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Human operators of remote and semi-autonomous systems must have a
high level of executive function to safely and efficiently conduct operations.
These operators face unique cognitive challenges when monitoring and
controlling robotic machines, such as vehicles, drones, and construction
equipment. The development of safe and experienced human operators of
remote machines requires structured training and credentialing programs. This
review critically evaluates the potential for incorporating neurotechnology
into remote systems operator training and work to enhance human-machine
interactions, performance, and safety. Recent evidence demonstrating that
different noninvasive neuromodulation and neurofeedback methods can
improve critical executive functions such as attention, learning, memory, and
cognitive control is reviewed. We further describe how these approaches can
be used to improve training outcomes, as well as teleoperator vigilance and
decision-making. We also describe how neuromodulation can help remote
operators during complex or high-risk tasks by mitigating impulsive decision-
making and cognitive errors. While our review advocates for incorporating
neurotechnology into remote operator training programs, continued research
is required to evaluate the how these approaches will impact industrial safety
and workforce readiness.
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Introduction

The growth and adoption of robotics, artificial intelligence (AI), and industrial
automation is changing the nature of human-machine interactions (HMI). Industrial
sectors like shipping, excavation, road making, construction, and commercial truck driving
are becoming increasingly reliant on remotely operated and semi-autonomous systems,
which requires training a new generation of skilled operators. These remote and semi-
autonomous systems require trained personnel, who are capable of monitoring complex
sensor information, interpreting real-time data, and making rapid decisions in dynamic
environments. The use of small unmanned aerial systems (sUAS) or unmanned aerial
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FIGURE 1
Commercial and industrial utility of remotely piloted drones. The iconographic illustrations depict some example applications of sUAS/UAVs that are
creating an impact on many different industries. The development and deployment of different types of sensors and edge computing methods has led
to a growing adoption of drones and other remotely operated robotic systems for diverse industrial applications as illustrated. This broadening use of
semi-autonomous drones and robotic systems in commercial, security, and defense applications means workforce and talent development efforts will
also grow to include the establishment of specific training programs and certifications. Some training programs may incorporate modern
neurotechnology methods to enhance remote operator cognition and performance.

vehicles (UAVs) is changing the workforce across many industries
(Tezza and Andujar, 2019; Floreano and Wood, 2015; Rao et al.,
2016; Merkert and Bushell, 2020) (Figure 1). Similarly, the
past decade has seen immense growth in the use of semi-
autonomous mining equipment, remotely operated agricultural
machines, and robotic cargo handling systems. Collectively,
these remotely operated machines are revolutionizing industrial
efficiency, productivity, and safety (Tezza and Andujar, 2019;
Schönböck et al., 2022; Wanasinghe et al., 2021; Pizoń and
Gola, 2023; Soori et al., 2023). These modern systems introduce
new cognitive challenges for HMI’s and our workforce. In the
present review, we evaluate literature suggesting these challenges
can be addressed by incorporating neurotechnology into advanced
training and simulation methods.

Remote operation of drones and robotic machinery can be
a cognitively demanding task that requires distributed attention,
efficient decision making, and physical multi-tasking under a high
psychological stress load (Cross and Ramsey, 2021; Ljungblad et al.,
2021; Lee et al., 2022). Remote operators face significant cognitive
and sensorimotor challenges that differ from traditional vehicle
operation. They must continuously process and interpret multi-
modal sensory data from cameras, ultrasonic and laser range
sensors, and other real-time data transmission. Due to various
hardware, firmware, software, and human interface variables,
the streaming and display of data can be wrought with timing
delays or inconsistencies challenging the operator. For example,
the reliance on indirect visual input rather than direct line-of-
sight decreases situational awareness, which requires operators
to develop strong spatial reasoning and cognitive control skills.

Other performance burdens arise due to the complexity and
timing differences in multi-sensory integration and processing
demands placed upon teleoperators. For example, humanprocessing
of digitized video streams or visual feeds may not align with
their endogenous proprioceptive, cognitive, or real-world visual
processing cues. Furthermore, fine motor control through joysticks
or haptic interfaces requires sustained attention due to the precise
coordination between cognitive decision making and sensorimotor
execution (Figure 2). This often leads to operator mental and
physical fatigue over prolonged operations. Operators must also
contend with unexpected environmental changes, system failures,
and the psychological strain of high-stakes decision-making. Thus,
cognitive endurance and robust executive function are essential for
the optimal performance of remote operators.

The robotics industry is undergoing an evolution in which
artificial systems are beginning to adapt to and learn human
operator variables. To advance control and command systems
capable of cognitive co-evolution, neurotechnology can deliver
methods and devices centered on helping the human operator
learn and adapt to these robotic and semi-autonomous systems.
Developing solutions intended to enhance remote operator
training and performance represents an immense opportunity for
incorporating neurotechnology to improve learning, cognition,
and stress responses for human operators of semi-autonomous
robotic machines and systems. Training systems and programs have
recently evolved to include high-fidelity simulators that provide
realistic operational environments, which reflect the operational
experiences and complexities of real-world tasks (Figure 2). Training
of remote operators using realistic simulators improves safety and
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FIGURE 2
Human interfaces for training and operation of drones and remotely controlled machines. (A) Modern aerial drones utilize different types of digital
human control interfaces, such as joysticks with integrated screens (left) to heads-up displays with integrated motion controllers (middle). Some drone
and remote vehicle interfaces implement analog transmission of control, video, and sensor data with directional RF antennas, displays, and joysticks
(right). The displays and controllers in these systems convey important information to the operator from optical sensors, gyroscopes and
accelerometers, environmental sensors, positioning systems, and many other types of sensors and actuators. (B) Simulator control systems can
prepare remote operators for real-world operations. Modern simulator equipment may include joysticks and foot pedals (left) or operator’s chairs
(middle) that can be connected to computers, displays, and virtual reality systems to replicate vehicle and environmental situations. These simulators
have proven indispensable to the cognitive and sensorimotor training of operators for complex robotic tasks like remote excavation (right). The left and
middle image were reproduced from reference (Burk et al., 2023) and the right image was reproduced from reference (Hiltunen et al., 2023).

