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This study examines the integration of Artificial Social Intelligence (ASI) into
human teams, focusing on how ASI can enhance teamwork processes in
complex tasks. Teams of three participants collaborated with ASI advisors
designed to exhibit Artificial Theory of Mind (AToM) while engaged in an
interdependent task. A profiling model was used to categorize teams based
on their taskwork and teamwork potential and study how these influenced
perceptions of team processes and ASI advisors. Results indicated that teams
with higher taskwork or teamwork potential had more positive perceptions
of their team processes, with those high in both dimensions showing the
most favorable views. However, team performance significantly mediated these
perceptions, suggesting that objective outcomes strongly influence subjective
impressions of teammates. Notably, perceptions of the ASI advisors were not
significantly affected by team performance but were positively correlated with
higher taskwork and teamwork potential. The study highlights the need for ASI
systems to be adaptable and responsive to the specific traits of human teams to
be perceived as effective teammates.

KEYWORDS

human-agent teams, artificial social intelligence, theory of mind, team cognition, team
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1 Introduction

Teams are employed to help address dynamic and complex objectives that would be too
complicated, intricate, multidisciplinary, or large in scope for individuals or uncoordinated
groups to solve on their own (Fiore et al., 2010; Kilcullen et al., 2023; Lyons et al., 2021).
This is often for situations such as when quick decisions are necessary and errors can have
severe consequences, for task environments that are ambiguous, stressful or ill-defined, and,
especially, for when the lives of others depend on the collective knowledge and insights
of a team, such as in military, healthcare and aviation (Salas et al., 2008). Generally,
teams are considered to involve two or more members working interdependently toward
a common goal through either face-to-face or virtual interaction, where members have
different roles and responsibilities (Kozlowski and Bell, 2013; Mathieu etal., 2014; Salas et al.,
1992). Teams are often interdisciplinary in nature, which help them achieve emergent
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outcomes with only partially overlapping knowledge; here,
members maintain enough of an understanding of each other’s
competencies or disciplines to engage in teamwork and achieve
team goals (Fiore, 2008).

This understanding, emerging across team members, may
include knowledge of team member roles, individual abilities,
resources available, task demands, team goals and requirements.
This is generally referred to as mental models, which are the
organized knowledge structures that allow one to predict and
explain their environment, recognize and remember relationships
among components of the environment, and help us to describe,
explain, and predict events in the environment (Johnson-Laird,
1983). Team members having mutually held, though not necessarily
identical, mental models, help them predict what their teammates
will do, enabling them to adapt and respond to changing task
demands (Cannon-Bowers et al, 1993; Mathieu et al., 2000).
Involved in both developing and utilizing shared mental models,
humans draw upon a socio-cognitive process that is generally
referred to as Theory of Mind (ToM). This is a form of mental
state attribution whereby we perceive and interpret behaviors
and social cues (e.g., facial expressions) to infer intentions
and knowledge of another to support social interactions. This
helps us make informed predictions about future states and
scenarios, facilitating cooperation and coordination in varied
contexts (Baron-Cohen et al., 2001; Cuzzolin et al., 2020; Wellman,
2011; Williams et al., 2022). At a more general level, ToM is a
fundamental part of social intelligence, playing a large role in
social interaction, collaboration and communication (Zhang et al.,
2012). ToM is critical to a team’s ability to develop, retain, and
update shared mental models concerning the task, the resources
available, team interaction patterns, and different team members
knowledge, skills and abilities. Members utilize ToM to anticipate
needs, actions, and future problems within the team (Demir et al.,
2017; Chen and Barnes, 2014). In short, the effective use of ToM,
along with development of shared mental models, enable high-
performing human teams to coordinate behavior and knowledge
in multiple ways. This includes, but is not limited to, arriving at
common interpretations of dynamic contexts, such that they are
in sync with the task situation, inferring what courses of action
to take considering the context, identifying what information is
important to share, and determining the most effective timing for
when to share that information; these features are often observed
in high-performing and effective teams (Cannon-Bowers et al,
1993; Lyons et al., 2021; Salas and Fiore, 2004; Tannenbaum and
Salas, 2020).

Within the general study of teams, research has examined many
factors that impact processes and performance (O'Neill et al., 2023),
including factors that are more taskwork or teamwork oriented.
For example, teamwork-related factors include general team
competencies. This includes generic skills that all team members
need regardless of the task context, such as communication
skills, the ability to develop and maintain shared mental models
(Mathieu et al., 2000), as well as specific team competencies that
are relevant to a particular time situation and are more related
to the individuals, roles, and abilities held by team members
(Bowers et al., 2000; Fiore, 2008). As a complement to this, taskwork
reflects the components of teaming that largely demand independent
actions or reasoning as opposed to interaction with other team
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members (Salas et al., 2008). Although, one could easily imagine
situations where this could differ depending on a given task context,
such as in construction where moving heavy resources into place
could require more than one individual to carry and stabilize
objects, tasks that are interdependent would necessarily involve
teamwork to effectively coordinate abilities and actions across
multiple individuals (Salas et al., 2008).

We introduce this teamwork versus taskwork distinction because
Artificial Intelligence (AI) and automation have typically been
utilized by humans teams in utilitarian ways (e.g., as a tool) to
accomplish taskwork (Musick et al., 2021; Phillips et al., 2011).
Further, they have been typically developed/employed as static,
deterministic models and expert systems that operate through rules
that have been pre-defined by a human (Kaplan and Haenlein,
2019). Although this form of advanced technology certainly
augments teamwork, we submit that, for Al to operate effectively
as teammates, Al agents must not simply execute tasks, they must
also engage in social and interpersonal ways with their human
teammates (Demir et al., 2023). Recent advancements in computer
science have allowed AI to autonomously complete increasingly
sophisticated and dynamical functions in both taskwork and, more
recently, teamwork (Farah and Dorneich, 2024; Seeber et al.,
2020; Zhang et al., 2023). These advances illustrate AI being
increasingly utilized to augment and partner with human teams
(Demir et al., 2017), as well as fulfill viable roles within human
teams (McNeese et al., 2018; Sycara and Lewis, 2004). In the near
future, AI will be as agentic as humans, with the ability to engage
in decision-making, adaptation, and communication (O’Neill et al.,
2022), such that these autonomous agents can be considered a
teammate as opposed to a tool (McNeese et al, 2018). Teams
where humans partner with an AI agent are typically referred
to as Human-Autonomy Teams (HATs; McNeese et al, 2018),
sometimes also referred to as a Human-Agent Team (same acronym,
HAT), and are comprised of at least one human and at least one
autonomous/artificially intelligent agent An autonomous agent can
be considered a team member when it is able to fulfill a distinct
role and make its own contributions to the teams performance
(O'Neill et al, 2022), and when the agent has some degree of
decision-making freedom, as teammates typically have the capability
to be proactive, choose or reccommend courses of action (Wynne and
Lyons, 2018).

This means that all members of HATs will need to be able to
communicate and establish common ground among team members,
including their understanding of their environment and tasks, their
shared mental models, and shared team goals (Fiore et al., 2021;
Lyons et al., 2021), necessarily requiring an Al team member, as
part of the team, to possess social intelligence to meaningfully
contribute to effective teamwork and collaboration (Li et al., 2022;
Williams et al., 2022). Thus, an autonomous agent will need to be
designed to incorporate some form of artificial social intelligence
(ASI) to engage in meaningful human-agent collaboration. This
will require an agent to possess some form of social competence,
enabling it to engage in effective information and social exchanges
supporting effective team processes (Best et al., 2016; Fiore et al.,
2013; Wiltshire et al, 2014). As previously discussed, human
teams use ToM processes, social intelligence, and their shared
understanding and commonly held mental models to effectively
engage in teamwork. We submit that AI teammates, will need
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to be capable of what we've termed Artificial Theory of Mind
(AToM; Williams et al., 2022). The challenge is that agents lack
the rich, embodied, social experiences that humans learn from to
inform and build their ToM competence throughout development
and the lifespan. As such, interdisciplinary research is needed
to study how AI can develop AToM, whether it be learning
through interaction or learning via observation. Regardless, such
approaches require significant amounts of training data for ASI
to be able to function in varied social and collaborative contexts
(Hofstede, 2019; Williams et al., 2022).

