposed controllers: settling time, rise
time, maximum overshoot, and ITSE value when using the initial
positions of 0.15 rad, −0.55 rad, and −0.85 rad. Figure 6 displays the
trajectory tracking for each link of the proposed controller and its
control signal, as well as end-effector x-y plots. Figures 6A–C show
the desired and actual values for Phi-1, Phi-2, andPhi-3, respectively.
Figures 6D,E show their control signals for Torque-1, Torque-2, and
Torque-3, respectively, as well as the desired and actual path of the
end effector in Figure 6G.

From these results, it can be seen that the NN-FOPIPD
controller structure gave smoother and faster convergence to
the reference trajectory. In addition, the NN-FOPIPD gave the
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FIGURE 6
The desired and actual values for (a) Phi-1, (b) Phi-2, and (c) Phi-3. The control signals for (d) Control torque-1, (e) Control torque-2, (f) Control
torque-3, and (g) the desired and actual end-effector paths.
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FIGURE 7
The desired and actual trajectories for (a) Phi-1, (b) Phi-2, and (c) Phi-3, respectively, and the (d) desired and actual end-effector paths when the initial
positions of the links are (0.2, −0.5, −0.8) rad, respectively.

TABLE 4 ITSEs of the proposed schemes when the links’ initial values are
(0.2, −0.5, −0.8) rad.

Controller ITSE

NN-FOPIPD 3.430154 × 10−5

NN + FOPID 110.2063 × 10−5

ELNN-FOPID 8.278723 × 10−5

TABLE 5 ITSE of the proposed scheme with starting conditions of 0 rad,
−0.7 rad, and 1 rad, and disturbances added to all control signals in the
period 2–6 s sin (100t).

Control scheme ITSE

NN-FOPIPD 0.062988

NN + FOPID 0.065961

ELNN-FOPID 0.050069

smallest overshoot, shortest settling time, and a closer trajectory
to the reference trajectory with the lowest values of ITSE
compared with the other controllers. The ELNN-FOPID controller
yielded a value that was marginally higher than the NN-FOPIPD
controller and relatively close to the NN-FOPIPD performance.

The NN + FOPID controller has the lowest performance for
each suggested controller. The NN-FOPIPD controller performs
the best.

6 Robustness tests

In this section, each suggested controller’s ability, efficiency, and
robustnesswill be demonstrated by evaluating its robustnesswithout
changing its parameters.

6.1 Change initial position

The robustness of the proposed controllers can be evaluated
by altering the starting positions to (0.2, −0.5, and 0.8) rad for
Phi-1, Phi-2, and Phi-3, respectively. In Figure 7, the trajectory of
the 3-LRRM end effector is depicted when the initial positions
of all links are changed, in addition to tracking Phi-1, Phi-2,
and Phi-3 trajectories. The ITSE of the proposed control schemes
is given in Table 4.

As can be observed, the NN-FOPIPD controller has the smallest
ITSE value, fastest response, and least settling time. Consequently,
when Phi-1, Phi-2, and Phi-3’s starting positions are changed, the
NN-FOPIPD controller performs better than the other suggested
controllers.
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FIGURE 8
The desired and actual trajectories for (a) Phi-1, (b) Phi-2, and (c) Phi-3, respectively, and the (d) desired and calculated paths of the end effector when
applying the external disturbance sin (100t) N-M to all link controllers while the starting position is (0, −0.7, −1) rad.

TABLE 6 The ITSE values for the proposed controllers when the mass of
Link-3 is increased by 10% and the initial position is (0.0, −0.7, 1) rad.

Proposed schemes ITSE

NN-FOPIPD 0.00099 × 10−5

NN + FOPID 0.30056 × 10−5

ELNN-FOPID 0.00179 × 10−5

6.2 Disturbance addition

The capability of disturbance rejection for each suggested
controller has been analyzed. This test is implemented after
including disturbance term sin (100t) N-m for the duration of 2–6 s
in the controller output of each link. In this test, the starting position
is taken to be (0, −0.7, −1) rad. Table 5 displays the achieved ITSE
results for each proposed controller. Figure 8 shows how the actual
trajectory of the 3-LRRM end effector tracks the desired trajectory;
in addition, it shows the trajectory tracking of Phi-1, Phi-2, and
Phi-3 when the external disturbance is considered is sin (100t) N-m
in each link.