reduce costs across many industries where humans monitor and
control the work of semi-autonomous machines (Schönböck et al.,
2022; Lee et al., 2022; Chirgwin, 2021; Adami et al., 2021;
Han et al., 2023; Shringi et al., 2022; Warren et al., 2023; Xu
and Zheng, 2021). Government and industry regulatory bodies
including the Occupational Health and Safety Administration
(OSHA), Department of Transportation (DOT), Federal Aviation
Administration (FAA), US Department of Agriculture (USDA),
and many others have engaged in the development of innovative
training approaches to ensure workforce readiness as industries
increasingly rely on HMI’s and remotely operated machines
(Adami et al., 2021; Burk et al., 2023; Goode et al., 2013; Veitch
and Andreas Alsos, 2022).

Like the growth of the robotics industry, the field of
neuroengineering has also experienced recent growth. There have
been many advances in the development and commercialization of
methods and devices for sensing and modulating human brain
activity, behavior, and cognition. Neuromodulation techniques
like transcranial electrical stimulation (tES), transcranial focused
ultrasound (tFUS) neuromodulation and transcutaneous vagus
nerve stimulation (tVNS) offer promising solutions to optimize
training and performance outcomes for remote operators. As
described below, these methods work by enhancing neuroplasticity,
which helps operators learn better and more easily adapt to complex
control systems. Recent studies demonstrate that tES and tVNS
can improve resilience, decision-making, multimodal attention,
vigilance, and cognitive flexibility (Choe et al., 2016; McIntire et al.,
2023; Feltman and Kelley, 2024; Hemmerich et al., 2024). By
integrating these noninvasive brain stimulation methods into

training programs, organizations can accelerate skill acquisition
and optimize cognitive function, leading to a more capable
and adaptable workforce. Furthermore, the incorporation of
neurofeedback and AI-driven sensor enhancements into HMI
training can improve situational awareness and real-time cognitive
performance. Using electroencephalography (EEG) or functional
near-infrared spectroscopy (fNIRS), neurofeedback approaches can
provide operators with real-time monitoring of cognitive states
while helping them regulate attention andoptimize decision-making
(Faller et al., 2019; Kim et al., 2014; Duan et al., 2019; Khan and
Hong, 2017; Deng et al., 2023). With drones and other autonomous
machines becoming an integral part of everyday industrial and
commercial operations, investment in neurotechnology-driven
operator training and human-machine optimization will be crucial
in shaping the future of autonomous systems management.

Synthetic environments and realistic
training programs for enhancing remote
operator performance

The increasing reliance on remote, robotic, and semi-
autonomous systems across industries requires the development
of structured training programs to ensure operators acquire
the necessary cognitive and technical skills to perform safely
and efficiently. New technologies enable the delivery of realistic
training programs in synthetic environments designed to enhance
a remote operator’s sensorimotor skills, situational awareness,
executive function, and decision-making while cooperatively
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working with robotic machinery (Figure 2B). Unambiguously, a
wealth of literature shows realistic training simulations enhance
workforce preparedness across multiple industries, including
UAV operations, excavation, forestry, mining, and robotic-assisted
surgery (Schönböck et al., 2022; Adami et al., 2021; Shringi et al.,
2022; Burk et al., 2023; Liu et al., 2013; Sridhar et al., 2017).
By utilizing simulation-based training and virtual reality (VR)
environments, these programs provide hands-on experience in a
controlled setting, allowing trainees to develop critical competencies
without exposing them to real-world hazards.

High-fidelity simulators recreate real-world operational
scenarios with precise control interfaces and environmental
conditions, allowing operators to practice responding to emergency
situations, system failures, and high-pressure decision-making tasks
(Figure 2). For example, UAV operator performance is enhanced
following training in simulated flight environments to develop
precision in navigating airspace, reacting to unexpected obstacles,
and coordinating with autonomous flight systems (Schmidt et al.,
2022; Sakib et al., 2021; Somerville et al., 2024). In mining,
forestry, and excavation, for example, operators trained through
realistic VR-based simulation programs demonstrate greater
proficiency in navigating hazardous terrain, managing automated
excavation equipment, and optimizing resource extraction processes
compared to those trained using traditional methods. Similarly,
robotic surgeons undergo rigorous simulator-based training before
transitioning to live procedures, ensuring proficiency in remote-
controlled surgical techniques before working on actual patients
(Sridhar et al., 2017; Moit et al., 2019; Mallela et al., 2022). One of
the primary advantages of simulation-based training is its ability to
improve operator safety and efficiency. By exposing trainees to high-
risk scenarios in a risk-free environment, they are better equipped
to handle real-world stressors when performing complex remote
operations.

