
TYPE Original Research
PUBLISHED 14 July 2025
DOI 10.3389/frobt.2025.1488869

OPEN ACCESS

EDITED BY

Hamid Marvi,
Arizona State University, United States

REVIEWED BY

Ivan Virgala,
Technical University of Košice, Slovakia
Reza Ahmed,
Raytheon Technologies, United States

*CORRESPONDENCE

Nima Maghooli,
nima.maghooli@ut.ac.ir

RECEIVED 30 August 2024
ACCEPTED 21 March 2025
PUBLISHED 14 July 2025

CITATION

Maghooli N, Mahdizadeh O, Bajelani M and
Moosavian SAA (2025) Learning-based control
for tendon-driven continuum robotic arms.
Front. Robot. AI 12:1488869.
doi: 10.3389/frobt.2025.1488869

COPYRIGHT

© 2025 Maghooli, Mahdizadeh, Bajelani and
Moosavian. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Learning-based control for
tendon-driven continuum
robotic arms

Nima Maghooli*, Omid Mahdizadeh, Mohammad Bajelani and
S. Ali A. Moosavian

Center of Excellence in Robotics and Control, Advanced Robotics and Automated Systems (ARAS),
Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran

Tendon-Driven Continuum Robots are widely recognized for their flexibility
and adaptability in constrained environments, making them invaluable for most
applications, such as medical surgery, industrial tasks, and so on. However, the
inherent uncertainties and highly nonlinear dynamics of these manipulators
pose significant challenges for classical model-based controllers. Addressing
these challenges necessitates the development of advanced control strategies
capable of adapting to diverse operational scenarios. This paper presents
a centralized position control strategy using Deep Reinforcement Learning,
with a particular focus on the Sim-to-Real transfer of control policies. The
proposed method employs a customized Modified Transpose Jacobian control
strategy for continuum arms, where its parameters are optimally tuned using
the Deep Deterministic Policy Gradient algorithm. By integrating an optimal
adaptive gain-tuning regulation, the research aims to develop a model-free
controller that achieves superior performance compared to ideal model-based
strategies. Both simulations and real-world experiments demonstrate that the
proposed controller significantly enhances the trajectory-tracking performance
of continuum manipulators. The proposed controller achieves robustness
across various initial conditions and trajectories, making it a promising candidate
for general-purpose applications.

KEYWORDS

tendon-driven continuum robots, modified transpose Jacobian, deep reinforcement
learning, deep deterministic policy gradient algorithm, optimal adaptive gain-tuning
system, sim-to-real transfer, learning-based control, data-driven control

1 Introduction

The advancement of Tendon-Driven Continuum Robots (TDCRs) presents a
significant opportunity to enhance precision and adaptability in applications such as
medical devices, flexible manufacturing systems, and exploratory robotics (Burgner-
Kahrs et al., 2015). These robots, characterized by their continuous and flexible structures,
offer superior dexterity compared to traditional rigid robots, making them ideal for
navigating complex and constrained environments. However, their control remains
a significant challenge due to their high degrees of freedom (DOF) and nonlinear
dynamics (Chikhaoui and Burgner-Kahrs, 2018). Addressing these challenges requires
innovative control strategies capable of handling the inherent complexities of TDCRs
(George Thuruthel et al., 2018; Wang X. et al., 2021).

Traditional control methods often struggle with the high-dimensional and nonlinear
nature of TDCRs, necessitating the exploration of advanced techniques such as

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1488869
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1488869&domain=pdf&date_stamp=2025-07-12
mailto:nima.maghooli@ut.ac.ir
mailto:nima.maghooli@ut.ac.ir
https://doi.org/10.3389/frobt.2025.1488869
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1488869/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1488869/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1488869/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Maghooli et al. 10.3389/frobt.2025.1488869

Reinforcement Learning (RL). RL has emerged as a promising
approach due to its capacity to handle complex, high-DOF systems
without requiring precise analytical models. For example, the
application of Deep Deterministic Policy Gradient (DDPG) in
controlling a spatial three-section continuum robot demonstrated
superior trajectory-tracking performance, with a maximum error
of only 1 mm compared to traditional methods (Djeffal et al.,
2024). Similarly, Fuzzy Reinforcement Learning (FRL) has shown
effectiveness in trajectory tracking under varying conditions,
leveraging robust Cosserat rod-basedmodeling (Goharimanesh et al.,
2020). These studies underscore the potential of RL in overcoming
the limitations of conventional controllers, particularly in tasks
demanding high precision.

BeyondTDCRs, RLhas been successfully applied in soft robotics
to address similar challenges. Visual learning-based controllers, for
instance, have been utilized for soft robotic fish, enabling flexible and
cost-effective designs by reducing reliance on complex curvature-
sensing electronics (Rajendran and Zhang, 2022). Similarly, model-
free RL methods have been shown to enhance task performance in
soft continuum robots across tasks like reaching, crank rotation, and
peg-in-hole operations (Morimoto et al., 2022).These advancements
highlight the adaptability and scalability of RL methods for various
robotic systems.

One of the critical challenges in deploying RL-based controllers
for continuum robots is the transition from simulation to real-
world applications, known as Sim-to-Real transfer. This process is
essential for validating RL algorithms in dynamic environments.
Robust Sim-to-Real strategies have been developed to address this
challenge. For instance, ELFNet demonstrated that policies trained
in simulation could be directly applied to real-world scenarios
with minimal performance degradation (Morimoto et al., 2021).
Similarly, integrated tracking control approaches combining rolling
optimization with RL have proven effective in real-time tasks, such
asmanaging space debris (Jiang et al., 2022).These efforts emphasize
the importance of incorporatingmodel dynamics and reward design
to enhance the stability and efficiency of RL algorithms in real-world
applications.

Despite the progress, challenges such as noise processes, state
representation, and training stability persist. Comparative studies
have shed light on these aspects, providing insights for fine-tuning
RL frameworks to improve their robustness and adaptability (Kołota
and Kargin, 2023). By addressing these challenges, RL-based
controllers can bridge the gap between theoretical advancements
and practical utility, paving the way for broader deployment in
TDCRs and other high-DOF robotic systems.