To address the confounds introduced by complex, naturalistic
scenarios, foundational research on artificial Theory of Mind
(AToM) has relied on highly controlled problem spaces, such as
token-based tasks and predefined scenarios (De Weerd et al., 2017;
Ruocco, Mou, Cangelosi, Jay and Zanatto, 2021; Sun et al., 2022).
These studies aim to isolate specific cognitive components, like
belief formation and goal inference, offering valuable insights into
the mechanics of ToM and the challenges involved in integrating
it into virtual agents. Notably, however, these efforts have not yet
produced conclusive evidence that AToM meaningfully enhances
agent performance or interaction outcomes. Furthermore, the
precise functions and characteristics of a useful AToM remain under
exploration and may differ significantly from human theory of mind.
While early studies provide valuable groundwork, they illustrate
that artificial ToM may need to fulfill distinct roles in human-agent
interaction to be effective.

Controlled experimental setups, such as those involving
tasks  (Goodie 2012)
structures (Meijering et al., 2011), demonstrate the utility of

logic-based et al, or game-like
simplified tasks for investigating higher-order ToM. These studies
show that agents can engage in strategic reasoning and recursive
thinking under highly structured conditions, offering useful insights
into ToM mechanisms. However, reliance on scaffolding in these
setups such as breaking tasks into discrete, manageable steps limits
their applicability to real-world settings. In practical team scenarios,
agents must handle simultaneous, competing demands without
explicit instructions or external guidance. Moreover, these studies
often assume that cognitive strategies developed in structured
contexts will transfer seamlessly to more open-ended interactions.
But this assumption breaks down when agents need to adapt
dynamically to unpredictable human behavior.

Efforts to test ToM within negotiation tasks further illustrate
both the promise and the limits of foundational studies.
De Weerd et al. (2017) demonstrated that recursive reasoning
enhances agent performance in negotiations by enabling agents to
anticipate both cooperative and competitive actions. However, the
fixed, turn-based nature of these scenarios constrains the flexibility
required in real-world interactions, where goals and strategies
are fluid. Comparisons between studies like De Weerd et al.
(2017) and Sun et al. (2022) highlight the fact that although these
approaches offer useful insights into AToM capabilities, they remain
limited in their ability to generalize to naturalistic environments
where tasks evolve unpredictably.

Research examining trust dynamics with virtual agents
also underscores the importance of adaptive behavior. For
example, while Ruocco et al. (2021) showed that basic ToM
capabilities can foster initial trust, trust tends to plateau
without richer, context-aware exchanges. This need for sustained
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engagement mirrors challenges observed in negotiation-based
studies, where agents with higher-order reasoning excel in specific
tasks but encounter limitations in more fluid, real-time interactions.
Taken together, these findings emphasize the importance of adaptive
ToM for maintaining effective collaboration across dynamic,
multi-agent environments.

Studies on social intelligence and anthropomorphism add
further complexity to the development of effective ToM agents.
For instance, Sturgeon et al. (2021) found that predictable
behavior influenced participants’ perceptions of a robot’s cognitive
abilities, complicating efforts to implement ToM intuitively.
Similarly, van der Woerdt and Haselager (2019) demonstrated that
attributions of agency and responsibility are shaped by a robot’s
behavior and predictability, suggesting that rigid, pre-scripted ToM
behaviors can diminish perceptions of social intelligence. These
findings highlight the need for agents to demonstrate adaptive,
nuanced behavior that aligns with real-world human expectations.

Our study builds on these foundational efforts by examining
AToM within dynamic, high-stakes team tasks that reflect the
unpredictability and interdependence typical of real-world human-
agent interactions. Unlike simplified setups that limit agent
adaptability, our approach requires agents not only to infer human
goals and intentions but also to manage uncertainty, adapt to
shifting conditions, and provide context-aware interventions. This
shift toward more naturalistic environments highlights the need for
agents capable of generating and maintaining meaningful beliefs in
real time, which are abilities that are essential for fostering effective
collaboration in complex, real-world scenarios.

A near-term, promising approach to developing AToM is
through the use of profiling, which involves creating machine-
readable, quantified descriptions of individual team members’
characteristics, which Al can then use to inform its internal models
of humans (Bendell et al., 2024). These profiles provide theory-
driven a priori data to agents in order to provide a basic initial
model of their team members individual differences, capabilities,
and roles that are reasonably expected to be relevant to the task.
Research has shown that traits such as personality, social skills,
and teamwork competencies significantly influence team dynamics,
including communication, coordination, and overall performance
(Larson and DeChurch, 2020; Morgeson, 2005; Weidmann and
Deming, 2021; Van Eijndhoven et al., 2023). However, effective
profiling requires capturing both a sufficient quantity of data,
as well as situationally relevant information that allows AI to
make accurate inferences about its teammates’ mental states
and predict future actions (Williams et al., 2023a). Profiles can
enable ASI agents to develop a functional understanding of
human teammates, which is critical for social interactions and
for contributing to the team beyond task execution. In this way,
profiles can act as a surrogate for shared mental models in
that they help an ASI understand more generic competencies
as discussed in the general literature on teams (Bowers et al.,
2000). Specifically, it is only through many interaction episodes
that teams acquire shared understanding about the capabilities of
their teammates. But team profiles can provide immediate insights
into a human team member’s potential for effectiveness, thus
accelerating the acquisition of background knowledge helpful for
coordinating teamwork.
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Moreover, how the ASI functions within a team, team member
predispositions, agent interactions with team members, and a
myriad of other factors can influence perceptions of the agent
teammate (Bendell et al., 2023). Inappropriate interactions can
disrupt team processes, including information exchange and
coordination, leading to adverse teaming outcomes (Demir et al.,
2016; Demir et al., 2018) Further, perceptions of the autonomous
teammate can be influenced, impacting potential future interactions,
reliance behaviors, and teaming success (Parasuraman and
Riley, 1997), including the misuse or even disuse of the
agent if their abilities and contributions are thought not to
be of value (Talone, 2019).

This
program investigating artificial socially intelligent agents
(DARPA, 2019; ASIST, 2023). Specifically, the work reported in this
manuscript sought to examine the relationships between human

research was conducted as part of a larger

team members and ASI advisors that collaborated to complete
missions requiring teamwork. A key feature of the study is that the
ASI advisors were “real” autonomous agents. Unlike the majority
of human-AlI teaming research thus far, which relies on “wizard
of 0z” manipulations with human confederates acting as Al this
study was designed to develop functioning AI architectures that
leverage artificial theory of mind (AToM) and engage explicitly
in teamwork with their human counterparts. Further, the team
missions we examined represented actual interactions between
human teammates and Al observing, processing, and engaging
with the team in real time.

We aimed to answer several questions regarding how teams
perceived themselves (e.g., their processes, satisfaction with
outcomes, and team-level self-efficacy) as well as how they perceived
their AI advisor. Building upon previous work, we employed a
profiling model that allowed us to discriminate between teams that
were relatively higher in potential for effective taskwork (Taskwork
Potential) and for effective teamwork (Teamwork Potential).
Examining teams through the lens of those profiles, we have shown
that the measurable differences in teams’ compositions can be
predictive of how positively teams view themselves and their AI
advisors (Bendell et al., 2023). This paper continues that line of
research. Specifically, although we found that teams that were
higher in taskwork and teamwork potential were associated with
more positive perceptions of both their team and team’s advisor, it
is unclear whether those responses are better or more appropriately
calibrated to the reality of their experience (Bendell et al., 2023).
It is possible, and potentially problematic, that teams with higher
tasking and teaming potential may provide more positive ratings
even when their artificial advisors are not effective team members
or when their teamwork as a whole breaks down.