Adaptive factors approaches to enhancing
human-machine interactions

The effectiveness of realistic training programs can be further
enhanced using adaptive technologies designed to enhance human-
in-the-loop performance. Robotic and semi-autonomous machines
do not experience physiological stress and are less prone to
cognitive fatigue and failure than human operators. For example,
by optimizing the cognitive workload of trainees during prolonged
training implementing adaptive training logic and methods have
been shown to enhance virtual F-16 cockpit training compared
to non-adaptive VR methods (Aguilar Reyes et al., 2023). The
use of haptics to provide tactile sensory input and somatosensory
feedback related to texture, hydraulics, or force during virtual
training has been shown to improve robotic teleoperator training
outcomes and performance compared to control approaches
not using haptics (Edmondson et al., 2012; Patel et al., 2022;
Gani et al., 2022; Zhu et al., 2021; Yang et al., 2021; Xia et al.,
2023). A recent study compared the influence of multi-modal
sensory inputs on teleoperator performance. It was shown the
use of stereoscopic 3D or VR displays improve task performance
and accuracy by 40% compared to monocular displays and
integration with vibrotactile and auditory feedback further improve

performance (Triantafyllidis et al., 2020). Deeper investigations
have studied the multisensory impact of encoding force with
light, sound, and vibration on cognitive workload using EEG
during robotic machine training (Haruna et al., 2021). Haruna
and colleagues (2021) found that strategically positioned visual
feedback encoding robotic force produced the most efficient
haptic approach for reducing cognitive load or mental work
during training (Haruna et al., 2021). Improving our physiological
models of stress and mental workload can greatly enhance remote
operator training, performance, and safety (Sakib et al., 2021).
As further discussed below, neuroscience-guided approaches can
further enable the reduction of cognitive fatigue by modulating
arousal while distributing cognitive resources across different
sensory (somatosensory, visual, and auditory cortex) and executive
decision-making regions of the brain (prefrontal, temporoparietal,
and cingulate cortex).

The use of haptic methods to improve teleoperator training
and performance presents several interesting oppurtunities for
advance the design and human factors elements of HMI’s. The
somewhat recent development of soft, wearable sensors and
actuators have led to the development of wearable haptic interfaces
for improving the sensory and situational awareness of remote
operators (Yin et al., 2021; Grasso et al., 2023; Aggravi et al.,
2018). More specifically, several wearable embodiments like haptic
sleeves, gloves, and shoes have been shown to enable neuromorphic
control, enhanced environmental awareness, and overall improved
teleoperator performance (Macchini et al., 2020; Thakur et al.,
2024; D’Abbraccio et al., 2019). Efforts to engineer innovative
haptic interfaces will make HMI’s more usable and reliable for
integration into advanced training programs. For example, using
soft, compliant electroactive hydrogels or polymers for sensing and
actuation can improve the interface between human operators and
hardware control systems (Xu et al., 2015). Stretchable hydraulic
amplified actuators can be 3D printed and personalized to a
user’s fingertips to enhancing cutaneous haptics without affecting
dexterity (Grasso et al., 2023). State-of-the-art bioelectronic
methods recently led to the engineering artificial ‘e-skin’ that can
be used for neuromorphic robotic control and sensorimotor loop
integration in HMI’s (Wang et al., 2023). Given observations that
visual haptics can enhance operator performance while reducing
cognitive load, the use of electroluminescent force sensors in
tactile skin may represents an interesting approach for enhancing
teleoperator HMI’s (Aggravi et al., 2018).The literature suggests that
combining advanced bioelectronic interfaces with proven realistic
training methods can significantly enhance the skill training,
cognition, safety, and preparedness of drone, robotic, and remote
machine operators.

Noninvasive neuromodulation for
enhancing human-machine cognition and
teleoperator performance

Noninvasive neuromodulation approaches, such as transcranial
magnetic stimulation (TMS), transcranial electrical stimulation
(tES), transcranial focused ultrasound (tFUS), and transcutaneous
vagus nerve stimulation (tVNS) have gained attention the past
couple decades for their ability to treat various neurologic and
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psychiatric disorders (Tyler et al., 2017; Bhattacharya et al., 2022).
These multimodal neuromodulation methods have also gained
attention in consumer electronics, enterprise businesses, sports, and
health industries for their ability to improve brain plasticity, enhance
cognition, reduce stress, improve sleep, and optimize decision-
making (Herrmann et al., 2013; Cinel et al., 2019; Grover et al., 2023;
Colzato et al., 2017; Tyler, 2017; Antal et al., 2022). The noninvasive
neuromodulation literature provides compelling evidence that
these methods are safe for use in healthy humans suggesting
they may be readily integrated into remote operator training
programs (Tyler, 2017; Santarnecchi et al., 2015; Rossi et al., 2021;
Kim et al., 2022; Antal et al., 2017). We are motivated to specifically
evaluatewearable approacheswith real-timemodulation capabilities
that can be easily incorporated into workforce training and
performance programs. Thus, we restrict our further discussion of
neuromodulation below to tES, tVNS, and tFUSmethods. Presently,
the electrical power and magnetic resonance image-guided
neuronavigation recommendations for TMS makes it difficult to
deploy in scalable training and performance enhancement solutions
across industries.

Both tES and tVNS methods involve the transmission of weak
(<4 mA) electrical currents across the skin. The general tES method
embodies different approaches including transcranial direct current
stimulation (tDCS) and transcranial alternating current stimulation
(tACS) (Paulus, 2011). These methods different electrode sizes,
shapes, densities, and polarities to deliver a DC or AC currents
(1–20,000 Hz) across the skin of the scalp to bias the activity
and plasticity of targeted cortical regions (Figure 3A). Another tES
approach known as transcranial random noise stimulation (tRNS)
is just like tACS, but delivers different pulsed or AC stimuli at
random or pseudo-random frequencies (Paulus, 2011; Antal and
Herrmann, 2016). Using transcutaneous electrical nerve stimulation
approaches, tVNS may be achieved by targeting cervical branches
of the vagus on the side of the neck in a method known as
transcutaneous cervical vagus nerve stimulation (tcVNS; Figure 3B).
Alternatively, transcutaneous auricular vagus nerve stimulation
(taVNS) can be achieved by targeting auricular branches of the vagus
nerve using pulsed stimuli located on the external ears (Figure 3C).
All these methods have well understoodmechanisms of action, offer
comfortable andwearable human factors designs, can be safely used,
and have been shown to improve various aspects of human behavior
and cognition that can benefit remote operator performance as
discussed below.

