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Purpose: This study aims to develop an autonomous robotic ultrasound
scanning system (auto-RUSS) pipeline, comparing its reproducibility and
observer consistency in image analysis with physicians of varying levels of
expertise.

Design/methodology/approach: An auto-RUSS was engineered using a 7-
degree-of-freedom robotic arm, with real-time regulation based on force
control and ultrasound visual servoing. Two phantoms were employed for the
human-machine comparative experiment, involving three groups: auto-RUSS,
non-expert (4 junior physicians), and expert (4 senior physicians). This setup
enabled comprehensive assessment of reproducibility in contact force, image
acquisition, image measurement and AI-assisted classification. Radiological
feature variability was measured using the coefficient of variation (COV),
while performance and reproducibility assessments utilized mean and standard
deviation (SD).

Findings: The auto-RUSS had the potential to reduce operator-dependent
variability in ultrasound examinations, offering enhanced repeatability
and consistency across multiple dimensions including probe contact
force, images acquisition, image measurement, and diagnostic model
performance.

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1527686
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1527686&domain=pdf&date_stamp=2025-02-01
mailto:chenlda@mail.sysu.edu.cn
mailto:chenlda@mail.sysu.edu.cn
mailto:qhhuang@nwpu.edu.cn
mailto:qhhuang@nwpu.edu.cn
mailto:wangw73@mail.sysu.edu.cn
mailto:wangw73@mail.sysu.edu.cn
https://doi.org/10.3389/frobt.2025.1527686
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1527686/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1527686/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1527686/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1527686/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1527686/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1527686/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Lin et al. 10.3389/frobt.2025.1527686

Originality/value: In this paper, an autonomous robotic ultrasound scanning
system (auto-RUSS) pipeline was proposed. Through comprehensive human-
machine comparison experiments, the auto-RUSS was shown to effectively
improve the reproducibility of ultrasound images and minimize human-induced
variability.
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1 Introduction

Ultrasound (US) imaging technology holds a prominent
position as the most widely utilized imaging modality for clinical
intervention and diagnosis, and plays a crucial role in screening
and monitoring diseases (Mann et al., 2020; Tamaki et al., 2022). In
comparison to computed tomography (CT) andmagnetic resonance
imaging (MRI), ultrasound stands out with its noninvasiveness,
affordability, portability, and radiation-free nature (Jiang et al.,
2023a; Yang et al., 2021). However, unlike fixed apparatuses such
as CT and MRI devices that generate images automatically, the
acquisition of standardized and high-quality US images relies on
skilled and experienced physicians during traditional free-hand
examinations (Sharma et al., 2021; Drukker et al., 2020; Jiang et al.,
2020). Therefore, ensuring reproducibility of ultrasound imaging is
crucial for enhancing its overall clinical value.

However, the reproducibility of free-hand ultrasound images
is influenced by various factors, including operator subjectivity,
anatomical sites, acquisition parameter settings and the type of
equipment used (Jiang et al., 2022a; Swan et al., 2017; Yoon et al.,
2011; Li et al., 2022). During scanning, Ferraioli et al. evaluated
the reproducibility of spleen stiffness (SS) and liver stiffness (LS)
measurements at various sites using point shear wave elastography
(pSWE). They found that the reproducibility of SS measurements
depends on operator expertise, and measurements varied
significantly across different sites of the same organ (Ferraioli et al.,
2014). Similarly, studies on abdominal aortic measurements,
Doppler ultrasoundmeasurements, thyroid shear wave elastography
(SWE) measurements, and cervical length and width measurements
during pregnancy with ultrasound have all revealed poor
intra- and/or inter-observer reproducibility (Swan et al., 2017;
Matthews et al., 2021; Mikkonen et al., 1996; Valentin and Bergelin,
2002). Karlas et al. reported that the diagnostic accuracy of pSWE
is influenced by the angle of the region of interest (ROI), with the
lowest variation observed at a perpendicular ROI position centered
on the transducer surface (Karlas et al., 2011). Benediktsdottir
et al. tested the reproducibility of head-perineum distance (HPD)
measurements using two different ultrasound devices and found
significant differences between the devices (Benediktsdottir et al.,
2018). Similarly, Ellis et al. investigated the instrument bias of
aortic diameter measurements obtained with three types of
ultrasound scanners (Ellis et al., 1991). Their study, conducted on
ten patients with small infrarenal abdominal aortic aneurysms,
calculated the limits of agreement between machines.