Based on previous studies, three general strategies have been
considered for employing Deep Reinforcement Learning (DRL) in
control systems (Wang S. et al., 2021). The first strategy involves
utilizing the DRL agent as a model-free intelligent controller and
force distributor, where the agent directly learns the control policy
and parameters without relying on any analytical models of the
system’s kinetics or kinematics. Although this approach allows for
the full utilization of DRL’s capacity, it requires extensive training
time and computational resources.The second strategy also employs
the DRL agent as a model-free intelligent controller; however, it
incorporates the system’s kinematics (e.g., Jacobian matrix) for force
distribution. While this strategy reduces complexity compared to
the first one, it still imposes a significant computational burden.

In contrast, the third strategy, adopted in this study, leverages
the DRL agent as an optimal adaptive gain-tuning system for a
model-free controller. Instead of directly acting as the primary
controller, the DRL agent optimizes the controller’s parameters
under various operating conditions, effectively combining the
strengths of analytical models (e.g., kinematics) with DRL’s
optimization capabilities.

Previous works in this domain have primarily focused on
the first and second strategies, where DRL-based controllers were
designed to fully or partially replace analytical models. However,
the approach in this study follows the third strategy, which takes
advantage of both analytical modeling and DRL to achieve efficient
and adaptive parameter tuning. Given that extracting forward
kinematics equations and calculating the Jacobian matrix for a
TDCR is straightforward and can be achieved with reasonable
accuracy, completely bypassing this information in favor of a fully
model-free DRL approach is unnecessary. Furthermore, utilizing
DRL as the main controller is computationally expensive and
time-intensive, making it less suitable for real-time applications.
Therefore, the selected strategy prioritizes the integration of
available analytical models with DRL to achieve a more efficient and
practical control solution.

The main contribution of this paper is the proposed Sim-to-
Real transfer of control policies, enabling the Modified Transpose
Jacobian (MTJ) controller to achieve precise trajectory tracking
starting from any arbitrary initial condition and following any
desired trajectory in the workspace. Consequently, in this research,
DRL is employed as an optimal adaptive gain-tuner system,
providing the following advantages.

• ReducedTraining Time through Predefined Structure:The time
required for training the DRL agent is reduced because the
agent benefits from a pre-fixed control structure. Therefore,
the algorithm’s effort is only focused on finding the optimal
parameters.

• Locally Robust Control with Adaptive Gains: The proposed
approach leverages DRL as a gain-tuningmechanism for locally
robust PID-based controller (MTJ). This ensures that the
control strategy remains robust in local operating conditions
while adapting the controller gains optimally for dynamic
system requirements.

• Lightweight Neural Network for Real-Time Application: The
algorithm results in a simplified and efficient neural network
policy, which is lightweight enough to facilitate real-time
implementation on hardware systems without compromising
performance.

• Improved Stability during Learning: Prior knowledge of the
robot and controller allows for the selection of appropriate
ranges for the controller parameters, which not only reduces
training time but also prevents instability during and after the
learning process.

The paper is organized as follows: The Introduction highlights
the motivation, background, and relevance of learning-based control
for TDCRs. The Basic Discussions section details the simulation
model, TDCR redundancy resolution, and the DRL application in
control system design. The Proposed Learning-based Controller
section integrates theMTJ control strategywith theDDPG algorithm,

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2025.1488869
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Maghooli et al. 10.3389/frobt.2025.1488869

explaining the strategy and implementation. The Obtained Results
section demonstrates the learning process and simulation outcomes,
while theExperimental Implementationsectionvalidates theapproach
through real-world tests. The Discussion analyses results, comparing
them with similar methods (e.g., FIS-MTJ), and explores potential
improvements. Finally, the Conclusions summarize key findings and
suggest future research directions. Table 1 provides descriptions of the
symbols used in the article.

2 Basic discussions

In this section, the kinematics and kinetics models of the
robot are presented, which are used to derive the Jacobian matrix
and simulate the system’s behavior in the simulation environment.
Subsequently, the redundancy resolution of TDCR is analyzed,
forming the basis for enhancing the MTJ algorithm for controlling
continuum robots. Finally, the application of DRL in control system
design is examined using the DDPG algorithm.

2.1 Kinematics and kinetics modeling

Given the primary focus of this study on the position control
of the end-effector within the task-space, forward kinematics refers
to the direct mapping from the joint-space to the task-space of
the TDCR (passing through the configuration-space). The kinetics
model for continuum robots can be categorized as either a dynamics
model or a statics model. The dynamics model is a memory-based
model and is used for accelerating movements. In contrast, the
statics model is memory-less, making it suitable for quasi-static
movements (Grassmann et al., 2022; Rucker and Webster, 2011).

This study employs a statics model with the assumption of
constant curvature for each subsegment, known as the Piecewise
Constant Curvature (PCC) model, selected for its effectiveness in
representing continuum robots (Yuan et al., 2019; Rao et al., 2021).
The PCCmodel was used for training the DRL agent and simulating
the proposed controller. Compared to the Variable Curvature (VC)
model, the PCC model requires significantly less computational
cost while maintaining adequate accuracy. The VC model considers
the dependence on time (t) and backbone reference length
parameter (s) for the instantaneous position of each point along
the backbone (p = f(t, s)), offering high precision. However, this
approach results in a set of nonlinear Partial Differential Equations
(PDEs), which are computationally intensive and impractical for
real-time applications (Dehghani and Moosavian, 2013). The PCC
model simplifies these dependencies using two main assumptions
(quasi-static motion and constant curvature for each subsegment),
resulting in a set of nonlinear algebraic equations that are
computationally less demanding and sufficiently accurate for the
intended purposes.

2.2 TDCR redundancy resolution

One of the most critical issues in tendon-driven and cable-
driven robotic systems is preventing tendon slack, or more precisely,

TABLE 1 Nomenclature.