Transcranial electrical stimulation
The modern resurgence of tES was spawned by observations

demonstrating that tDCS produces neurophysiological changes
in cortical network excitability and brain plasticity (Nitsche and
Paulus, 2000). Following this seminal observation, the field of
noninvasive neuromodulation experienced explosive growth. A
series of pioneering studies conducted by the US Air Force
Research Laboratories provided the first evidence that cortical
tES can be effective for enhancing remote operator cognition,
training, performance (McKinley et al., 2011; McKinley et al.,
2013; McIntire et al., 2014; Nelson et al., 2014). McKinley
and colleagues (2013) initially demonstrated that 30-min tDCS
(2 mA) can enhance remote operator training by producing a
25% improvement on visual search tasks compared to controls

(McKinley et al., 2013). This work laid the foundation for follow-
up investigations demonstrating tDCS applied to prefrontal cortex
improves attention, reduces mental fatigue, and enhances multi-
tasking during sustained, complex tasks that are ecologically valid
and contextually relevant to remote drone and machine operations
(McIntire et al., 2014; Nelson et al., 2014; Nelson et al., 2016).

Using EEG and fNIRS to record brain activity, it has been shown
that tDCS delivered to the primary motor cortex (M1) increases
neuronal excitability and enhances sensorimotor skill learning
outcomes on a flight simulator (Choe et al., 2016). Targeting M1
using tDCS has been shown to enhance learning and performance
on several other skilled motor tasks, such as sequential tapping
and controlled force pinching tasks (Saucedo Marquez et al.,
2013; Orban de Xivry and Shadmehr, 2014). Studies evaluating
the influence of tES on motor vehicle operator performance have
also shown improvements to executive function and cognitive
performance. For example, a recent study demonstrated that
30-min tRNS delivered during VR truck driving simulation
tasks significantly reduced mental fatigue compared to controls
(Benelli et al., 2024). Another recent study showed tRNS can
accelerate learning in VR environments (Neri et al., 2025). These
data suggest that hybrid neurostimulation strategies incorporating
VR or realistic simulations with tES may be particularly beneficial
for remote operator training. Given that tDCS has been shown to
protect against diminished executive vigilance decrement under
high cognitive loads (Hemmerich et al., 2024), its application
in long duration teleoperation training or missions may also
significantly reduce operator fatigue and improve safety. Other
research on driving simulators indicates that attentional control
and reaction times can be significantly improved using tDCS,
which further indicates tES methods holds promise for optimizing
operator performance in dynamic, virtual, training or work
environments (Facchin et al., 2023). Further research is required
to identify the optimal parameters and brain targets for using tES
methods before and during training or work procedures to improve
remote operator attention and learning.

Evidence from investigations into the use of tDCS for treating
various clinical conditions has evolved into insights that hold
promise for enhancing general cognitive performance. Several
studies have shown tDCS delivered to the prefrontal cortex
can improve executive functions like working memory, impulse
control, and cognitive flexibility, as well as time perception in
children and adults with attention-deficit hyperactivity disorder
(ADHD) (Nejati et al., 2020; Nejati et al., 2021; Nejati et al.,
2024; Leffa et al., 2022). These observations combined with those
described above showing tDCS improves driver skill training and
performance, suggest tES may be useful for improving the safety of
drivers with attention disorders like ADHD. In patient populations
who exhibit problems with impulse control, such as those with
gambling disorders, prefrontal tDCS has been shown to enhance
cognitive control and decision making by reducing risk taking while
improving cognitive flexibility (Soyata et al., 2019; Gilmore et al.,
2018). In healthy adults tDCS can improve working memory,
decision making, and impulse control (Ke et al., 2019; Ruf et al.,
2017; Ouellet et al., 2015; Yang et al., 2017). Likewise, tACS delivered
at theta and gamma frequencies can improve working memory and
recall in healthy adults (Jaušovec et al., 2014; Hoy et al., 2015).
Further, tACS delivered 4 days in a row can produce significant
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FIGURE 3
Wearable electrical neuromodulation approaches for augmenting human-machine interactions. Several forms of noninvasive neuromodulation are
wearable and can be easily used before, during, or after virtual training activities on simulators or used during human-machine operations of drones or
other robotic systems. (A) Transcranial electrical stimulation including transcranial direct and alternating current stimulation methods involve the
placement of electrodes at different locations on the scalp to modulate cognitive, sensory, and motor networks. (B) Transcutaneous cervical vagus
nerve stimulation involves placement of surface electrode contacts along the side of the neck to modulate activity of cervical branches of the vagus.
(C) Several different approaches to transcutaneous auricular vagus nerve stimulation (taVNS) have been developed. As shown on the far-right some
taVNS methods use small, steel ball electrodes to stimulate the external ear (Nemos device, Cerbomed GmbH). This approach can produce high, local
current densities resulting in discomfort or electrical biting and stinging sensations. Other taVNS methods and devices utilize metal clip electrodes as
shown in the middle-left image. These clips mechanically couple the skin to a metal electrode using an electrolyte solution or gel. This approach
creates a distracting pinching sensation and can produce electrical biting or prickling sensations. Other methods were developed using conductive
hydrogel earbud electrodes (BRAIN Buds, IST) to produce uniform current distributions and enhanced user comfort during taVNS.

improvements in working and long-term memory that last up
to 1 month in healthy aged adults (Grover et al., 2022). These
cognitive enhancements would be beneficial to remote operators to
improve skill learning and retention. The increasing prevalence of
teleoperated machines and construction equipment justifies deeper
explorations into how neuromodulation can improve attention
and support adaptive decision-making by reducing risk taking,
particularly in hazardous and high-risk environments (Lee et al.,
2022).While the literature clearly supports these approaches, further
investigations are required to understand how different stimulation
intensities, frequencies, and locations differentially affect executive
function during realistic remote operator training scenarios.