Due to the low reproducibility of ultrasound image acquisition
and measurement, artificial intelligence (AI) tools have been
employed recently. Salte et al. developed an AI method based

on deep learning to provide fully automated measurements
of left ventricular global longitudinal strain, which reduced
test-retest variability and eliminated bias between readers in
test-retest datasets (Salte et al., 2023). Similarly, Karužas et al.
examined the reproducibility of an AI-based automated aortic
measurement software, finding it feasible and closely aligned with
manual measurements by experts, with improved reproducibility
(Karužas et al., 2022). In terms of diagnosis, AI has been widely used
to assist physicians to make diagnoses with medical images (Li et al.,
2024). However, these methods still rely on clinicians to manually
acquire the relevant imaging planes, which introduces both
inter-operator and intra-operator variability. In conclusion, there
is a growing emphasis on improving the reproducibility and
standardization of ultrasound features.

The Robotic Ultrasound Scanning System (RUSS) has gained
remarkable traction and interest over the past two decades,
transforming the way traditional ultrasound examinations are
conducted (Jiang et al., 2023a; Yang et al., 2021; Jiang et al.,
2022b; Huang et al., 2023a; Huang et al., 2023b; Zhou et al.,
2024). In comparison to traditional free-hand ultrasound procedures,
RUSS stands out with its enhanced precision and reproducibility,
showing immense potential to reduce intra-operator and inter-
operator discrepancies (Gilbertson and Anthony, 2015a; Kojcev et al.,
2017). Prior research has investigated the influence of various factors
on the reproducibility of RUSS scanning, including force control
and ultrasound visual servoing. In the field of RUSS force control,
Yang et al. (2021), Huang et al. (2019), Huang et al. (2018) used two
force sensors attached to the front face of probe for controlling the
contact force and position of the probe. Their results demonstrated
that this system achieved a measurement error of less than 1% for
volume estimation. For visual servoing, several methods have been
developed to enhance robotic perception and autonomy, including
feature-based approaches, hybrid approaches, andmachine-learning-
based approaches (Fei et al., 2023). In the domain of RUSS visual
servoing, Zielke et al. combined the segmentation model with an
automated robotic ultrasound scanning system, achieving a reduction
in thyroid measurement error from 20.85% to 8.23% compared to
ultrasound physicians (Zielke et al., 2022). Their study added another
layer of evidence supporting the potential of RUSS in transforming
ultrasound imaging. However, these studies only focused on contact
force or the effects of the image acquisition process.

Recently, Ning et al. proposed a learned-active compliance
control strategy based on inverse reinforcement learning to perform
simultaneous posture and force control for autonomous RUSS in
unstructured environments (Ning et al., 2024). The results showed
that the methods improved the stability of different phantoms.
However, this approach primarily focuses on force control and lacks
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sufficient quantitative analysis of the acquired ultrasound images.
Dall'Alba et al. introduced an imitation learning method based on
KernelizedMovement Primitives by training an autonomous robotic
controller using sonographer demonstrations (Dall’Alba et al.,
2024). While this approach achieved reproducible force control
and ultrasound image quality, it still required human intervention
to manually select the upper-level plan, limiting its ability to
fully automate the procedure. Deng et al. introduced a multimodal
reinforcement learning algorithm with a similarity network to
guide automatic scanning, considering factors like force, position,
and image quality (Deng et al., 2024). Hsowever, this study
lacks a comparative analysis of force control and image quality,
and requires physician guidance, large datasets for training, and
significant computational resources. It is also limited to virtual
environments and phantom models, with no real-world clinical
validation. Ning et al. proposed a decoupled control strategy for
autonomous vascular ultrasound imaging, utilizing image-guided
orientation control and force-guided posture control (Ning et al.,
2023). The system demonstrated the ability to autonomously image
vessels on arms in various conditions and achieved reproducible
imaging. However, this study lacks a comprehensive comparison
between RUSS and traditional ultrasound physicians. Furthermore,
it does not account for post-processing image analysis.

With the rapid advancement ofAI, the synergy betweenRUSSand
post-processing image analysis has emerged as a promising pathway
in decision-making within ultrasound imaging (Jiang et al., 2023a;
Li et al., 2021; Burke et al., 2020). Current research lacks studies on the
integrationof such systems.By integratingRUSSwithAI technologies,
we expect to significantly enhance image analysis reproducibility and
observer consistency in ultrasound imaging. Additionally, existing
studies have not yet comprehensively comparedRUSSwith traditional
ultrasound physicians, which is one of the key methods for assessing
the clinical applicability and value of the system.