2 Methods

The experiment from which our data are derived was conducted
as part of the Artificial Social Intelligence Supporting Teams (ASIST)
Program. The study was conducted to evaluate the effectiveness of
Artificial Social Intelligence (ASI) in enhancing teamwork processes
in ad hoc teams and performance in a simulated task environment
(Huang et al., 2023). The focus was on measuring the ASI’s impact
on team states such as motivation, processes like synchronization,
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and overall mission outcomes including game score. This study
involved human participants (3 per team) collaborating with an
ASI advisor that provided real-time, text-based advice and guidance
to improve teamwork. Notably, this study featured bi-directional
communication between humans and Al through a flexible prompt-
reply system, which allowed participants to select from a set
of response options after receiving a communication from their
assigned artificial advisor. The data collected for this study as
generated in a large-scale online public testbed, with automatically
initiating servers that were able to instantiate new instances of
the experimental testbed as needed, affording the simultaneous
(e.g., multiple trials and teams going at once) and distributed (e.g.,
individuals are not co-located) data collection of 1,160 experimental
trials. The data collected for this study are available as part of a
publicly available dataset (Huang et al., 2024), which contains both
the trial and simulation data, as well as access to the testbed-related
files needed for other researchers who may want to use this testbed.

2.1 Experimental task

The experimental task was designed specifically to assess how
well AT architectures focusing on artificial social intelligence could
improve team outcomes. The task was structured to impose time
constraints and ensure that teams were under a reasonably high
demand when executing bomb disposals (e.g., execution of the
taskwork elements). From this, the number and complexity of
bombs placed in the simulated testbed environment was tuned to
require teams to work efficiently and collaboratively to succeed.
However, the taskwork components of the design were implemented
explicitly to incorporate team member interdependencies because
teamwork and the processes that teams execute to succeed at
teaming were the primary interests of the research program. Some
details of those interdependencies and the teamwork they elicited
are discussed below; however, a full accounting of the task design is
available alongside the publicly available dataset (Huang et al., 2024).

Regarding the technical constraints and design of the ASI
advisors, some design decisions were necessary given the current
state of tools for interfacing AI with teams that are operating in
real time. One key design feature was the limitation of participant
communications to a text chat interface and in-game annotation
tools. The latter allowed participants to select from a subset of
messages and broadcast that message from the location at which
they used the tool. For example, participants could use the in-game
annotation tools to request that teammates rally to them, ask their
teammates to provide medical assistance or bring extra tools, to warn
their team of fires, or to broadcast the locations of bombs and other
hazards. Although those communication avenues present some
limitations compared to voice communications, we note that they
are common channels that can be effective for supporting teamwork
especially in high demand virtual environments and they offer a
viable solution while avoiding the need for online natural language
processing. Notably, communication between the ASI advisors
and human teammates was further constrained and structured to
support meaningful exchanges but avoid many of the issues that
can be caused by faulty or incomplete natural language processing.
Specifically, ASI delivered advice and messages to team members
in the form of texts that appeared on the members’ screens in
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association with response options prepared by the ASI. The human
team members could not freely respond to their ASI counterparts,
which was a limiting but important design choice made to ensure
that the ASI could understand responses and continue structured
and effective exchanges.

The following subsections provide an overview of the task
structure, the implementation of the taskwork interdependencies,
and the features and functions designed to facilitate or require
teamwork behaviors.

2.2 Task structure

The simulated testbed environment (STE) constructed for
ASIST Study four was built up from the java release of the popular
sandbox MMO Minecraft (Mojang, 2015), and was designed to
feature two distinct areas: one problem space, the “field”, in
which participants searched for and disposed of bombs, and one
planning space, the “store”, in which participants could execute
a range of collaborative actions that would serve their teamwork
processes in the field. When operating in the field, participants
could freely control their Minecraft avatars and employ different
tools to support their objectives. This included tools to help locate
bombs, communicate and record those locations on a shared mini-
map, dispose of those bombs by applying the correct tools in
the correct order, and manage the spread of fires caused by the
explosion of some particularly volatile bombs. A time limit of
10 min was imposed on teams field operations. Critically, teams
could vote to leave the field and teleport to the store, which
was a separate location in the Minecraft environment. As long as
teams were in the store, time was paused such that they could
spend as much time as needed to plan without decrementing
their 10 min of field time. The provision of infinite in-store time
was a design decision motivated by the need to allow teams the
opportunity to engage in as much planning, externalization of
information to create cognitive artifacts (cf. Fiore and Wiltshire,
2016), and discussion of resource allocation as possible to support
the subsequent analysis of teamwork behaviors. While in the store,
the team could use text-chat to collaboratively review their shared
map (to both evaluate the information already recorded on the map
as well as to add information such as planned operations and rally
points), discuss how to spend their team budget to purchase tools
(e.g., the color-coded bomb disposal tools, sensor tools for locating
bombs, personal protective equipment, and more), review mission
status and information, and vote to return to the field to continue
bomb disposal operations.

At the start of each mission, teams were placed at a designated
starting point in the bomb disposal field by the simulated testing
environment and given 3 min for reconnaissance. During this phase,
participants could search the area for bombs and use a limited
supply of markers and communication beacons to share information
about bomb locations and types on their shared mini-map. Each
bomb presented unique challenges based on its parameters. Fuse
timers varied, with some bombs set to detonate within minutes and
others lasting nearly the full mission duration. Bombs also required
specific disposal sequences, such as using a Red tool followed
by two Blue tools (R-B-B), for safe deactivation. Failed disposals
resulted in consequences, such as damage to nearby participants,
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and a subset of bombs triggered dynamically spreading fires. Some
bombs were also “chained” and had to be deactivated in a specific
order, with any deviation leading to immediate explosion. These
parameters required teams to plan and coordinate carefully during
reconnaissance and throughout the mission.

Teams completed their missions either by disposing of all bombs
(either by successful disposal or a combination of explosions and
disposals), running out of their 10 min of field time, or taking too
much damage from bombs (note: when a given participant took too
much damage they would be frozen in place and could be rescued
by a team members; if all team members became frozen in place the
mission ended in failure).

2.3 Taskwork and teamwork
interdependencies

The main game mechanic that was leveraged to yoke taskwork
and teamwork behaviors was the use of color-coded tools that
were required for disposing of bombs across three dimensions
of complexity: individual bomb sequence length, bomb sequence
homogeneity, and cross-linking of bombs. Bombs could have
sequences as low as one single step (e.g., just one tool needed)
or as long as three steps and those steps could be completely
homogeneous (e.g., three steps each requiring the use of the
same type of tool) or heterogenous (e.g., each step requiring a
different tool). There were three colors of bomb-disposal tools that
participants could purchase from the in-game store interface: Red,
Green, and Blue. The colors themselves were inconsequential, but
participants could only carry any two different colors at a time (e.g.,
red and green, red and blue, or blue and green). Therefore, the
distribution of colored tools across team members was an important
resource for teams to manage because tools were consumed on
use and bombs would begin an emergency 15-seconds-to-explosion
countdown upon the application of a tool. To illustrate by example,
consider a participant carrying eight red tools and six blue tools who
encountered a 3-step bomb with the disposal sequence Red-Green-
Blue. Although that participant could consume one of their red tools
to begin the disposal, they would activate the emergency countdown
but would not have a green tool that they could use to stop the
impending explosion. Successfully disposing of that bomb would
require assistance from a teammate who had a green tool because
no one participant could ever carry all three types of tools. As an
additional layer of complexity, the cross-linking of bombs required
participants to carefully record and discuss the order in which some
sets of bombs needed to be disposed of (e.g., a bomb sequence may
be Bomb23, Bomb17, Bomb 44 requiring 23 to be disposed of before
17 and so forth).

2.4 Artificial social intelligences

Two ASIs were developed for this experiment. RITA
(Rita, 2023) was developed by the Dynamic Object Language
Labs in collaboration with the Massachusetts Institute of
Technology. ATLAS (ATLAS, 2023) was developed by the Advanced
Agent Robotics Technology Lab at Carnegie Mellon University.
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Because our focus is on understanding the impact of the human-
ASI interactions on team outcomes and perceptions, details of the
inner workings of the two ASI are beyond the scope of this paper.
There are, however, a number of features of the agents that the reader
should be familiar with to contextualize the nature of the advisors
and their interactions with their human teammates. Generally, the
advisors were designed to monitor the team’s behaviors (e.g., their
movements, disposal actions, and communications) and to provide
advice and interventions targeted at teamwork, not taskwork. The
distinction between taskwork and teamwork here is important
because it highlights the ASIST program’s goal of advancing Al that
is not focused only on accomplishing tasks to advance teams’ goals,
but to participate as active members in the team processes. As such,
ASIST ASIs did not know anything about the mission environment
that participants had not encountered and could not (or, rather, did
not by design choice) solve the task for participants or tell them
where they should go or what they should do when. Instead, RITA
and ATLAS provided feedback on teams’ activities, identified gaps
in shared knowledge, advised methods for maintaining awareness
and offered backup assistance to teammates, and other teamwork
focused interventions. We refer to RITA and ATLAS, collectively, as
ASI advisors or just advisors.