Transcutaneous vagus nerve stimulation
Using pulsed electrical currents to modulate vagus nerve fibers

located in different locations along the side of the neck or external
ear has gained attention for its safe ability to modulate autonomic
nervous system activity, inflammation, neuroplasticity, attention,
stress, learning, mood, and sleep (Tyler, 2017; Kim et al., 2022;
Liu et al., 2020; Wang et al., 2021; Butt et al., 2020; Verma et al.,
2021; Sant'Anna et al., 1992; Tan et al., 2023; Urbin et al., 2021;
Bottari et al., 2024; Srinivasan et al., 2023; Ma et al., 2022;
Phillips et al., 2021; Prescott and Liberles, 2022; Henry, 2002;
Thayer and Sternberg, 2006). It is well established that noninvasive
VNS works by modulating the activity of the locus coeruleus and

ascending reticular activating system located in brainstem. This
primary action alters the release of norepinephrine across large brain
regions and organs in the body produces changes in activity, arousal,
and plasticity (Urbin et al., 2021; Frangos et al., 2015; Sharon et al.,
2021; Schuerman et al., 2021; Frangos and Komisaruk, 2017). Other
neurotransmitters like acetylcholine (Martin et al., 2024; Pavlov
and Tracey, 2005) and serotonin (Hulsey et al., 2019; Manta et al.,
2009) have also been shown to regulate immune function and brain
plasticity following transcutaneous VNS. Targeting cervical vagus
nerve fibers using tcVNS is FDA cleared to treat headache, while
targeting auricular vagus nerve fibers using taVNS is FDA cleared
to treat opiate withdrawal. When proper precautions and methods
are used, tcVNS and taVNS pose a low-risk or non-significant
risk and have numerous other health and wellness applications.
In fact, several tcVNS and taVNS devices are distributed over
the counter as General Wellness devices when not used to treat
or diagnose a disease or medical condition. Many studies in
healthy volunteers demonstrate these noninvasive neuromodulation
approaches can enhance human cognition and performance as
further discussed below.

Several studies have shown that both tcVNS and taVNS
can reduce the sympathetic nervous system activity, as well
as the psychological and neurophysiological symptoms of stress
(Trifilio et al., 2023; Bretherton et al., 2019; Clancy et al., 2014;
Machetanz et al., 2021a; Machetanz et al., 2021b; Gurel et al., 2020;
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Moazzami et al., 2023). A recent randomized, sham-controlled study
demonstrated that taVNS produced significant changes in bottom-
up neurophysiological arousal leading to significantly improved
impulse control during emotional tasks. It also been demonstrated
that taVNS can improve cognitive control during multi-tasking
to enhance performance (Sommer et al., 2023). The ability of
taVNS to dampen stress responses is likely a contributing factor
to the improved performance observed under high cognitive and
emotional loads. In fact, taVNS has been shown to improve
action control performance and response selection when task
demands are high (Jongkees et al., 2018). The reduction of stress
by taVNS also suggest it can be used following virtual or realistic
training sessions to improve rest and recovery from mental strain
or fatigue (Ferstl et al., 2022). Several studies have also shown
that both taVNS and tcVNS can improve human learning and
memory (Phillips et al., 2021; Kaan et al., 2021; Pandža et al.,
2020; Jacobs et al., 2015; Olsen et al., 2023; Zhang et al., 2020;
Cibulcova et al., 2024; Ridgewell et al., 2021; Miyatsu et al., 2024;
Choudhary et al., 2023; Klaming et al., 2022).

In addition to direct effects on neuroplasticity, the influence of
tVNS on learning and memory can be also attributed to its ability
to modulate human cortical arousal and attention (Sharon et al.,
2021; Trifilio et al., 2023; Miyatsu et al., 2024; Chen et al.,
2023; Rufener et al., 2018; Giraudier et al., 2024; Tyler et al.,
2019). Recent studies show that taVNS can significantly improve
motor action planning, enhance motor sequence learning, and
improve associated motor cortex efficiency (Chen et al., 2022;
Chen et al., 2024). It has also been demonstrated that taVNS can
improve human working memory (Sun et al., 2021) and cognitive
flexibility (Borges et al., 2020). When subjects are sleep deprived,
taVNS has been shown to reduce fatigue and improve working
memory (Zhao et al., 2023), while tcVNS also reduces fatigue
and improves multitasking performance (McIntire et al., 2021).
Attention, working memory, and cognitive control networks are
critical in decision making (Bechara et al., 1998; Curtis and Lee,
2010; McGuire and Botvinick, 2010; Cole and Schneider, 2007).
Impaired working memory has been shown to underlie impulsivity
in decision making (Hinson et al., 2003). These different approaches
to enhancing cognition can prove beneficial to improving human-
machine operator training and performance (Figure 4).

Impulsive decision-making by vehicle and remote operators
represents a major risk since it can lead to dangerous situations
or crashes injuring people and property. Interestingly, studies
have demonstrated that taVNS can produce more efficient neural
processing requiring fewer resources to achieve cognitive control
(Pihlaja et al., 2020), as well as to improve cognitive control
or adaptation in response to conflict (Fischer et al., 2018). As
cited above, taVNS improves action control performance when
task demands are high (Jongkees et al., 2018) and enhances
cognitive control during multi-tasking (Sommer et al., 2023). These
data indicate tVNS may improve cognitive control and flexibility,
enabling vehicle and remote machine operators to switch between
tasks and manage multiple streams of information more efficiently
(Figure 4). Given that cognitive training has been shown to reduce
motor vehicle collision involvement by up to 50% in older drivers
(Ball et al., 2010), similar cognitive training approaches combined
with tVNS to reinforce learning outcomes and executive control
may help mitigate human error in remote industrial robotics and

autonomous vehicle supervision. It has also been shown that taVNS
boosts human drive to work for rewards suggesting it may be useful
for improving the motivation of tele-operators, drivers, and remote
pilots to engage in reward-based training (Neuser et al., 2020).