In this study, we aim to address the challenges associated
with assessing reproducibility in traditional free-hand ultrasound
examinations. To achieve this, we have developed a pipeline
that integrates a fully autonomous RUSS (auto-RUSS) with a
robust ultrasound image post-processing system. Our study focuses
on conducting a novel and systematic analysis, comparing the
reproducibility and inter-observer agreement of the proposed
pipeline with those of assessments made by eight ultrasound
physicians with varying levels of expertise. This analysis focuses on
crucial aspects including force control, image acquisition, and post-
processing image analysis, which encompass image measurement
and the utilization of AI-assisted classification.

2 Materials and methods

2.1 Autonomous robotic ultrasound
scanning system (auto-RUSS) design

2.1.1 System setup
As depicted in Figure 1A, the key components of the system

are as follows: a 7-degree-of-freedom robotic arm (Panda, Franka
Emika, Germany); a 6-axis force torque sensor (FT 300-S,
Robotiq, Canada); a wireless US probe (D5CL, SonoHealth Medical
Technologies, China); an RGB-D camera (Azure Kinect, Microsoft,

United States); an image and video store system (MaiYing,
Guangzhou, China), a tumor phantom (Ningbo Lancet Medical
Technology, China) and a thyroid phantom (Model 074, CIRS,
United States).The robotic arm is controlled by a Robotic Operating
system (ROS) framework. No institutional review board approval
was required because only phantoms were used.

2.1.2 Coordinate system transformation for
ultrasound robot

Establishing a fully autonomous robotic system entails
configuring it to navigate the probe towards the object region along
a predetermined trajectory. This is achieved by first aligning the
coordinate system of the probe with that of the phantoms.

As depicted in Figure 1A, the robot arm base coordinate system
is Ob; the robot arm end flange coordinate system is Oe; the probe
coordinate system is Op; the RGB-D camera coordinate system is
Oc; and the coordinate system at the surface target point is Oi. Their
transformation relationships can be calculated as Equations 1, 2:

b
i T =

b
cT

c
iT (1)

b
pT = beTe

pT (2)

where j
kT ∈ R

4×4 represents the transformation matrix utilized for
transferring position from frame k to frame j. The b

i T refers to the
position and orientation of the phantom in the coordinate systemOb
of the Franka robotic arm. Similarly, bcT denotes the transformation
relationship between the RGB-D camera Oc and the coordinate
systemOb of the robotic arm. Since the RGB-D camera is fixed in the
scene, bcT can be obtained through the hand-eye calibrationmethod.
At any given time, the position and orientation of the phantom
in the RGB-D camera’s coordinate system Oc can be computed
through normal evaluation of point cloud data. The b

eT represents
the kinematic model of the robotic arm, which can be directly
obtained from the Franka Control Interface (FCI) provided by the
manufacturer. In addition, epT depends on the custom configuration.
In this work, the rotation part of epT is set to an identity matrix I3 × 3,
and the translational part is obtained from the custom-designed 3D-
printer holder model or can be calculated through calibration with
an ultrasound probe. During the process of automatic ultrasound
scanning, the detection and position calculation of the phantom
target point are completed on the host computer, and then the pose
of probe b

pT is aligned with the phantom surface target point bi T.
Once the COS are synchronized, the robotic arm is programmed

to navigate the probe to the target point following the planned
trajectory. During the scanning process, real-time auto-regulation
of the robotic arm’s scanning trajectory is implemented, based on
the contact force (force control) and the content of the ultrasound
image (ultrasound visual servoing).

2.1.3 Constant contact force based on the force
feedback control algorithm

Maintaining constant contact force between the
ultrasound probe and surface tissue is vital for high-quality
ultrasound imaging (Jiang et al., 2023b). However, varying tissue
deformations caused by pressure can lead to changes in the contact
force and ultimately affect image quality. To overcome this challenge,
we employ a contact force feedback control algorithm to maintain
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FIGURE 1
The overall pipeline and the reproducibility and observer consistency. (A) The pipeline of the robotic autonomous ultrasound scanning system. The
diagram includes the mechanism of the robotic arm, the force controller of the auto-RUSS system, and the deep learning-based ultrasound image
analysis system of auto-RUSS. This analysis system consists of a deep learning-based image segmentation AI system (U-net), an ultrasound-based
radiomics analysis software, and a classification AI system (Thynet). The red, blue, and green coordinate arrows represent the X-axis, Y-axis, and Z-axis,
respectively. The orange arrow indicates the transformation chain of matrices between coordinate systems. (B) Workflow for the reproducibility and
observer consistency, encompassing intra- and inter-reproducibility of scanning contact force, reproducibility of ultrasound visual servoing image
acquisition, reproducibility of image measurement, and reproducibility of AI-assisted tumor classification.
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TABLE 1 Force feedback control algorithm.