2.5 Materials and measures

One of the core components of this article is examination of
our individual and team profile models as they relate to various
processes and outcomes in teams. The profiles are derived from
six key components, constructed from both psychometric and
psychographic measures, which assess an individual’s potential
for taskwork and teamwork. The distinction between taskwork
and teamwork was drawn from team theory, which differentiates
between the competencies necessary for task completion and
those required for effective collaboration. This distinction has
been shown in our prior research to provide valuable insights
into the behaviors and perceptions of teams working alongside
ASI advisors (Bendell et al, 2024). The player profile model
integrates five measures, with two focused on taskwork potential
and three on teamwork potential. This approach aims to
connect traditional methods of analyzing human behavior with
contemporary techniques for designing artificial agents.

We define taskwork potential as the general abilities essential for
carrying out tasks within virtual environments. This encompasses
skills such as spatial navigation and memory for pathways, as well
as the ease and confidence with which individuals complete tasks in
gaming contexts. To evaluate spatial navigation skills, we employed
the Santa Barbara Sense of Direction (SSOD) scale, a validated
instrument recognized for its ability to predict success in navigating
both physical and digital spaces (Hegarty et al., 2002). Additionally,
the level of comfort and proficiency in completing tasks within
gaming environments was gauged using the Video Game Experience
Measure (Williams et al., 2023b; Williams, 2024), which specifically
assesses gaming experience and competencies, with a focus on
Minecraft and the USAR gamified scenarios.

The teamwork potential profile, the second dimension of the
player profile, assessed broad competencies related to collaboration
and interpersonal abilities. This dimension assessed individual’s
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abilities to understand others’ mental states and emotions, patterns
of behavior in group settings, and engagement in collective activities
and group dynamics. To measure those features of social intelligence,
we used the Reading the Mind in the Eyes Test (Baron-Cohen et al.,
2001). This is a validated instrument originally developed to
identify subtle Theory of Mind deficits in adults with high-
functioning autism, but also applicable to neurotypical individuals
in making mental state judgments. Dispositions toward interaction
behaviors were measured using the Sociable Dominance scale
(Kalma et al., 1993). This is a validated tool that predicts social
interaction behaviors, such as the likelihood of individuals with
high sociable dominance to actively reason about their teammates
and communicate directly in their interactions. Lastly, collective
engagement and group behavior tendencies were assessed through
the Psychological Collectivism scale (Jackson et al., 2006). This
is a validated measure that examines attitudes toward group
work, including personal tendencies when working with groups,
awareness and engagement with group wellbeing, and adherence to
the structures and systems agreed upon by the group.

To define participants’ profiles, individuals were assessed as
having either high or low potential in both dimensions (taskwork
and teamwork) based on their performance in the relevant
assessments. Specifically, a person was classified as having high
potential in a given category if they scored above the median on
at least two of the measures employed for a given dimension.
Conversely, if they scored low on two measures, they were
considered to have low potential in that area. This classification
system resulted in four distinct profile groups: low taskwork - low
teamwork, high taskwork - low teamwork, low taskwork - high
teamwork, and high taskwork - high teamwork potential.

Team level profiles were derived by aggregating the individual
profiles of team members through a similar type of modal analysis
as was used for defining each participants’ profile. In other words, the
most frequently occurring taskwork and teamwork profiles among
the team members determined the team’s overall classification. This
approach allowed us to assign teams to categories of either high
or low taskwork potential and high or low teamwork potential,
mirroring the classification method used for individual players. For
example, if a team was composed of one member with high taskwork
but low teamwork, another with low taskwork and low teamwork,
and a third with high taskwork and high teamwork, the team would
be collectively classified as high taskwork (since two out of three
members were categorized as such) and low teamwork (as two out
of three members fell into this category).

2.6 Team and ASI advisor evaluations

Upon completing a mission with their team and ASI advisor,
participants were asked to fill out a set of surveys designed to
assess their perceptions of their team and their advisor. These
survey items were each rated on a seven-point Likert scale ranging
from “strongly disagree” to “strongly agree” Team surveys included
measures of participants' impressions of their team's collaboration
and outcomes (e.g., satisfaction with score, collaborative effort,
planning processes, desire to work together in the future, and general
belief in their teams’ ability to perform), their team efficacy (e.g.,
work ethic, ability to overcome problems, plan a successful strategy,
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maintain positivity, succeed completely and with time to spare,
to coordinate knowledge, and to coordinate to dispose of bombs
efficiently), and their team process, for example, how well they share
information (Mathieu et al., 2020).

Finally, team member also responded to five queries
regarding their perceptions of their ASI advisor: “The advisor’s
recommendations improved our team score”, “The advisor’s
‘I felt
“I understand why the

recommendations improved our team coordination’,
comfortable depending on the advisor”,
advisor made its recommendations”, “I think the AI Advisor
is trustworthy” Additionally, participants were asked to “please

elaborate on your ratings of your Al advisor”

3 Results
3.1 Study sample

Participants in this study were remotely located individuals who
joined an online testbed environment, forming teams of three based
on a first-come, first-served system. Consequently, an individual
could participate multiple times, resulting in teams consisting of
entirely new teammates, a mix of familiar and new teammates, or
entirely previous teammates. Accordingly, the number of unique
participants was not directly associated with the number of unique
trials or teams that were formed during the experiment. The final
dataset included 1,095 completed experimental trials with 276
unique individuals participating in various team configurations. The
sample primarily consisted of young males (233 males, 41 females,
two not reporting) with an average age of 20.1 years (ranging from
18 to 40 years); the nature of this sample should be considered
when interpreting the results of the analyses presented here and
the extent to which these findings are transferrable to different
team compositions, including gender and age representation.
With regards to the number of experimental trials completed by
participants, the maximum number of trials completed by any one
participant was 131, with a sample mean of 16.4 trials due to many
participants completing only a single trial.

Although it is important to acknowledge the characteristics
of individual participants, this article focuses on teams and the
application of the taskwork and teamwork profiling method to
assess and predict team performance when ASI is a member. The
following analyses provide a detailed overview of the 1,095 teams
that undertook the bomb disposal missions in the simulated testbed
environment. Given the possibility of individuals participating
multiple times, teams could consist of multiple experienced players
or all novice players. To account for this, we report in our
supplementary materials the total number of trials completed by
the team members up to their participation together, as well as the
maximum and minimum number of trials completed by individual
team members for each mission (Supplementary Table 3).

Two important take-aways from our supplementary tables that
the reader should keep in mind when considering the results of
our analyses are the relative distributions of participant teams
across the taskwork and teamwork profile dimensions, and the
range and deviation of the number of trials across teams and team
members. The distribution of teams across the profile categories
was uneven; however, that was expected considering that the team
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level profiles arise from the individuals put together by the team
formation system, which was essentially random and not in any
way driven by individuals” profiles. The most represented category
in this team sample was low taskwork, low teamwork profiles (446
teams), followed by low taskwork, high teamwork (353 teams), then
high taskwork, low teamwork (204 teams), and the least represented
was high taskwork, high teamwork (92 teams). The second takeaway
was that some teams were formed of relatively veteran members
(having participated in the simulated bomb disposal missions
up to 131 times) and others of entirely novice team members
(having participated only once), see Supplementary Table 3. That
is important to keep in mind when considering our pattern of
findings, and we explore the possible implications of these varied
team composition in the context of both the profiles and experience
in later sections.