Studies have shown that tcVNS and taVNS provide roughly
equal benefits. The choice to use one method or approach over
another can be distilled down to human factors issues. One may
consider whether they need hands-free capabilities for real-time
modulation. One may also consider how one makes the operator
feel from a sensory stimulation standpoint as this is becoming
one of the key issues related to the use of tVNS for cognitive
enhancement. For enhancing cognition and reducing stress it is
critical that the user or patient has a comfortable experience
where the stimulation is just noticeable or not noticeable from a
sensory stimulation perspective. Otherwise the off target sensory
effects that emerge as distracting and uncomfortable sensations
from electrical stimulation can override intended tVNS outcomes
(Miyatsu et al., 2024; Jigo et al., 2024). In other words, modulating
vagus nerve activity using transcutaneous, pulsed electrical nerve
stimulation methods can both activate and suppress sympathetic
activity (stress) depending onmany variables including the electrode
interface, user sensation and comfort, stimulus frequency, pulse
duration, ease of use, and others (Figures 3B,C). This has been
observed in studies evaluating the influence of cognitive load
and tVNS on pupillometry as a noradrenergic-related measure
of neurophysiological arousal (Faller et al., 2019; Urbin et al.,
2021; Phillips et al., 2021; Sharon et al., 2021; Pandža et al.,
2020; Tyler et al., 2019; Ramakrishnan et al., 2021). Efforts aimed
at improving human factors or neuroergonomics of tVNS can
be combined with work to advance neurostimulation algorithms
and parameters for continuing to enhance the electrical sensation
experiences, ease of use, user comfort, and efficacy. This approach
should prove valuable considering provocative demonstrations
that high frequency (20,000 Hz), sub-perceptual taVNS produces
significant changes in cerebellar activity (Chen et al., 2021), as well
as changes in the functional connectivity of the prefrontal cortex,
cingulate cortex, and insula.

Using vibrotactile and haptic stimulation of the external ear
and vagus nerve has also shown potential for enhancing human-
computer interactions. It has been argued the tactile sensitivity of
the external ear has been overshadowed by its auditory functions
and that haptic stimulation of the ear represents an opportunity
for information transfer (Lee et al., 2019). This point reiterates
the importance of ensuring sensations from stimulation are not
distracting to the user (Tyler, 2025). Lee and colleagues (2019)
demonstrated small ear worn haptic stimulation devices could
encode environmentally relevant spatiotemporal information by
stimulating six different locations on the external ear. In an adaptive
embodiment, ear haptics were demonstrated as a human-computer
interface to enhance the experience of virtual reality applications for
deaf and hard-of-hearing (DHH) individuals (Mirzaei et al., 2020).
Haptic stimulation of the ear can convey sound direction in relation
to DHH users during a VR experience when a system was not
universally designed and intended for hearing enabled persons using
spatially encoded audio to simulate sound distance (Mirzaei et al.,
2020). Combining different methods of vibrotactile and electrical
stimulation may open new possibilities for modulation of human-
machine cognition, such as to improve situational awareness and
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FIGURE 4
Noninvasive neuromodulation approaches for enhancing remote operator training and performance. The diagram illustrates how noninvasive
neuromodulation methods may be used to enhance different aspects of human-machine operator performance by improving skill acquisition and
retention, improving cognitive abilities, and improving operational safety.

multimodal attention. Future human factors studies and engineering
efforts should aim to identify and translate these methods to
interoperate with traditional methods, such as cognitive training
that have proven indispensable.

Transcranial focused ultrasound
neuromodulation

Neuromodulation by transcranial focused ultrasound (tFUS)
provides unrivaled spatial resolution and precision compared to
other noninvasive modalities (Tyler et al., 2018). This method
enables noninvasive, deep-brain stimulation in humans across
many brain regions. Advancing tFUS or transcranial ultrasound
stimulation (TUS) for human-machine interfaces has been a major
interest since our pioneering studies demonstrating that low-
intensity pulsed ultrasound can stimulate intact brain circuits
(Tyler et al., 2008; Tufail et al., 2010). Ultrasonic neuromodulation
and tFUS work when the sound waves of low-intensity, pulsed
ultrasound mechanically modulate the electrical activity of brain
circuits and nerves by altering the activity of pressure-sensitive
ion channels, transporters, and neuronal membranes (Tyler et al.,
2018; Tyler et al., 2008; Naor et al., 2016; Darmani et al., 2022).
Depending on the frequency of ultrasound implemented, the spatial
resolution of focused ultrasound for neuromodulation can achieve
single cell resolutions in vitro, to a few microns in nerves, to
a couple millimeters when delivered transcranial to deep-brain
regions (Tyler et al., 2018; Naor et al., 2016). As discussed below,
several lines of evidence demonstrate that tFUS can be useful
for modulating human-machine cognition and interactions (Tyler,
2017; Tyler et al., 2018; Lee et al., 2024; Kim T. et al., 2021).