The results clearly show that the suggested NN-FOPIPD and
ELNN-FOPID controllers perform nearly equally well. However,
the ELNN-FOPID gives the lowest value of ITSE and a slightly
better performance than the NN-FOPIPD. The NN + FOPID
controller gives a worse performance. Therefore, the ELNN-
FOPID outperforms the other proposed controllers for disturbance
rejection.

6.3 Parameter variations

In industry, a manipulator’s main job is picking and placing
different components with varying weights utilizing its end effector.
In order to conduct this test, link 3’s masses will be increased by
10%, and the starting position (0.0, −0.7, −1) rad will be used. This
test explores the proposed controller’s performance when parameter
variation occurs in the system. Table 6 lists the calculated ITSEs for
each suggested controller.The desired and actual trajectory tracking
of Phi-1, Phi-2, and Phi-3 in relation to changing the weights for all
controllers is displayed in Figure 9.

Based on the findings, the ITSE for theNN-FOPIPDcontroller is
the lowest value among other controllers when parameter variation
occurs. However, the NN-FOPIPD gave a fast response that was
closest to the required trajectory for Phi-1, Phi-2, and Phi-3 when
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FIGURE 9
(a) The desired and calculated Phi-1, (b) Phi-2, (c) Phi-3, and (d) the desired and calculated paths of the end effector when 10% is added to the mass of
link3 with starting positions for all links are (0, −0.7, −1) rad.

TABLE 7 The values of ITSE for all controllers when utilizing the initial
position (0.2, −0.5, and −0.8) rad, adding external disturbance term
sin (100t)∗(1, 1, 1), and changing the third link mass by 10%
simultaneously.

Control scheme ITSE

NN-FOPIPD 0.0630227

NN + FOPID 0.066909

ELNN-FOPID 0.050358

compared to other proposed controllers. Conversely, the highest
(and worst) ITSE value was caused by applying the NN + FOPID
controller.

6.4 All previous tests combined

The efficiency of the suggested controllers is determined by
combining all the effects on the control system. In this crucial
test, all the proposed controllers are simultaneously subjected
to the following effects: altering the initial position, adding a
disturbance, and changing the parameters of the system model.
Table 7 contains a list of the obtained ITSE values. Figure 10

shows the desired and actual Phi-1, Phi-2, and Phi-3 trajectories
and the end-effector trajectories when the system is subjected to
the above effects.

Of the proposed controllers, the ELNN-FOPID has the lowest
ITSE value even after changing the model parameters, adding
a disturbance, and shifting the starting positions. The ELNN-
FOPID controller demonstrates the fastest response, shortest
settling times, closeness-to-required trajectories, and lowest energy
consumption, as demonstrated by its Phi-1, Phi-2, and Phi-3
trajectories. The NN-FOPIPD controller comes in second order
in performance and accuracy. On the other hand, the NN +
FOPID controller has the worst performance because of its
maximum settling time and highest ITSE value. We can conclude
that the ELNN-FOPID controller is the best and outperforms
in all states.

7 Conclusion

A robotic manipulator’s performance is negatively affected by
parameter uncertainty and outside disturbances because it is a highly
coupled, complex, nonlinear, and multi-input multi-output system.
Consequently, the controllers designed for these systems must be
able to handle their complexity. The goal of this work is to solve
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FIGURE 10
Desired and actual trajectories (a) Phi-1, (b) Phi-2, (c) Phi-3 as well as the corresponding control signals, (d) Control torque-1, (e) Control torque-2, (f)
Control torque-3, and (g) actual path traced by the end effector when using starting position (0.2, −0.5, −0.8) rad, adding disturbance [sin (100t)] N-M
for all links, and a 10% increase in link 3’s mass.
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the nonlinear problems of compensating robot manipulator control
with disturbances and uncertainties and achieving precise position
by designing hybrid controllers that combine the advantages of
neural network-based BOA and a PID controller utilizing BOA
for 3-LRRM. The parameters of these controllers are adjusted in
accordance with the definition of the objective function as the
ITSE. All suggested controllers are for reference trajectory tracking
when all effects are present, like altering initial positions, adding
disturbance, and model parameter uncertainty. The simulation’s
outcomes showed that the suggested NN-FOPIPD controller is
most effective for tracking trajectories, rejecting disturbances,
adjusting parameters, and having the lowest performance index
ITSE value. In other words, the NN-FOPIPD controller exhibits
superior tracking, stability, and robustness compared to the other
suggested controllers. Future work and extension of the research
idea can address the following reference ideas: Nam Dao et al.
(2024), Nam Dao et al. (2025), Köhler et al. (2021), and
Nguyen et al. (2024).
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