3.2 Correlational analyses

To investigate the relationships between teams’ profiles and their
perceptions of their team processes as well as their evaluations
of their ASI advisors, we first examined the intercorrelations
between the outcome variables related to the two sets (Table 1).
The first set of outcomes, team perceptions, was captured by five
dependent variables: average team process rating (Team Process;
Mathieu et al., 2000), average team satisfaction with their final
score (Team Satisfaction Score), average team satisfaction with
their planning behaviors (Team Satisfaction Planning), average
team efficacy regarding strategy (Team Efficacy Strategy), and
average team efficacy regarding knowledge coordination (Team
Efficacy Knowledge Coord). The second set of outcomes, advisor
evaluations (see Table 2), was captured by four dependent variables:
average response to “The advisor’s reccommendations improved our
team score” (Advisor Eval Improved Score), average response to
“The advisor’s recommendations improved our team coordination”
(Advisor Eval Improved Coord), average response to “I felt
comfortable depending on the advisor” (Advisor Eval Comfortable
Depend On), and average response to “I think the AI Advisor is
trustworthy” (Advisor Eval Trustworthy).

For the team perception variables, we anticipated that team
members’ average responses could be highly correlated if teams
tended to report general pleasure or displeasure uniformly.
Each of the team perception outcome variables were highly
correlated with each other such that teams that reported positive
perceptions did so across all items and conversely those reporting
negative perceptions responded accordingly to each item. These
relationships do not imply that participants (and, by extension,
teams) responded without deviation or nuance, but they do
suggest that inspection of these outcomes should begin at the
multivariate level. Similarly, correlational inspection of the second
variable set, advisor evaluations, was conducted to address the
assumption that team members may have responded generally
positively or negatively across items. The four advisor evaluation
variables exhibited high intercorrelation and therefore should
be examined at the multivariate level, Supplementary Table 4 for
the correlation analyses between Team Perception and Advisor
Evaluation variables.
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TABLE 1 Mediation analysis for the effect of Teamwork Potential and Taskwork Potential on team perceptions as mediated by Team Score.

Direct effect | Indirect effect Total effect | Percent Additional
(through mediated (by variance
team score) team score) accounted
for
Teamwork Potential 0.3153 0.1674 0.4827 34.68% 39.09%
Team Process
Taskwork Potential 0.1478 0.2953 0.4431 66.6% 39.05%
i . Teamwork Potential 0.09076 0.15861 0.24937 63.6% 29.27%
Team Satisfaction
rating Score .
Taskwork Potential 0.1430 0.2718 0.4147 65.5% 27.59%
Team Satisfaction Teamwork Potential 0.218 0.182 0.400 45.5% 39.13%
rating Team
Planning Taskwork Potential 0.0987 0.3196 0.4183 76.4% 38.72%
. Teamwork Potential 0.295 0.188 0.483 38.9% 40.41%
Team Efficacy rating
Team Strategy .
Taskwork Potential 0.235 0.325 0.560 58.1% 38.98%
Team Efficacy rating Teamwork Potential 0.3378 0.1664 0.5042 33.0% 36.33%
Knowledge
Coordination Taskwork Potential 0.230 0.290 0.520 55.8% 35.47%

TABLE 2 Mediation Analysis for the effect of Teamwork and Taskwork potential on advisor perceptions as mediated by Team Score.

Direct effect | Indirect effect Total effect | Percent Additional
(through mediated (by variance
team score) team score) accounted
for
. . Teamwork Potential 0.3820 0.0335 0.4154 8.0% 0.57%
Advisor evaluation
Improved Score .
Taskwork Potential 0.4968 0.0471 0.5439 8.7% 0.36%
Advisor evaluation Teamwork Potential 0.4167 0.0011 0.4178 0.27% <0.01%
Improved
Coordination Taskwork Potential 0.3263 0.0010 0.3273 0.30% <0.01%
Advisor evaluation Teamwork Potential 0.5106 0.0436 0.5541 7.9% 1.1%
Comfortable
Depending On Taskwork Potential 0.4484 0.0720 0.5204 13.8% 0.98%
X . Teamwork Potential 0.5813 0.0458 0.6271 7.3% 1.3%
Advisor evaluation
Was Trustworth
as trustworthy Taskwork Potential 0.5026 0.0758 0.5784 13.1% 1.2%

3.3 Mediation analyses: Influence of team

mediation analyses (employing R library “mediation”;

score

Our expectation was that teams profile dimensions
would predict their evaluations of their teams and of their
advisors, but that the teams actual performance (i.e., score)
could mediate their perceptions such that those teams that
performed well would be biased towards more positive
perceptions of their team and advisor. To examine the effects
of the taskwork and teamwork profile dimensions on teams
perceptions of their processes and performance as mediated
by team score, we conducted a set of percentile bootstrapped
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resamples). The mediation analysis revealed significant effects
of teamwork and taskwork potential on various team-related
outcomes, with team score serving as a mediator such that
teams that achieved better scores reported more positive
perceptions (see Table 1). Overall, the mediation effects indicate
that while team score significantly mediates the relationship
between teamwork/taskwork potential and various team outcomes,
the taskwork and teamwork profile dimensions also directly
impact perceptions. Notably, teams higher in either profile
dimension (or both dimensions) rated their teams more
positively, regardless of score.
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A similar set of mediation analyses conducted to investigate the
possible mediating effect of team score on advisor evaluations did
not reveal significant mediation by score. These analyses showed that
unlike the relationship with team perceptions, team score did not
notably impact teams’ ratings of their advisors (see Table 2).

The first takeaway from the above mediation analyses was that,
as expected, team score significantly influenced teams” perceptions
of their process, their score, their satisfaction with their teaming
behaviors, and their teamwork efficacy. Teams that performed better,
accurately perceived the quality of their performance and their
awareness seems to have increased their satisfaction and efficacy
ratings notably.

The second takeaway was that team score did not seem to
influence teams’ perceptions of their ASI advisor. This finding is
particularly important because it suggests that the performance of
the team (ostensibly, including the ASI advisor as a team member)
did not change the way that the human team members viewed their
advisor. Nonetheless, it is possible that human team members simply
viewed their ASI advisor as separate entities (i.e., not part of the
team) and therefore not responsible for the team’s performance or
processes. Alternatively, it could be that they did view their ASI as
an integral part of the team, but still did apply to them the standards
of judgment that applied to their human compatriots.

3.4 Team profiles: Multivariate analyses of
variance

We next conducted two separate two-way MANOVAS to test
the relationships between teams’ two profile dimensions (taskwork
potential, teamwork potential) and the two sets of constructs: team
perceptions and advisor evaluations. The statistical analysis revealed
significant effects within both the Team Perceptions Variable
Cluster and the Advisor Evaluations Variable Cluster. For the Team
Perceptions Variable Cluster, the analysis indicated a significant
effect for Teamwork Potential, F (5, 1,024) = 23.432, p < 0.001, with
Wilk’s A = 0.897, as well as for Taskwork Potential, F (5, 1,024) =
11.057, p < 0.001, with Wilk’s A = 0.949. However, the interaction
between Teamwork and Taskwork was not statistically significant,
F (5, 1,024) = 1.787, p = 0.113, with Wilk’s A = 0.991. Similarly,
for the Advisor Evaluations Variable Cluster, there was a significant
effect observed for Teamwork Potential, F (4, 1,025) = 16.788, p
< 0.001, with Wilk's A = 0.939, and for Taskwork Potential, F (4,
1,025) = 10.251, p < 0.001, with Wilk’s A = 0.962. The interaction
between Teamwork and Taskwork was also significant in this cluster,
F (4, 1,025) = 7.135, p < 0.001, with Wilk’s A = 0.973. The statistical
significance of the MANOVAs indicates that the profile dimensions
were able to distinguish differences in the participants perceptions.
We next more closely examine those effects and the influence of the
taskwork and teamwork traits.

3.5 Follow-on analyses of variance

3.5.1 Team perceptions

Closer inspection of the relationships between the team profile
dimensions and the two sets of outcome variables, team perceptions
and advisor evaluations, was conducted via follow-on two-way
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analyses of variance with Bonferroni corrections. Results indicate
no interaction between the two profiles dimensions at the univariate
level for any of the team perceptions variables. Teamwork potential
and taskwork potential had separate, significant effects on each of the
team perceptions outcome variables and were associated with small
to moderate sized effects (see Table 3; Figure 1) shows that pattern as
reflected by teams’ ratings of their team process. Generally, profiles
distinguished ratings such that teams high in at least one dimension
report notably more positive perceptions of their teams than those
teams low in both dimensions.