Symbol Definition

ei Position error of the end-effector along the i-axis in the task-space

e Position error vector of the end-effector in the task-space

̇ei Velocity error of the end-effector along the i-axis in the task-space

̇e Velocity error vector of the end-effector in the task-space

emaxi Sensitivity threshold of the position error of the end-effector
along the i-axis in the task-space for the MTJ controller

̇emaxi Sensitivity threshold of the velocity error of the end-effector
along the i-axis in the task-space for the MTJ controller

h Vector of feedback linearization estimator term in the MTJ
controller

I Identity matrix

J Linear Jacobian matrix

K Coefficient matrix of the feedback linearization estimator in the
MTJ controller

KD Derivative coefficient matrix of the MTJ controller

K I Integral coefficient matrix of the MTJ controller

KP Proportional coefficient matrix of the MTJ controller

li Length of tendon i in the continuum robotic arm

L Vector of tendon lengths in the continuum robotic arm

L̇ Vector of tendon length change rates in the continuum robotic
arm

p Position vector of a point on the backbone of the continuum
robotic arm

s Backbone reference length parameter

T Transpose of the vector or matrix

Ti Tension of tendon i

T Vector of generalized forces in joint space (tendon tensions)

T+ Vector of generalized forces in joint space (tendon tensions) after
passing the null-space projection operator

t Time

X Task-space variables vector (end-effector position vector)

Ẋ Task-space velocities vector (end-effector velocity vector)

η Non-trivial solution to the linear algebraic system

ζ Null-space adjustment vector (ζ ∈ ℝ6)

F Vector of generalized forces in the task-space

† Pseudo-inverse of a non-square matrix

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2025.1488869
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Maghooli et al. 10.3389/frobt.2025.1488869

maintaining tension in the tendons. This research utilizes the
Null-Space Projection Operator (NSPO) of the Jacobian matrix
to address this problem. The Jacobian matrix is a crucial tool
for analyzing the structural characteristics of robotic systems. By
calculating this matrix, the structural properties of TDCRs can be
examined. Various methods have been proposed for computing
the Jacobian, and in this section, the linear part of this matrix is
derived from the forward kinematics equations (Jones and Walker,
2006). The continuum robot studied in this research is a two-
segment system, with each segment actuated by three tendons. If
the position vector of the end-effector is defined as X = [x y z]T

and the tendon length vector as L = [l1 l2 l3 l4 l5 l6]T,
the linear Jacobian matrix, which maps the rate of change
between these two vectors (Ẋ = JL̇), is computed as shown in
Equation 1:

Jnm =
∂Xn
∂Lm

n ∈ {1,…, dim (X)}, m ∈ {1,…, dim (L)}
(1)

For the continuum robot under consideration, this results in a 3 ×
6 rectangular matrix. The partial derivatives corresponding to the
elements of this matrix are analytically derived using the forward
kinematics equations. The null-space of matrix J is the set of all
non-trivial solutions (η) to the linear algebraic system Jη = 0. In
the problem of position control for the end-effector of a TDCR
in the task-space, the number of system inputs (tendon tensions)
exceeds the number of system outputs (end-effector position
coordinates), making the system over-actuated with six inputs
and three outputs.

In TDCRs, the mapping of generalized forces from the joint-
space (T = [T1 T2 T3 T4 T5 T6]T) to the task-space (F =
[Fx Fy Fz]T) is expressed as F = J−TT where J−T = (JT)†.
Due to the non-square nature of JT, the left pseudo-inverse of
this matrix is used. Using the projection operator in the null-
space (Chiaverini et al., 2008; Godage et al., 2012), denoted as
[I − JTJ−T], The set of all solutions can be expressed as represented
in Equation 2:

T = JTF + [I − JTJ−T]ζ (2)

In the above equation, ζ ∈ ℝ6 is the null-space adjustment vector,
and [I − JTJ−T] ≠ 0. All vectors of the form Tn = [I − J

TJ−T]ζ lie in
the null-space of J−T. In other words, Tn ≠ 0, but the corresponding
task-space forceFn = J−TTn = 0.

2.3 DRL application in control system
design

The goal of solving a problem using DRL is to find an optimal
mapping from the state-space to the action-space, known as the
policy. The policy dictates the action to be taken by the DRL
agent in each state, and the optimal policy aligns perfectly with
the rewards received from the environment (Kober et al., 2013;
François-Lavet et al., 2018). Initial efforts in development of DRL
algorithms assumed a continuous state-space and a discrete action-
space, such as the Deep Q-Network (DQN). The basis of this

method is to assign a value to the state-action value function
(Q(s,a)) for each action in each state, and ultimately, a greedy action
is selected for each state (Wu et al., 2020). The extension of this
approach for continuous state and action-spaces is achieved by the
DDPG algorithm. This algorithm utilizes deep neural networks to
approximate the state-action value function and the policy. These
network structures enable theDRLmodel to effectivelymap states to
actions and evaluate the resultant action values, facilitating optimal
policy learning. In temporal difference-based algorithms, the return
is usually estimated by the value function. The state-action value
function is defined as the expected return when in state st and taking
action at under policy μ. (Lillicrap et al., 2015; Satheeshbabu et al.,
2020). Given the explanations provided, DRL holds significant
potential for application in solving control engineering problems.
Although DDPG provides a model-free solution, careful
consideration is required when designing its hyperparameters
and selecting suitable architectures for the actor and
critic networks.

3 Proposed learning-based controller

This section starts with developing a customized Modified
Transpose Jacobian algorithm for continuum robots. Subsequently,
the process of designing an optimal adaptive gain-tuning system via
DRL is presented.

3.1 Customized MTJ control algorithm for
TDCRs

TheMTJ control strategy aims to estimate the system dynamics
using the previous time step control input in the task-space,
achieving a performance similar to feedback linearization in model-
based controllers within the model-free Transpose Jacobian (TJ)
control algorithm (Moosavian and Papadopoulos, 2007; Craig,
2018). In this research, a customised MTJ control algorithm for
TDCRs is proposed by incorporating the NSPO. The modification
in the TJ structure involves adding a modification term, represented
by the vector h = [hx hy hz]T to the TJ control input equation.
If the position error vector in the task-space is defined as e =
[ex ey ez]T, the control input vector for the MTJ algorithm is
given by Equation 3:

TMTJ = JT[KPe +K I∫edt+KD ̇e + h] (3)

The control gains (K i) as introduced in the Equation
3, are assumed to be diagonal matrices, as defined in
Equation 4:

K i =
[[[[

[

Kix 0 0

0 Kiy 0

0 0 Kiz

]]]]

]

, i = P, I,D (4)

The modification term (h) is calculated through the expression
provided in Equation 5:

h(t) = KF(t−Δt) (5)

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2025.1488869
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Maghooli et al. 10.3389/frobt.2025.1488869

where F(t−Δt) is the previous time step control input
in the task-space, and K is a diagonal matrix as shown in
Equation 6:

K =
[[[[

[

kx 0 0

0 ky 0

0 0 kz

]]]]

]

(6)