Modulation of human cortex to influence sensory processing
and motor performance during training or teleoperation of
machines may enhance human operator performance. The first

functional evidence that 0.5 MHz tFUS can noninvasively modulate
human brain activity recorded by EEG demonstrated that tactile
discrimination abilities are enhanced following brief delivery
of tFUS to the hand region of primary somatosensory cortex
(Legon et al., 2014). In similar functional studies, tFUS delivered
to the hand region of primary motor cortex has been shown
to modulate brain circuit activity and enhance reaction times
(Legon et al., 2018a; Fomenko et al., 2020). These approaches are
particularly interesting options to optimize human interactions with
joysticks, buttons, or hand controls by enhancing sensorimotor
performance. A recent breakthrough study demonstrated the
accurate, reliable, and individualized, deep-brain targeting of tFUS
to the globus pallidus internus of the basal ganglia in Parkinson’s
patients (Darmani et al., 2025). These observations combined with
others demonstrating deep-brain modulation of motor and sensory
thalamic nuclei (Legon et al., 2018b; Dallapiazza et al., 2018;
Bancel et al., 2024) open the possibility of using tFUS to influence
different nodes in human sensorimotor circuits for enhancing
teleoperator performance. Another potential avenue is to modulate
visual spatial processing by TUS. In support of this approach a
recent study in healthy human volunteers showed tFUS delivered to
visual cortex area 5 (V5) enhanced feature-based attention tomotion
by modulating activity in the dorsal visual processing pathway
(Kosnoff et al., 2024). Interestingly, Kosnoff and colleagues (2024)
also found this performance improvement led to reduced errors
when subjects performed a spelling task using an EEG-based brain-
computer interface (BCI) (Kosnoff et al., 2024). These findings raise
the possibility of using tFUS to modulate human visual cortex and
attention during robotic and semi-autonomous operation, as well as
to improve BCI performance.

Other targets and approaches for modulating the cognitive
function of remote operators or pilots with tFUS should be
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considered. A recent study demonstrated that tFUS improved
cognitive control when delivered to the right inferior frontal gyrus
(rIFG), which helps to regulate cognitive aspects of behavioral
response inhibition (Fine et al., 2023). Fine and colleagues (2023)
showed that tFUS targeted to the rIFG significantly decreased P300
response latencies and enhanced response inhibition in healthy
volunteers (Fine et al., 2023). Another recent study found faster
reaction times to “go” signals in cognitive tasks following tFUS
delivery to the right inferior frontal cortex (IFC) (Atkinson-
Clement et al., 2024). Magnetic resonance imaging revealed the
enhancement of reaction time was correlated with a decrease
in functional connectivity between the IFC and post-central
gyrus (Atkinson-Clement et al., 2024). There were also significant
changes in the functional connectivity between IFC and the
anterior cingulate cortex superior frontal cortex that evolved over
20–40 min following brief tFUS treatment (Atkinson-Clement et al.,
2024). These observations collectively demonstrate that tFUS can
be used to enhance various aspects of cognitive control networks
in healthy humans. Until recently however, it has been difficult
to explore how these approaches may be used in human-machine
interfaces due to the power requirements and size of equipment
needed to conduct tFUS and ultrasonic neuromodulation. Several
engineering breakthroughs led to the development of miniaturized
transducers and systems that could be used in various applications
(Tyler et al., 2018). Remarkably, it has recently been demonstrated
that wearable tFUS devices with integrated EEG sensors that are
comfortable enough to wear during sleep (Meads et al., 2024)
are useful for modulating deep-brain thalamic targets in humans
(Figure 5) (Fan et al., 2024). Ongoing human factors, science, and
engineering efforts should be aimed at advancing tFUS or TUS to
enhance HMI’s and BCI’s in robotic and teleoperation.

Brain-computer interfaces for augmenting
teleoperation of robotic and
semi-autonomous machines

Over the past several decades, the study, development,
and testing of BCI’s spans many disciplines, philosophies, and
approaches. Therefore, there has already been significant progress
in advancing both noninvasive and invasive BCI hardware and
software for various applications ranging from prosthetic limb
control to providing sensory inputs to the brain to telerobotic
operation to enhancing cognition (Hotson et al., 2016; Klaes et al.,
2014; Golub et al., 2016; Tonin et al., 2020) (Duan et al., 2019;
Arvaneh et al., 2019; Kryger et al., 2017). Here we restrict our
discussion to noninvasive BCI approaches that can be readily
scaled across healthy populations of teleoperators and remote
pilots or machine operators. Integrating electroencephalographic
EEG or fNIRS sensors into existing training and operations
procedures can be readily accomplished to monitor cognitive
load, stress, or attention. These approaches have been used, for
example, to monitor the psychophysiological and cognitive states
of drone pilots (Khan and Hong, 2017; Dell’Agnola et al., 2022;
Dalilian and Nembhard, 2024). Some proposed taVNS-EEG closed-
loop systems for modulating sleep, cognition, and attention can
be designed to fit in the external ear resulting in a usability
with a high degree of comfort posing minimal distractions to

FIGURE 5
Wearable transcranial focused ultrasound neuromodulation devices.
Recent breakthroughs in human factors, mechanical, materials,
biomedical, and electrical engineering have enabled the development
of wearable devices for neuromodulation by low-intensity transcranial
focused ultrasound (LIFU). The device shown (Attune Neuroscience,
Inc.) utilizes LIFU transducers to target different regions of the human
brain and integrates electroencephalography (EEG) sensors for
measuring brain wave activity patterns from the prefrontal cortex. This
type of wearable device for neuromodulation by LIFU opens the
possibility of developing closed-loop applications for
human-in-the-loop control of robotic and semi-autonomous
systems. Figure adapted from Reference (Meads et al., 2024).

human operators (Tyler, 2025; Ruhnau and Zaehle, 2021). As
discussed below, such designs and approaches will be advantageous
to applications intended to enhance human teleoperator
performance.