Post-hoc tests with Bonferroni correction were conducted
to further investigate the differences between the profile
dimension groups. The results indicate that both taskwork
potential and teamwork potential have an effect on teams’
perceptions of their processes, their satisfaction with their
performance, and their efficacy regarding teaming behaviors
such that greater potential is associated with more positive
perceptions (see Supplementary Table 6).

Although some post hoc comparisons indicated significant
differences between the cross-potential groups (e.g., High Teamwork
Low Taskwork, Low Taskwork High Teamwork) and the extreme-
potential groups (i.e., High Teamwork High Taskwork, Low
Teamwork Low Taskwork), no consistent pattern suggested
that either teamwork potential or taskwork potential alone
primarily drove the more positive responses. Instead, it seems
that it is more important that a team be high in potential
on at least one of the profile dimensions for them to report
more positive perceptions of their team, and that being high
potential in both dimensions is associated with the most positive
perceptions (see Supplementary Figures S1-3).

3.5.2 Advisor evaluations

Follow-on two-way ANOVAs were conducted to investigate
the relationships between the two team profile dimensions and
each of the advisor evaluation outcome variables. The pattern of
results reflects the multivariate outcome above, indicating that there
was some evidence of an interaction between the taskwork and
teamwork potential dimensions such that teams higher in both
reported more positive evaluations of their advisors. Notably, that
interaction manifested significantly for only two of the outcome
variables: Advisor Improved Team Coordination, and Advisor
Improved Team Score (see Table 4). The main effect of taskwork
potential was more consistent with evidence of its impact being
demonstrated across three of the four outcome variables (excluding
Advisor Improved Team Coordination), and a main effect of
teamwork potential was found to be significant for all outcome
variables.

Post-hoc analyses with Bonferroni correction revealed that
differences between groups were partly driven by teams being
high in at least one profile dimension: teams that were low
in both taskwork and teamwork potential were associated with
relatively more negative evaluations of their advisors. Significant
differences between high and low groupings of both teamwork and
taskwork potential were found, showing that teams that were high
in both taskwork and teamwork potential (see Figure 2) or high
in at least one dimension rated their advisors as notably more
helpful than teams that were low potential in both dimensions
(Supplementary Table 7; Supplementary Figures S4-7).
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TABLE 3 Two-way ANOVA results for Teamwork Potential, Taskwork Potential, and their Interaction on Team Perceptions.

Teamwork potential

F(1,1028) = 56.156
P <0.001
1’ = 0.050

Team Process Ratings (average)

Taskwork potential Interaction
F(1,1028) = 28.914
P <0.001

0% =0.026

F(1,1028) = 2.203
p=0.138
1’ = 0.002

Team Satisfaction Rating: Score F(1,1028) = 7.526
p=0.006

0% =0.007

F(1,1028) = 28.006
p<0.001
0% =0.026

F(1,1028) = 2.094
p=0.148
n? =0.002

Team Satisfaction Rating: Planning F(1,1028) = 29.175
p<0.001

n? = 0.0270

F(1,1028) = 23.268
p<0.001
n*=0.0215

F(1,1028) = 1.663
p=0197
n? = 0.0015

F(1,1028) = 40.1839
p<0.001
1’ = 0.0360

Team Efficacy Rating: Strategy

F(1,1028) = 44.8431
p<0.001
n? = 0.0403

F(1,1028) = 0.1937
P =0.6599
1’ = 0.0002

Team Efficacy Rating: Knowledge F(1,1028) = 54.5409

F(1,1028) = 41.6303 F(1,1028) = 2.2452

Coordination p <0.001 p<0.001 p=0.1343
n? = 0.0484 n? = 0.0370 1’ = 0.0020
Team Process Rating avg Boxplot by Teamwork and Taskwork Potential Category
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FIGURE 1
Team Process Average Ratings across Teamwork and Taskwork profile groups demonstrate that teams high in both dimensions report notably more
positive perceptions of their teams than those teams high in only one dimension. All three groups of teams that were high in at least one dimension of
the team profiles reported more positive perceptions than those teams low in both.

3.5.3 Repeat teams

To explore the possible impacts of the number of times that a
given team engaged in repeat play (i.e., had already completed bomb
disposal missions), we split completed team trials into three groups:
trials associated with the first time a team ever worked together
(First Time), the second through the 10th time that a team worked
together (2-10), and trials completed by teams that had worked
together eleven or more times (11+). This allowed us to form two
relatively equal groups of First Time (518 trials) and early teaming
(2-10; 476 trials) trials in addition to a subset of trials completed
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by more veteran teams (11+; 101 trials). Similar to the previous
exploration, we first conducted a one-way ANOVA to determine
if the amount that a team had worked together impacted their
score outcomes. Results of that analysis showed that there was a
significant effect of team repeat play on score (F(2,1091) = 9.153, p
<0.001, n2 = 0.017); however, it was not the case that more veteran
teams outperformed more novice teams. First Time trials and 11+
trials were associated with similarly high scores (Mean Difference =
—43.095, p = 0.645) whereas trials completed by the 2 to 10 group
were associated with relatively lower scores compared to First Time
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TABLE 4 Two-way ANOVA results for Teamwork Potential, Taskwork Potential, and their Interaction on Advisor Evaluations.

Teamwork potential

ASI Improved Team Coordination F(1,1028) = 18.7818
Ratings P <0.001n* = 0.0177

Taskwork potential

F(1,1028) = 5.7998
p=0.0162
n? = 0.0055

Interaction

F(1,1028) = 10.4805
p=0.0012
1’ = 0.0099

F(1,1028) = 11.6635
P <0.001
n%=10.0109

ASI Improved Team Score Ratings

F(1,1028) = 19.3917
p<0.001
n%=0.0181

F(1,1028) = 12.2928
P <0.001
n?=0.0115

F(1,1028) = 29.4859
p<0.001
n? =0.0273

ASI Dependable Ratings

F(1,1028) = 16.5809
p<0.001
n® = 0.0154

F(1,1028) = 4.8977
p=0.0271
n? = 0.0045

F(1,1028) = 43.6577
p<0.001
n? = 0.0399

ASI Trustworthy Ratings

F(1,1028) =22.9113
p<0.001

F(1,1028) = 0.0245
p=08757

1’ = 0.00

12 = 0.0209

~

=
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Teamwork Potential Category

ASI Evaluation: Trustworthy Rating by Teamwork and Taskwork Potential profile groups demonstrate that teams high in both dimensions report notably
more positive perceptions of their advisors than those teams high in only one dimension. Additionally, all three groups of teams that were high in at
least one dimension of the team profiles reported more positive perceptions than those teams low in both.

High Teamwork Pot

(Mean Difference = 72.467, p = 0.001) and 11+ (Mean Difference =
115.562, p = 0.003).

Examining the interaction between the amount that a team
had worked together and their two profile dimensions, we tested
first the relationship between those three factors and the team
perception variable set (five total) and next the advisor evaluation
variable set (four total). Both analyses demonstrated that there
were significant interactions between the three factors such that
the amount that a team had worked together impacted the way
that the teamwork and taskwork potential profiles manifested
their effects on teams’ perceptions of themselves as well as their
advisors. However, inspection of post hoc analyses revealed that
the interactions were entirely driven by the previously determined

Frontiers in Robotics and Al

effect of team potential (e.g., high potential groups outperform low
potential groups) and the effect of team repeat trial count (e.g., group
2 to 10 underperformed relative to First Time and 11+) and did not
evidence any new insight provided by the more complex model.

4 Discussion

Teaming is an important aspect of modern work, and the
increasingly advanced capabilities of artificial agents have the
potential to augment not only teams’ abilities to complete their
taskwork but also to improve their teamwork behaviors. A necessary
component of Al for supporting teamwork interactions will be the
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development of social intelligence founded on a form of artificial
theory of mind that can allow agents to understand and make
inferences about their human teammates. We suggest that the
challenge of developing and integrating socially intelligent AI is
a fundamentally interdisciplinary problem, that will require both
technical developments to create ASI as well as teams research to
identify how and when those agents contribute to effective teamwork
or detract from it. One of the overarching goals of this line of
research is to determine how ASI systems can best integrate into, and
support, teams across a wide range of contexts and compositions.
This involves not only designing systems that are effective for high-
potential teams who are likely to perceive them positively but also
developing interventions and strategies to support teams that may
not naturally integrate ASI into their processes. Understanding
how individual differences and inherent team traits influence these
perceptions and usage tendencies is critical to creating ASI systems
that can adapt to and benefit all types of teams.