The diagonal elements of matrix K are computed using Equation 7:

ki = exp[−(
|ei|
emaxi
+
| ̇ei|
̇emaxi
)], i = x,y,z (7)

where emaxi is the position error sensitivity threshold and ̇emaxi
is the velocity error sensitivity threshold for activating the
modification term. Ultimately, the MTJ algorithm preserves the
advantages of the TJ strategy, such as structural simplicity, low
computational cost, and a model-free nature, while addressing
issues like noise sensitivity, amplification of noise effects, and
weaknesses in traversing fast trajectories. The described structure
has been proven stable based on Lyapunov’s stability theorems,
ensuring asymptotic stability for the algorithm (Moosavian and
Papadopoulos, 1997). If the vector of generalized forces in the
joint-space (tendon tensions) for customized MTJ is defined as
T+, the control input of the proposed strategy is formulated in
Equation 8:

T+ = TMTJ + [I − JTJ−T]ζ (8)

According to Equation 2, this formulation ensures that the tendons
of the robot remain under tension (do not slack) while maintaining
the control objective. The null-space adjustment vector (ζ) is
determined by solving an optimization problem that ensures
the cable tensions remain within their allowable range while
minimizing additional forces.The optimization objective is typically
to minimize ‖ζ‖2, which corresponds to minimizing unnecessary
energy consumption. Constraints are applied to guarantee that the
resulting cable tensions (T+) satisfy Tmin ≤ T+ ≤ Tmax. Numerical
methods, such as quadratic programming (e.g., fmincon in
MATLAB), are used to efficiently compute ζ while adhering to these
constraints.

3.2 Optimal adaptive gain-tuner system
design via deep reinforcement learning

Given the explanations provided, this study uses DRL for
online tuning of the gains of the model-free MTJ controller.
Consequently, the DRL agent is responsible for determining the
appropriate values for these gains in real-time. Figure 1 shows
the block diagram related to the use of DRL in the MTJ control
strategy. Here, the DRL agent’s task is to determine the suitable
values for the control gains in the KP, K I, and KD matrices
in real-time.

In the application of DRL to engineering problems,
the reward function, state-space (observations), and action-
space must first be defined. The following sections describe
these elements for the problem of optimally tuning the MTJ
controller gains for the position control of the end-effector
in the TDCRs.

1) State Space: After trial and error and consideration of various
variables, the position of the end-effector, position error, and
the joint-space forces (tendon tensions) are defined as the
system states in Equation 9:

States = {x,y,z,ex,ey,ez,T
+
1 ,T
+
2 ,T
+
3 ,T
+
4 ,T
+
5 ,T
+
6} (9)

2) Action Space: Given the objective for the DRL
agent (to optimally tune the controller gains), the
actions, or outputs of the DRL policy, are defined in
Equation 10:

Actions = {KPx ,KIx ,KDx
,KPy ,KIy ,KDy

,KPz ,KIz ,KDz
} (10)

3) Reward Function: Based on the information obtainable from
the environment (plant), the reward function is defined
as a combination of the sum of squared errors (SSE)
and a penalty function related to the controller gains, as
defined in Equation 11:

RewardFunction = −[SSE+ 10 fG]

fG = ∑
i=x,y,z
[(KPi ≤ KIi) + (KPi ≤ KDi

) + (KIi ≤ KDi
)] (11)

In the above equation, fG is a function of the controller
gains composed of Boolean variables, where each term can be
either zero or one, representing whether the conditions on the
gains are met.

4) Actor and Critic Network Structures: The study employed
Multi-Layer Perceptron (MLP) neural network architectures
for both the actor (policy approximator) and critic (value
function approximator) components. The actor network,
responsible for determining the optimal actions, processes
the input state through several layers. Specifically, it starts
with an input layer (observation), followed by three fully-
connected layers each with 36 neurons and ReLU activation
functions. The final layer is a fully-connected layer with nine
neurons, followed by a Tanh activation function and a scaling
layer to produce the action output. Conversely, the critic
network evaluates the value of state-action pairs. It takes the
state and action as inputs, which are processed through a
series of fully-connected layers with ReLU activations. The
state input goes through two fully-connected layers each
with 36 neurons and ReLU activations, while the action
input is processed by one fully-connected layer with 36
neurons and a ReLU activation. These streams are then
concatenated and passed through two more fully-connected
layers, each with 36 neurons and ReLU activations, before
reaching the output layer. The final output layer is a single
neuron that represents the Q-value, indicating the value of the
state-action pair.

To enhance the robustness of the neural network resulting
from the execution of the DDPG algorithm, which maps the
state-space to the action-space (policy), the reference point in
the control loop and the initial conditions of the system (tendon
tensions at the start of the simulation) are randomized in
each episode.

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2025.1488869
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Maghooli et al. 10.3389/frobt.2025.1488869

FIGURE 1
Block diagram of the proposed DRL-MTJ control strategy for TDCRs.

4 Obtained results

The obtained results from the learning process are presented
in this section. The trained agent is ultimately employed as
an optimal adaptive gain-tuning system in the simulation
environment, and its performance in trajectory tracking is
evaluated.

4.1 Learning process results

Figure 2A shows the changes in discounted rewards per episode
and their averages, as obtained by the DRL agent. Since all
rewards in the defined reward function are negative, the ideal
outcome would be to find a policy that results in a reward of
zero throughout the episode. As depicted, after approximately 700
episodes, the DRL agent has nearly succeeded in estimating the
optimal policy.

The graph in Figure 2B presents the number of steps taken
in each episode by the DRL agent and their averages. The results
of this graph provide additional evidence for the success of the
DRL agent in estimating the optimal policy. After about 700
episodes, the number of steps taken in each episode increases.
This indicates that the episode termination condition (defined
based on unfavorable conditions for the DRL agent) has not
been activated.

Figure 2C compares the average sum of discounted rewards
with the value function estimated by the critic network. This graph
provides key evidence of the DRL agent’s success in estimating
the optimal policy. According to the figure, the value function
estimated by the critic network reaches a steady state after about 400
episodes, suggesting that the expected return of rewards received
during each episode has stabilized. Referring to the graph of the
average rewards, after about 700 episodes, the actor network has
succeeded in finding the optimal policy, as the average sum of
discounted rewards has nearly equaled the output of the critic
network (which represents the value function or the expected return
of rewards received during each episode). The hyperparameters

considered for the algorithm are presented in the table
of Figure 2D.