Several BCI studies have shown that brain signals recorded from
EEG and fNIRS sensors can be used to directly control drone flight
and behavior (Kim et al., 2014; Duan et al., 2019; Khan and Hong,
2017;Deng et al., 2023; Kim S. et al., 2021; Lee et al., 2021; Zafar et al.,
2018). While these types of approaches are enticing to explore,
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FIGURE 6
Brain-computer interface approaches for real-time optimization of remote pilot and driver performance. (A) Several types of biometric data including
brain signals from electroencephalography (EEG), heart rate, and heart rate variability can be used to infer stress, attention, and fatigue in teleoperators
and drivers. These biometric signals can used alone or in conjunction with signals and cues from human-machine interfaces and controllers as triggers
or commands to elicit transcutaneous auricular vagus nerve stimulation (taVNS), transcranial electrical stimulation (tES), and transcranial focused
ultrasound (tFUS) for enhancing the human operation of robotic machines and semi-autonomous vehicles. (B) The photographs illustrate a taVNS
device integrated with a first-person view (FPV) display and headset receiving video feeds and telemetric data from a sUAS. This head-mounted taVNS
approach is useful for delivering, real-time bilateral taVNS during FPV sUAS training and flight operations. (C) The photographs illustrate a subject
wearing an EEG cap for monitoring attention and cognitive states while an eye tracking system is used to monitor visual attention and gaze during
driving simulations. The subject is also wearing taVNS electrodes to responsively modulate attention and decision-making. Using EEG signals and data
from the eye tracking system, taVNS can be triggered in a closed-loop manner that is responsive to an individual’s cognitive load, attention level, or
stress to modulate operator neuroplasticity and cognition during training sessions in synthetic or virtual environments.

we are limiting our discussion to potential BCI embodiments in
which brain activity, cognitive networks, and behaviors of the
human operators are modulated based on sensor information
reporting engagement, work effort, attention, arousal/stress, and
other environmental factors. We note this contrasts with BCIs
where brain or physiological activity sensors and measures are
used for machine control. Several physiological markers including
EEG, eye movements, pupil dilation, and sudomotor activity have
been to be reliable measures of attention and vigilance (Figure 6).
While heart rate and respiration rate can reflect arousal and
stress, EEG has also proven useful for monitoring other aspects
of cognition including mental workload and fatigue, engagement,
and abstraction (Chikhi et al., 2022; Dimitrova et al., 2021; Souza
and Naves, 2021; Dmochowski et al., 2012; Antonenko et al., 2010;
Kumar and Kumar, 2016).

Enhancing sustained attention or vigilance and reducing
mental fatigue are feasible, early targets for demonstrating
closed-loop, noninvasive neuromodulation BCIs intended to
teleoperator performance and human-machine cognition. For
example, triggering tFUS delivered to the rIFG in response to
changes over time in the amplitudes or latencies of P300 potentials
may be a relatively simple way to enhance teleoperator cognitive
control during long periods (hours) of sustained operation. Other

EEG signals, such as theta (4–8 Hz) and alpha (8–12 Hz) power
from central-parietal brain regions during the pre-stimulus period,
are reliable markers of psychomotor vigilance that have been
used to predict response time (Chowdhury et al., 2020). Frontal
theta power has been shown to be a reliable index of cognitive
workload (Chikhi et al., 2022). A major limitation in the use
of noninvasive BCI’s has been related to low ecological validity
(lab-based vs. real-world studies) and low signal reliability. To
address this several approaches are being pursued. For example, a
recent study examining cognitive states in real-world environments
showed increased frontal theta and decreased central delta (0–4 Hz)
EEG brain wave amplitudes during periods of increased attention
with the converse observed during distraction (Kaushik et al.,
2022). The reliability of natural EEG brain signals can be greatly
enhanced by inducing steady state evoked potentials (SSEPs). SSEPs
are created by flickering stimuli on-and-off at a set frequency and
can be generated with visual (Ding et al., 2006; Gulbinaite et al.,
2019), auditory, and somatosensory stimuli (Muller-Putz et al.,
2006). The increase in spectral power induced at the flicker
frequency varies with attention and are often used in machine
controlling BCI applications (Ding et al., 2006; Muller-Putz et al.,
2006; Su et al., 2020; Giabbiconi et al., 2004). The spectral, power,
and spatial characteristics of EEG and other biomarkers can be
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monitored to trigger tVNS and/or tFUS stimulation in a closed-
loop system manner for augmenting human operator cognition
and performance (Figure 6). Emerging data fusion efforts using
multimodal sensing approaches combined with conventional
machine learningmethodswill improve the reliability and scalability
of closed-loop systems used for enhancing teleoperator cognition.

Conclusion

Several neurotechnologies hold promise for improving human-
machine cognition and performance during the training and
operation of drones, robotic systems, and semi-autonomous
vehicles. Evidence has shown that noninvasive neuromodulation
methods like tES, tVNS, and tFUS can improve cognitive functions
such as attention, learning, and memory, as well as sensorimotor
abilities. These enhancements can produce unique benefits for
remote pilots and robotic teleoperators, who face complex cognitive
tasks in demanding operational environments. By incorporating
these noninvasive neuromodulation approaches into training
programs, we can createmore resilient, focused, and efficient remote
pilots and teleoperators, ultimately improving the safety and efficacy
human-machine operations.

Looking forward, the applications of tES, tVNS, and tFUS as part
of a broader neurotechnology strategy has the potential to transform
HMI’s. Future research should continue to refine noninvasive
neuromodulation targets and protocols while expanding its
integration with other neurotechnologies, such as EEG BCIs,
to develop closed-loop systems that provide real-time cognitive
enhancement during teleoperation of robotic and semi-autonomous
machines and drones. Additionally, as these technologies evolve, it
will be essential to validate their long-term benefits in real-world
scenarios, ensuring that they contribute not only to individual
human operator performance but also to broader industrial
safety and workforce readiness. The approaches discussed may
be useful for solutions intended to improve HCIs in the larger
robotics industry. For example, it should be explored whether
open- and closed-loop neuromodulation approaches can be
used to enhance other human-robot interactions, where we
cooperate with machines using specific skills and knowledge to
accomplish large or complex tasks in manufacturing, construction,
medicine, shipping, transportation and delivery, city and vehicle
maintenance, deep-sea and space exploration, and other areas.
Through continued innovation and convergence research, different
neurotechnologies and approaches discussed can help augment
training and operational excellence in human-machine interactions.
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