This study was conducted to evaluate the impacts of ASI advisors
interacting with virtually instanced teams completing simulated
bomb disposal operations. As noted, this is one of the few human-AI
teaming experiments conducted with functioning AI architectures.
In this way we are able to assess how actual ASI, interacting
with humans, is perceived by teammates, and how that relates to
performance. Specifically, the testbed environment was designed
to impose taskwork demands while ensuring opportunities for
teamwork and collaboration advice to improve team effectiveness.
The focus of the analyses reported above was primarily on the
perceptions that teams formed of themselves as well as specifically
of their assigned advisor. These factors are especially important for
the near future of teaming with ASI, as artificial agents can support
taskwork capabilities, but their capacity as teammates depends
greatly on acceptance and integration into human teams.

The goal of the ASIST efforts was not to design better tools
for humans to leverage, but to design partners that humans
can rely on and interact with as they would any other good
teammate. To that end, the ASI assisting with the bomb disposal
missions were able to observe the actions of the teams as they
conducted their disposal missions and to provide advice and insight
to support their team’s process. Although the ASI in this study
did not have large impacts on teams’ performance overall, they
did demonstrate some positive impacts especially for teams that
were high in taskwork and teamwork potential. Exploring the
factors impacting team performance and collaborative behaviors
was out of scope for this manuscript, but it is relevant to note
here that high potential teams particularly seemed to benefit from
suggestions that their ASI advisors made regarding the appropriate
distribution of taskwork resources. Those team-related potential
categorizations build upon our previous work to identify traits that
may impact individuals’ perceptions of teammates both human and
artificial (Bendell et al., 2024).

Regarding performance, those teams that were high in taskwork
and teamwork potential seemed to respond more effectively to input
related to balancing workload across team members. It is possible
that although high potential teams were relatively more prepared to
analyze the demands of the mission, they were predisposed to focus
on individually executing taskwork and therefore benefited from
the ASI’s prompts to consider collaborative effort and balancing
workloads. Here, we focused primarily on aggregate measures of
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team perceptions; however, future work should closely examine
the human-ASI interactions at the level of specific teams as well
as particular collaboration events. The publicly available ASIST
study four dataset provides researchers with a unique opportunity
to analyze human-agent team communication events, taskwork
actions, movements, decision-making outcomes, and more, as these
data were captured at a high temporal resolution, with observations
recorded every few hundred milliseconds. This rich and detailed
dataset holds significant potential for future research to delve into
the temporal dynamics of human-agent interactions and team
processes over time.

Reflecting on perceptions of the ASI, our findings suggest
that they may not have been perceived as equal or contributing
teammates. A notable distinction was apparent in our mediation
analyses, which indicated that teams objective performance
(reflected by their team score) strongly influenced their team
perceptions but not their perceptions of their ASI advisors. Teams
that performed better perceived themselves more positively, but
not their ASI advisors. The relationship between performance and
perceptions may be interpreted in different ways. On the one hand,
it could indicate that team members did not consider their advisors
as an integral part of their success. On the other hand, it is possible
they did not hold them responsible for their failure. It is also possible
that it was some combination of both amounting to the essential
exclusion of the advisors as a member of the team. Future research
is needed to explore why this occurs, as it addresses the crucial
question of how artificial intelligence can be considered a teammate
rather than a tool. It is important to note that this study did not find
clear performance benefits for teams working with ASI advisors
compared to what might be expected from human-only teams. This
aligns with prior findings that ASIL if not adequately imbued with
social intelligence, or allowed to fully leverage its computational
and informational capabilities, can hinder rather than help team
performance (Bendell et al., 2024). While the potential for ASI to
significantly augment teamwork is widely recognized, particularly
in leveraging their speed, memory, and information access, realizing
these benefits requires a careful understanding of how ASI systems
impact team dynamics. As socially intelligent AI continues to
advance, researchers must prioritize the development of systems that
integrate seamlessly into teams as effective teammates rather than
functioning solely as tools. This includes addressing both technical
and social dimensions of team integration to ensure that ASI systems
are able to contribute meaningfully to team success.

One crucial factor that must be addressed for near-future
teaming will be the interface that supports interactions between
humans and socially intelligent AT teammates. As described, due to
constraints in real-time natural language processing, our artificial
intelligence was limited in how it could communicate with human
teammates and how they could respond. Specifically, the ASI used
a pop-up text box to provide advice, and the human teammates
were limited in how they could respond, with multiple choice
options provided. Depending on when this was provided, it could
be viewed as intrusive as well as given when it was difficult for
the humans to understand or appreciate their advisor’s input while
continuing to execute their mission. The communication systems
were designed to balance the human-subjects experimentation
needs with the technical capacities of the ASI. This, though, provides
additional avenues for research. Specifically, not only can modes
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of communication be varied and tested, this can be examined
in the context of our profiling method. However, it is important
to keep in mind when considering the ASIST study four data
that the communication modalities employed were fundamentally
limiting and could have been confusing or difficult for the human
teammates to use. It could be that those high in task potential are
more amenable to pop-up interventions when compared to those
with less potential for these types of tasks. Further, as ASI gets
more sophisticated, it can provide an intervention in a way most
appropriate to the mission context. For example, given that workload
is increasingly assessable in real time (Wiltshire et al., 2024), in
the near future ASI can monitor workload and interventions with
different modalities can be tested. Overcoming difficult problems
such as natural language processing to allow human team members
to communicate smoothly and in their preferred format with all of
their teammates, especially artificial ones, and testing which method
is most effective, will be vital for supporting human-ASI teaming.

Another challenging factor for the ASI advisors was the need to
adjust the level and nature of their strategic advice to the experience
level of the team members with whom they were working. On
the one hand, our profiling technique does provide a surrogate
for shared mental models, by helping the ASI to understand more
generic competencies indicative to potential in the team and task
setting. On the other hand, the ASI should be able to also track
more idiosyncratic behaviors of teams based upon monitoring their
missions over time and learning from these. As currently designed,
the ASI operating in this study was not able to track or integrate
knowledge regarding individual participants’ previous missions (if
they had completed any), or to employ that information to adjust the
focus and type of feedback they provided. As such, future research
can examine how ASI can learn from repeated experience with
their human teammates in a way that more naturally aligns with
learning in human-human teams. This adaptability will be especially
important for supporting teams that may struggle with integrating
ASI systems. By combining real-time assessment of taskwork and
teamwork traits with insights from repeated interactions, ASI
systems can adjust their communication styles and interventions to
better align with the needs of their human teammates. This approach
could provide a more equitable distribution of ASI support, ensuring
that lower-potential teams also experience meaningful benefits.

A related issue is how repeat participants may have used the
testbed environment. It is possible that some viewed early missions
as a way to test the system and for learning task mechanics
and strategies. Perhaps the task was complex enough to impose
challenges and encourage more complicated team processes that
advanced teams might learn to execute. When that is coupled with
ASI that has a limited range of interventions, this results in an
artificial intelligence that provides relatively simplistic strategies
and teamwork advice to “veteran” teams as well as beginners.
This interpretation is somewhat supported by our finding that the
learning curve for this experiment was non-linear, and that teams
with moderate experience performed worse than those with none or
those with a great deal of experience. This provides a path forward
for more advanced ASI that is able to acquire and retain knowledge
of their teammates and their prior experiences, so that they can
integrate as a team member at the level their counterparts need
rather than providing input that is seemingly out-of-touch with the
expertise or abilities of their team members.
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Perceptions of ASI were not, however, uniform across all types
of team members. As was found in our prior research (Bendell et al.,
2024), taskwork and teamwork traits did predict differences and
possible biases in participants’ views of both their teams and
advisors. Focusing first on the advisors, we found the two profile
dimensions interacted such that teams high in both taskwork and
teamwork potential rated their AI advisors as more dependable,
trustworthy, and effective in improving team coordination and
score. In other words, though each potential (taskwork and
teamwork) individually improved the perception of the ASI, their
combination significantly increased teams appreciation for the
advisor’s role. This could indicate that high potential teams are better
at integrating ASI advice into their processes, that they are more
appreciative of external guidance, or that the traits of the team
members predispose them to positive biases when evaluating their
advisors. The interaction of the taskwork and teamwork dimensions
was most notable for perceptions of the advisors’ impacts on team
coordination and team score. Keeping in mind that actual objective
outcomes did not influence advisor perceptions (as shown by the
mediation analyses), this may indicate that high potential teams
are more likely to view ASI as members of the team who are
responsible for team outcomes. It may also be that teams higher
in both dimensions may have had an easier time working with the
interfaces that supported interactions with the AST as well as team
knowledge externalization, planning, and resource management
thereby leading those teams to report relatively more positive
perceptions.