4.2 Simulation results

To evaluate the performance quality of the DRL agent in tuning
the controller gains, the trajectory designed by (Maghooli et al.,
2023) to assess the FIS-MTJ strategy is considered, as expressed in
Equation 12:

{{{{
{{{{
{

xd = [0.2+ 0.025 cos (14t)] sin (t)

yd = [0.2+ 0.025 cos (14t)] sin (t)cos (t)

 zd = 0.2 linsm f (√0.42 − x2 − y2, [0.25,0.4]) + 0.2

(12)

where linsm f is a linear S-shaped fuzzy membership function.
This allows for a fair comparison between the performance of the
Fuzzy Inference System (FIS) and DRL in the position control
problem of the TDCR. Figure 3A illustrates the model used in
the MATLAB environment and the trajectory followed by the
continuum robotic arm.Themain part of the plotting code is derived
from (Rao et al., 2021). Figure 3B shows the 3D path resulting from
the considered trajectory.

By simulating the performance of the designed control systems
to follow this path using the PCC model, the following results
were obtained. In Figure 4, the trajectory-tracking quality of the
MTJ controller with gains tuned by the DRL agent and the
FIS is shown. Figure 4A presents the graphs of the controller gains,
adjusted in real-time by the DRL agent during trajectory tracking,
compared to those provided by the FIS.The results for the x-direction
aredisplayed,with similar results obtained for theother coordinates.A
notableobservation in the results is thevariation incontrol gainsby the
DRLagentcomparedtotheFISoverthesimulationperiod.Specifically,
the FIS provides nearly constant gains for a specific path throughout
thesimulation,while theDRLagentupdates thegainsat each timestep,
striving to provide the most suitable gains for the current state of the
robot.Tobetterunderstandtheperformanceof thecontrollers, theroot
mean square error (RMSE) is calculated throughout the simulation.

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2025.1488869
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Maghooli et al. 10.3389/frobt.2025.1488869

FIGURE 2
(A) Changes in discounted rewards received in each episode and their average (B). Changes in the number of steps taken in each episode by the DRL
agent and their average (C). Comparison of the average sum of discounted rewards with the value function estimated by the critic network (D). Values
considered for the hyperparameters of the DDPG algorithm.

FIGURE 3
(A) A visualization of the robot movement in the MATLAB environment (B). Reference path obtained from the designed trajectory for the TDCR
in 3D Space.

The tendon tension graphs for both strategies are shown in
Figure 4B. As observed, the tendon tensions are almost within the
same range in terms of magnitude, indicating better management
by the DRL agent compared to the FIS in optimally tuning

the control gains and minimizing the error. According to the
obtained values presented in Figure 4C, using DRL compared to
the FIS halves the RMSE in trajectory tracking, with values of
14.90 mm for FIS and 7.45 mm for DRL.

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2025.1488869
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Maghooli et al. 10.3389/frobt.2025.1488869

FIGURE 4
(A) Comparison of controller gains and trajectory-tracking quality between FIS-MTJ and DRL-MTJ strategies (B). Comparison of tendon tension for
both strategies (C). Comparison of the RMSE for both strategies.

FIGURE 5
Image of the continuum robotic arm developed at the ARAS robotics
laboratory.

5 Experimental implementation

This section begins by introducing the mechanical structure,
electronic hardware, actuators, and sensors of the continuum robot
developed in the ARAS laboratory. Subsequently, the challenges of
transferring learning results from the simulation environment to
the real world are discussed, and the validation of the Jacobian
matrix for force distribution in the control loop is examined. Finally,
the outcomes of transferring learning from the simulation to the
real-world environment are evaluated.

5.1 Introduction to continuum robotic arm

The continuum robotic arm developed at the ARAS robotics
laboratory (Robo-Arm) is a tendon-driven system with external
actuation, as shown in Figure 5.Themain components of the system
are described below.

• Backbone: The backbone forms the main structure of the
arm and is made of a nickel-titanium alloy (Nitinol). Nitinol
is a shape-memory alloy, and its super-elasticity is the
primary reason for its use as the central backbone of the
system.

• Robot Main Board: The robot board serves as an interface
between the computer and the system’s actuators and sensors.
All control commands to the servomotors and data received
from the load cells are transmitted via the board through serial
communication between the robot and the computer. The only
exception is the cameras, whose data is directly transferred to
the computer via USB ports.

• Spacer Disks: Spacer disks made of plexiglass are placed along
the backbone to guide the tendons parallel to the central
backbone. These disks also convert the tendon tension into a
concentrated moment at the end of each segment, where the
tendons attach to the backbone.

• Tendons: The tendons, with a maximum allowable tension
of 394 Newtons, transfer force and ultimately convert it into
concentrated moment at the end of each segment. When
selecting the tendon material, inextensibility and flexibility
are important characteristics, in addition to high maximum
tension, as these significantly affect the system’s power
transmission performance.

• Servomotors: The actuators for the continuum robotic arm
are Dynamixel servomotors (model AX-12A), which offer two
modes: joint and wheel.These modes allow for position (θ) and
velocity (θ̇) control.

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2025.1488869
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Maghooli et al. 10.3389/frobt.2025.1488869

• Load Cells: Real-time information on tendon tension is
essential for the kinetic control of the continuum robotic arm.
By using load cells and implementing an inner loop to regulate
tendon tension, the system can be kinetically controlled. The
selected load cells have a maximum force capacity of 30 kg-
force, which is approximately 294 Newtons.

• Cameras: To determine the real-time position of the
continuum robotic arm’s end-effector, two cameras are used
to observe the robot’s movement in the xz and yz planes.
While real-time position information of the end-effector
can be obtained through forward kinematics, factors such as
increased computational load, potential delays in calculating
these equations within the control loop, and structural and
parametric uncertainties (e.g., friction, backlash, elasticity,
hysteresis) can cause discrepancies between the calculated
and actual positions of the end-effector. Therefore, the system
uses two A4Tech cameras (30 fps), models PK-750MJ and PK-
710MJ. Both models operate at 5 V and 150 milliamps and can
be easily connected to a computer via USB ports.

5.2 Sim-to-real gap considerations

One key difference between simulation and real-time
implementation of this robotic system is the nature (dimension)
of the input signals to the plant. In the simulation environment,
the input to the system is the tendon tensions, and kinetic control is
performed by determining these inputs. Conversely, in the hardware
of the Robo-Arm, kinematic actuators (Dynamixel servomotors) are
employed. If the input to the system is directly the motor position
or velocity, a kinematic control strategy is implemented, which is
not ideal for a continuum robot (Centurelli et al., 2022). This claim
is supported by three reasons:

Firstly, kinematic control does not account for tendon tension.
If the robot body or end-effector collides with the task-space
or becomes stuck in the null-space, the controller cannot issue
the correct commands to resolve these issues. Secondly, without
information on tendon tension, the kinematic controller will not
be aware if the tension increases beyond the tendon tolerance
thresholds. This can lead to tendon rupture, damage to the spacer
disks, or even damage to the robot backbone. Thirdly, the use
of the Jacobian transpose as the force distributor is only possible
with kinetic control. According to the equation T = JTF , which
maps forces from the task-space to the joint-space, T (input to
the system) is in the form of forces. With kinematic control,
using the Jacobian transpose for force distribution is not feasible.
Instead, the inverse Jacobian (J−1) must be used according to
the equation L̇ = J−1Ẋ. Using J−1 in closed-loop control poses a
significant risk and may cause the control algorithm to become
unstable near singularity points (typically at the boundaries of
the task-space).

Based on these reasons, it is evident that the appropriate strategy
for position control of the TDCR is kinetic control. Implementing
kinetic control, despite having kinematic actuators, involves using
a cascaded control structure and creating an inner loop to adjust
tendon tensions. In this structure, feedback from load cells is used
to calculate the tendon tensions, which are then compared to the

desired tension (Equation 8).The tension error is fed into the inner-
loop controller (a PID controller), andfinally, the command to adjust
the motor velocity is sent to the servomotor. The block diagram of
the proposed strategy for kinetic control of the TDCR is shown in
Figure 6.

5.3 Jacobian validation for force
distribution

As previously explained, having the Jacobian matrix for force
mapping from the task-space to the joint-space is essential for
control in the task-space. This research relies on using the closed
form of the Jacobian matrix, which has shown satisfactory results
in simulations. Before using these equations, it is necessary to
ensure their accuracy and consistency with Robo-Arm for force
distribution during real-time implementation.

Before addressing the Jacobian matrix, the validation of the
forward kinematics equations (mapping tendon lengths to the
end-effector position coordinates) is examined. Harmonic inputs
with phase differences are applied to the servomotor angles, and
the instantaneous position of the end-effector is recorded by
cameras.The tendon lengths (calculated as the product of harmonic
inputs and the servomotor pulley radius) are then input into the
forward kinematics equations, and the output is compared with the
camera measurements. Figure 7A shows the comparison between
the camera output and the forward kinematics output for each
coordinate of the end-effector in the task-space. Based on the
computed RMSEs, the forward kinematics equations, considering
the structural and parametric uncertainties of the system, are
accurate enough for calculating the Jacobian matrix for force
distribution and implementation on hardware.

After validating the forward kinematics, the Jacobian matrix
(which maps the rate of change in tendon lengths to the end-
effector velocity) is examined. The derivative of the tendon lengths
with respect to time is calculated and multiplied as a vector by the
Jacobian matrix, and the output is compared with the derivative of
the camera measurements (representing the instantaneous velocity
of the end-effector). Figure 7B shows the comparison between the
derivative of the camera output and the velocity obtained from the
Jacobian for each coordinate of the end-effector in the task-space.
According to the results, the Jacobian matrix is accurate enough for
implementation on hardware, and its transpose can be used as the
force distributor in the MTJ controller structure.The comparison of
the RMSEs of the forward kinematics and Jacobian with camera data
is presented in Figure 7C.

5.4 DRL policy sim-to-real transfer results

To successfully implement the MLP neural network obtained as
the policy on the continuum robotic arm hardware (Robo-Arm),
derived from executing the DDPG algorithm in the simulation
environment on a PCC model, the simulation model must closely
approximate the physical system. This requirement is partially met
by ensuring the accuracy of the mass and geometric parameters
of the system in the model. However, due to the presence of
uncertainties such as friction, hysteresis, and other factors that are

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2025.1488869
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Maghooli et al. 10.3389/frobt.2025.1488869

FIGURE 6
Proposed cascade control structure for kinetic control of the TDCRs in the task-space. Using a PID as the low-level controller (inner loop) and a
DRL-MTJ as the high-level controller (outer loop).

FIGURE 7
(A, B) Validation results of Forward Kinematics equations and Jacobian matrix using camera data (C). Obtained RMSE from validation process.

challenging to model precisely, it is expected that the results of
implementing the policy on the robot will differ somewhat from the
simulation.Themore effort that is put into accuratelymodeling these
terms, the smaller this discrepancy will be.

To evaluate and compare the performance of the DRL agent in
tuning the controller gains, a circular trajectory in the horizontal
plane is considered for a fair comparison between DRL and the FIS
strategies. The trajectory is defined by Equation 13:

{{{{
{{{{
{

xd = 0.15 sin (0.1t)

yd = 0.15 cos (0.1t)

 zd = 0.48

(13)

By implementing the designed control systems on the Robo-Arm,
the following results are obtained. In Figure 8, the trajectory-
tracking quality of the MTJ controller with gains tuned by the DRL

agent and the FIS is shown. Figure 8A presents the controller gains
graph (x-direction), adjusted in real-time by the DRL agent during
trajectory tracking, compared to those provided by the FIS. Similar
to the simulation results, the changes in control gains obtained by
the DRL agent aremore significant than those by the FIS throughout
the implementation period. In other words, the DRL agent makes
greater efforts to provide more suitable control gains at each time
step according to the robot’s state, resulting in a lower RMSE in
trajectory tracking.

Figure 8B shows the tendon tension graphs for both strategies.
The results indicate that the tendon tensions are almost within
the same range, demonstrating better management by the DRL
agent compared to the FIS in tuning the control gains and
minimizing the error. To better illustrate the performance of
the controllers, the obtained RMSE for each coordinate for

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2025.1488869
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Maghooli et al. 10.3389/frobt.2025.1488869

FIGURE 8
(A) Comparison of controller gains and trajectory-tracking quality between FIS-MTJ and DRL-MTJ strategies (B). Comparison of tendon tension for
both strategies (C). Comparison of the RMSE for both strategies.

both strategies are presented in Figure 8C. According to the
obtained values, using DRL compared to the FIS significantly
reduces the RMSE in trajectory-tracking (38.10 mm for DRL and
52.60 mm for FIS).