Regarding team perceptions, we found that teams featuring
members with relatively higher taskwork potential or teamwork
potential reported more positive views of their teams. Although
that impact was significantly mediated by the actual performance of
teams, the effect of higher potential across either profile dimension
was evident and associated with positive perceptions of team
process, satisfaction with team behaviors, and team’s self-efficacy.
However, there was no interaction between the taskwork and
teamwork profile dimension. This may suggest that, while both
contributed to positive views, there was no additive value between
the two that distinguished high taskwork, high teamwork teams
from others as was seen for advisor perceptions. That is to say, teams
that were higher in taskwork potential may have felt more positively
about their teaming experience because they had an easier time
performing the tasks regardless of their collaboration, and teams
that were higher in teamwork potential may have reported more
positively based on their engagement in team processes even if they
struggled with taskwork.

As we suggest, team profiles have the potential to provide
AI with more immediate insights on their human teammates.
In some ways this can circumvent learning via interaction by
accelerating acquisition of teammate relevant knowledge. As such,
this contributes to AT's shared cognition, potentially improving their
effectiveness in supporting teamwork. But this knowledge will need
to be tailored to the varied potentials of human team members.
For example, tailoring ASI systems to also support teams with
lower taskwork and teamwork potential will require identifying
and addressing the specific needs of each team, as not all low-
potential teams are alike. While some teams may benefit from
more foundational task-oriented guidance, others might require
strategies focused on improving collaboration and team cohesion.
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Our findings suggest that high-potential teams perceived their
ASI advisors more positively, but these perceptions were not
directly tied to performance outcomes, highlighting the role of
individual differences and team composition in shaping attitudes
toward ASI. To better understand how ASI can support lower-
potential teams, studies could intentionally construct teams with
lower taskwork or teamwork potential. This approach would allow
researchers to systematically investigate how specific interventions,
communication strategies, or feedback styles influence different
types of low-potential teams. For instance, ASI systems might
incorporate real-time profiling techniques to adapt their feedback
pacing, style, or level of detail based on the unique traits of a team.
Addressing these questions is critical for developing ASI systems that
not only excel with high-functioning teams but also meaningfully
contribute to the success of diverse team compositions.

Building on our findings, there is a clear need to further
investigate how perceptions and team dynamics evolve over time,
particularly within the subset of teams that completed multiple
missions together. Key questions include whether team members’
perceptions of their ASI advisors or teammates shift with repeated
interactions, whether their in-mission behaviors become more
structured or consistent, and how evolving expertise influences their
engagement with the ASI. Additionally, comparisons between teams’
progressions (for example, a given team’s 12th or 20th mission)
must account for contextual factors such as the randomized nature
of team assignments and the first-in-first-out lobby system used
in this study. While the current dataset’s randomized structure
introduces variability, it also allows for the exploration of broader
patterns across diverse team compositions. Careful consideration
of these factors will be essential for deriving meaningful insights
into the temporal development of human-ASI collaboration and its
implications for both task effectiveness and teamwork processes.

Our findings related to the taskwork and teamwork profiles offer
insights that can guide future research on optimizing human-ASI
teaming. The different perceptions evidenced across team profile
categories points to the importance of testing ASI systems in a
variety of team contexts, ideally those in which the profiles of team
members are manipulated to differ significantly. Future studies could
explore how ASI can be designed to cater to different compositions
of teams, potentially developing more flexible ASI that can adjust
behavior and advice based on the team’s traits. As our understanding
of relevant traits develops and evidence gathers to support their
impact on aspects of taskwork and teamwork success, ASI would
also benefit from the ability to assess the taskwork and teamwork
potential of the teams in real-time. By doing so, ASI advisors could
tailor their interventions to the specific needs and capabilities of
a team, providing more nuanced and strategic guidance to high-
potential teams and perhaps offering more foundational support to
teams with lower potential. It is possible that such adaptability would
enhance the perceived value of ASI and increase the likelihood that
they are viewed as an integral part of the team rather than as an
external or redundant presence.

Future research on human-Al teaming should examine the
generalizability of team profiles and ASI across varied tasks. For
instance, one line of inquiry could focus on developing ASI tailored
to specific task domains to holistically evaluate how team traits
influence teaming outcomes. It remains unclear which team traits,
if any, generalize across tasks to affect acceptance, trust, and
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willingness to work with ASI. Different teaming scenarios will
likely emphasize different traits, providing ASI with context-specific
guidance on how to best support their teammates. Our prior study
using an Urban Search and Rescue task environment (Bendell et al.,
2024) revealed similar patterns to the current Bomb Disposal
task, both of which encourage collaboration by linking better
performance to successful execution of interdependent tasks.
However, many aspects of team-ASI relationships across these
domains remain unexplored.

Another important avenue involves more granular analyses
of team coordination. Current analyses have primarily focused
on aggregate team outcomes, leaving questions about how ASI
interactions influence in-mission behaviors unanswered. Patterns
of communication, near-term behavior adjustments in response to
ASI input, impacts on knowledge sharing, and the maintenance of
team mental models have yet to be closely examined. Leveraging the
high-temporal-resolution data captured in this study offers a unique
opportunity for time-series analyses to assess behavior changes
within missions. Such analyses could provide valuable insights into
the temporal dynamics of ASI-to-human exchanges, human-to-
human communications, and team movements, uncovering how
ASI interventions shape coordination, decision-making, and task
execution. These findings would inform the design of future ASI
systems that dynamically adapt to evolving team needs in mission-
critical operations.

Additionally, while this study focused on artificial social
intelligence designed to support teamwork, future research should
also explore how ASI can integrate teamwork facilitation with
ASI will need to balance these
roles effectively, requiring capabilities to provide both types of

task-oriented interventions.
support. Research should develop and test ASI systems that can
independently or jointly address task-oriented and team-oriented
contributions, allowing researchers to evaluate the unique and
combined impacts of these interventions. This could involve
designing ASI capable of both roles with the flexibility to activate
or deactivate each function as needed, enabling more precise
assessments of their contributions to team outcomes.

Overall, our findings emphasize the importance of continued
research into the human factors that shape ASI acceptance and
effectiveness as both are essential for developing AI teammates
that can genuinely enhance the collaborative capabilities of human
teams. Further, our work highlights the need for ASI systems that
can dynamically assess and adapt to the specific taskwork and
teamwork profiles of their human counterparts. In this way it
builds on a long line of research on teams and aspects of team
mental models (Cannon-Bowers et al., 1993) to test how profiling
can be used as a surrogate for ASI understanding of their human
teammates. By tailoring their support to the unique needs and
strengths of each team, ASI can make a more significant contribution
to both team performance and the overall teaming experience.

The ability for ASI to assess and respond to team traits will be
an essential component of an effective artificial theory of mind. This
capability enables these systems to function as effective teammates
rather than just tools. By creating ASI that can interpret and act upon
the implications of human traits within specific task contexts, we
can move closer to developing Al that not only augments human
abilities but also enriches the collaborative process. Achieving this
goal will require interdisciplinary efforts that combine technical
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advancements with comprehensive teams research, guiding the
design of ASI systems that enhance both the efficiency and the
experience of teamwork across various domains.
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