6 Discussion

In this study, the primary objective was to design an optimal
adaptive gain-tuning system to enhance the performance of a
customized MTJ controller for TDCRs. The results achieved in
the trajectory-tracking problem, when compared to the application
of a FIS for the same problem, demonstrate improvements in
both simulation and real-world implementation. When comparing
supervised learning methods (e.g., FIS) with semi-supervised
methods (e.g., DRL), it can be stated that both approaches show
satisfactory performance and require minimal prior knowledge of
the system’s behavior. Specifically, defining membership functions
and the rule-base in a FIS necessitates knowledge of appropriate
ranges for controller gains. On the other hand, defining states,
actions, and rewards inDRL requires an understanding of how these
variables affect system performance and their optimal selection
within the problem’s context. Notably, the FIS operates online from
the outset and does not require prior training. However, the DRL
agent can achieve appropriate online performance after a sufficient
number of episodes and adequate training of the neural networks
within its structure. Ultimately, based on the obtained results and
the comparison of RMSE values, the DRL method demonstrates
superior performance in tuning the proposed controller gains.
Its application in the control of TDCRs results in more accurate
following of the reference trajectory with reduced error. The
simultaneous control of both position and orientation of a TDCR,
leveraging the results of this paper to address shape constraints, has
been independently explored in (Maghooli et al., 2024).

7 Conclusion

In this study, a learning-based control strategy was developed
and validated by integrating a customizedMTJ controller for TDCRs
with the DDPG algorithm. The main contribution of this work lies
in the effective Sim-to-Real transfer of control policies, enabling
the model-free MTJ controller to achieve high-precision trajectory-
tracking. The obtained results from both simulation and real-
time implementation indicate that the optimal adaptive gain-tuning
system significantly enhances controller performance, reducing
the RMSE and improving the robustness of the control system.
The success of this approach in both simulated and real-world
environments underscores its potential for broader applications in
medical devices, flexible manufacturing, and exploratory robotics.
This work paves the way for more reliable and efficient deployment
of TDCRs in real-world scenarios. Future work will focus on further
optimizing the learning algorithms and exploring their application
to shape estimation and control in continuum robotic arms.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

Author contributions

NM: conceptualization, investigation, methodology, software,
validation, visualization, writing – original draft. OM: software,
validation,writing – review and editing.MB: software,methodology,
writing – review and editing. SAM: supervision, project

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2025.1488869
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Maghooli et al. 10.3389/frobt.2025.1488869

administration, funding acquisition, resources, writing – review
and editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.2025.
1488869/full#supplementary-material

References

Burgner-Kahrs, J., Rucker, D. C., and Choset, H. (2015). Continuum
robots for medical applications: a survey. IEEE Trans. Rob. 31, 1261–1280.
doi:10.1109/TRO.2015.2489500

Centurelli, A., Arleo, L., Rizzo, A., Tolu, S., Laschi, C., and Falotico, E. (2022). Closed-
loop dynamic control of a soft manipulator using deep reinforcement learning. IEEE
Rob. Autom. Lett. 7, 4741–4748. doi:10.1109/LRA.2022.3146903

Chiaverini, S., Oriolo, G., and Walker, I. D. (2008). Kinematically redundant
manipulators. Heidelberg: Springer Handbook of Robotics, 245–268. doi:10.1007/978-
3-540-30301-5_12

Chikhaoui, M. T., and Burgner-Kahrs, J. (2018). “Control of continuum robots
for medical applications: state of the art,” in ACTUATOR 2018; 16th international
conference on new actuators, 1–11.

Craig, J. J. (2018). Introduction to robotics: Mechanics and control, 438.

Dehghani, M., and Moosavian, S. A. A. (2013). Compact modeling of
spatial continuum robotic arms towards real-time control. Adv. Rob. 28, 15–26.
doi:10.1080/01691864.2013.854452

Djeffal, S., Morakchi, M. R., Ghoul, A., and Kargin, T. C. (2024). DDPG-based
reinforcement learning for controlling a spatial three-section continuum robot.
Franklin Open 6, 100077. doi:10.1016/J.FRAOPE.2024.100077

François-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G., and Pineau, J. (2018).
An introduction to deep reinforcement learning. Found. Trends Mach. Learn. 11,
219–354. doi:10.1561/2200000071

George Thuruthel, T., Ansari, Y., Falotico, E., and Laschi, C. (2018). Control
strategies for soft roboticmanipulators: a survey. Soft Rob. 5, 149–163. doi:10.1089/soro.
2017.0007

Godage, I. S., Branson, D. T., Guglielmino, E., and Caldwell, D. G. (2012).
“Path planning for multisection continuum arms,” in 2012 IEEE international
conference on mechatronics and automation (ICMA), (IEEE). 1208–1213.
doi:10.1109/ICMA.2012.6283423

Goharimanesh, M., Mehrkish, A., and Janabi-Sharifi, F. (2020). A fuzzy
reinforcement learning approach for continuum robot control. J. Intell. Rob.
Syst. Theory Appl. 100, 809–826. doi:10.1007/s10846-020-01237-6

Grassmann, R. M., Rao, P., Peyron, Q., and Burgner-Kahrs, J. (2022). FAS—a fully
actuated segment for tendon-driven continuum robots. Front. Rob. AI 9, 873446.
doi:10.3389/frobt.2022.873446

Jiang, D., Cai, Z., Liu, Z., Peng, H., andWu, Z. (2022). An integrated tracking control
approach based on reinforcement learning for a continuum robot in space capture
missions. J. Aerosp. Eng. 35, 04022065. doi:10.1061/(ASCE)AS.1943-5525.0001426

Jones, B. A., andWalker, I. D. (2006). Kinematics for multisection continuum robots.
IEEE Trans. Rob. 22, 43–55. doi:10.1109/TRO.2005.861458

Kober, J., Bagnell, J. A., and Peters, J. (2013). Reinforcement learning in robotics: a
survey. Int. J. Rob. Res. 32, 1238–1274. doi:10.1177/0278364913495721

Kołota, J., and Kargin, T. C. (2023). Comparison of various reinforcement learning
environments in the context of continuum robot control. Appl. Sci. 13, 9153.
doi:10.3390/APP13169153

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2015).
“Continuous control with deep reinforcement learning,” in 4th international conference
on learning representations, ICLR2016 - conference track proceedings. Available online
at: https://arxiv.org/abs/1509.02971v6 (Accessed August 19, 2023).

Maghooli, N., Mahdizadeh, O., Bajelani, M., and Moosavian, S. A.
A. (2024). “Control of continuum manipulators with shape constraints
via deep reinforcement learning,” in 2024 12th RSI international
conference on robotics and mechatronics (ICRoM), 631–636. doi:10.1109/
ICROM64545.2024.10903601

Maghooli, N., Mahdizadeh, O., and Moosavian, S. A. A. (2023). “Intelligent
model-free control for tendon-driven continuum robotic arms,” in 11th RSI
international conference on robotics and mechatronics, ICRoM 2023, 606–613.
doi:10.1109/ICROM60803.2023.10412410

Moosavian, S. A. A., and Papadopoulos, E. (1997). Control of space free-flyers
using the modified transpose Jacobian algorithm. IEEE Int. Conf. Intell. Rob. Syst. 3,
1500–1505. doi:10.1109/IROS.1997.656557

Moosavian, S. A. A., and Papadopoulos, E. (2007). Modified transpose
Jacobian control of robotic systems. Automatica 43, 1226–1233.
doi:10.1016/J.AUTOMATICA.2006.12.029

Morimoto, R., Ikeda, M., Niiyama, R., and Kuniyoshi, Y. (2022). Characterization of
continuum robot arms under reinforcement learning and derived improvements. Front.
Rob. AI 9, 895388. doi:10.3389/frobt.2022.895388

Morimoto, R., Nishikawa, S., Niiyama, R., and Kuniyoshi, Y. (2021). “Model-
free reinforcement learning with ensemble for a soft continuum robot arm,” in
2021 IEEE 4th international conference on soft robotics, roboSoft 2021, 141–148.
doi:10.1109/ROBOSOFT51838.2021.9479340

Rajendran, S. K., and Zhang, F. (2022). Design, modeling, and visual learning-based
control of soft robotic fish driven by super-coiled polymers. Front. Rob. AI 8, 809427.
doi:10.3389/frobt.2021.809427

Rao, P., Peyron, Q., Lilge, S., and Burgner-Kahrs, J. (2021). How to model tendon-
driven continuum robots and benchmark modelling performance. Front. Rob. AI 7,
630245. doi:10.3389/frobt.2020.630245

Rucker, D. C., and Webster, R. J. (2011). Statics and dynamics of continuum robots
with general tendon routing and external loading. IEEE Trans. Rob. 27, 1033–1044.
doi:10.1109/TRO.2011.2160469

Satheeshbabu, S., Uppalapati, N. K., Fu, T., and Krishnan, G. (2020). “Continuous
control of a soft continuum arm using deep reinforcement learning,” in 2020 3rd
IEEE international conference on soft robotics, roboSoft 2020, 497–503. doi:10.1109/R
OBOSOFT48309.2020.9116003

Wang, S., Wang, R., Liu, M., Zhang, Y., and Hao, L. (2021a). “Review on
reinforcement learning controller in soft manipulator,” in 2021 IEEE international
conference on robotics and biomimetics, ROBIO, 558–563. doi:10.1109/
ROBIO54168.2021.9739342

Wang, X., Li, Y., and Kwok, K. W. (2021b). A survey for machine learning-
based control of continuum robots. Front. Rob. AI 8, 730330. doi:10.3389/frobt.2021.
730330

Wu, Q., Gu, Y., Li, Y., Zhang, B., Chepinskiy, S. A., Wang, J., et al.
(2020). Position control of cable-driven robotic soft arm based on
deep reinforcement learning. Information 2020 11, 310. doi:10.3390/
INFO11060310

Yuan, H., Zhou, L., and Xu, W. (2019). A comprehensive static model of
cable-driven multi-section continuum robots considering friction effect.
Mech. Mach. Theory 135, 130–149. doi:10.1016/J.MECHMACHTHEORY.
2019.02.005

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2025.1488869
https://www.frontiersin.org/articles/10.3389/frobt.2025.1488869/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2025.1488869/full#supplementary-material
https://doi.org/10.1109/TRO.2015.2489500
https://doi.org/10.1109/LRA.2022.3146903
https://doi.org/10.1007/978-3-540-30301-5_12
https://doi.org/10.1007/978-3-540-30301-5_12
https://doi.org/10.1080/01691864.2013.854452
https://doi.org/10.1016/J.FRAOPE.2024.100077
https://doi.org/10.1561/2200000071
https://doi.org/10.1089/soro.2017.0007
https://doi.org/10.1089/soro.2017.0007
https://doi.org/10.1109/ICMA.2012.6283423
https://doi.org/10.1007/s10846-020-01237-6
https://doi.org/10.3389/frobt.2022.873446
https://doi.org/10.1061/(ASCE)AS.1943-5525.0001426
https://doi.org/10.1109/TRO.2005.861458
https://doi.org/10.1177/0278364913495721
https://doi.org/10.3390/APP13169153
https://arxiv.org/abs/1509.02971v6
https://doi.org/10.1109/ICROM64545.2024.10903601
https://doi.org/10.1109/ICROM64545.2024.10903601
https://doi.org/10.1109/ICROM60803.2023.10412410
https://doi.org/10.1109/IROS.1997.656557
https://doi.org/10.1016/J.AUTOMATICA.2006.12.029
https://doi.org/10.3389/frobt.2022.895388
https://doi.org/10.1109/ROBOSOFT51838.2021.9479340
https://doi.org/10.3389/frobt.2021.809427
https://doi.org/10.3389/frobt.2020.630245
https://doi.org/10.1109/TRO.2011.2160469
https://doi.org/10.1109/ROBOSOFT48309.2020.9116003
https://doi.org/10.1109/ROBOSOFT48309.2020.9116003
https://doi.org/10.1109/ROBIO54168.2021.9739342
https://doi.org/10.1109/ROBIO54168.2021.9739342
https://doi.org/10.3389/frobt.2021.730330
https://doi.org/10.3389/frobt.2021.730330
https://doi.org/10.3390/INFO11060310
https://doi.org/10.3390/INFO11060310
https://doi.org/10.1016/J.MECHMACHTHEORY.2019.02.005
https://doi.org/10.1016/J.MECHMACHTHEORY.2019.02.005
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 Basic discussions
	2.1 Kinematics and kinetics modeling
	2.2 TDCR redundancy resolution
	2.3 DRL application in control system design

	3 Proposed learning-based controller
	3.1 Customized MTJ control algorithm for TDCRs
	3.2 Optimal adaptive gain-tuner system design via deep reinforcement learning

	4 Obtained results
	4.1 Learning process results
	4.2 Simulation results

	5 Experimental implementation
	5.1 Introduction to continuum robotic arm
	5.2 Sim-to-real gap considerations
	5.3 Jacobian validation for force distribution
	5.4 DRL policy sim-to-real transfer results

	6 Discussion
	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