Algorithm 1: Force feedback control algorithm

 input: Fgoal, Fthre, Kp, Kd, scale

1. initialization: Ferrord ← 0;

2. Fe = getCurrentForce( );

3. Ferror = |Fe − Fgoal|;

4. while Ferror > Fthre do:

5.  if Fgoal − Fe > 0 then

6.   Ferror = Fgoal − Fe;

7.   ∆Ferror = Ferror − Ferrord ;

8.   Zstep = −Kp
∗Ferror −Kd

∗∆Ferror;

9.   Ferrord = Ferror;

10.  else

11.   Ferror = Fe − Fgoal;

12.   ∆Ferror = Ferror − Ferrord ;

13.   Zstep = Kp
∗Ferror +Kd

∗∆Ferror;

14.   Ferrord = Ferror;

15.  end if

16.  moveEffectorZaxis(Zstep
∗scale);

17. end while

the contact force between the ultrasound probe and the surface
tissue at a constant level, which was empirically set to be a constant
value of 2.0 N. The robot end effector is positioned vertically to the
workbench surface, and after the scan is initiated, the controller
moves the robot arm end effector to the object point above the
phantom. Once the probe reaches the phantom surface, the contact
force is sensed in real time by the force sensor connected between
the robot arm and the probe holder, and the force feedback control
algorithm is activated.

The force control algorithm is implemented through
a Proportional-Derivative (PD) controller on the Z-axis
(Table 1; Figure 1A). The controller calculates the force error Ferror
and the change in force error ∆Ferror between the end ultrasound
probe contact force Fe and the target contact force Fgoal, and controls
the end effector to move on the Z-axis in Zstep until the force error
is less than the set threshold Fthre, thereby maintaining a constant
pressure at the end of the robot arm.

The impedance controller regulates the interaction forces
between the robotic end-effector and the patient’s skin during
scanning. This controller adjusts the system’s response according
to the desired stiffness, damping, and mass properties, thereby
ensuring a compliant interaction while maintaining stability.

TABLE 2 Ultrasonic image servo algorithm.

Algorithm 2: Ultrasonic image servo algorithm

  input: ∆dthre

1. ∆d = objectx − centerx;

2. while |∆d| > ∆dthre do:

3.  if ∆d > 0 then

4.   moveEffectorYaxis(∆d∗K);

5.  else

6.   moveEffectorYaxis(−∆d∗K);

7.  end if

8.  ∆d = objectx − centerx;

9. end while

Therefore, we compare the performance of the PD controller with
that of the impedance controller.

2.1.4 Deep learning-based ultrasonic image servo
and analysis system

As illustrated in Figure 1A, to improve ultrasound image quality,
a control algorithm founded on ultrasound visual servoing was
formulated. This technique involves utilizing visual feedback from
ultrasound images to guide probe motion, enabling real-time
adjustments to the scanning path and ensuring the target area
remains centered, leading to optimal image acquisition.

Specifically, using a pre-trained ultrasound segmentation model
U-Net, we extract real-time binary labels for the target area, which
are composed of target labels (1) and background (0). When the
target is located on either side of the image, we calculate the error
∆d between the center of the target and the center of the image.
Then, the controller moves the end effector along the y-axis on
the y-z plane until the error ∆d is less than the threshold value
∆dthre (Table 2).

Upon contact of the probe with the phantom, data acquisition
is initiated, with both the raw ultrasound image video stream and
the real-time analysis results fromU-Net being recorded and stored.
After the scan is completed, the maximum cross-sectional area
of the target, as determined by the binary mask, is automatically
selected, and the corresponding optimal raw ultrasound image is
obtained. Finally, the optimal frame is input into the developed
feature extraction system for further evaluation.

2.2 Data collection and image
post-processing

Two phantoms were employed for data collection, one is a
tumor phantom, and another is a thyroid phantom simulated human
thyroid with a benign nodule located. The tumor phantom (Ningbo
Lancet Medical Technology, China) used in this study is designed to
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simulate a lesion adjacent to blood vessels. The phantom, measuring
15 cm × 12 cm × 5 cm, housed a centrally located simulated
tumor with a diameter of 1 cm, and incorporated two simulated
vasculature structures aligned along the longitudinal dimension. Its
purpose is to evaluate the impact of auto-RUSS and ultrasound
physicians with varying levels of experience on the reproducibility
of radiofrequency (RF) measurements under identical ultrasound
acquisition parameters. And the thyroid phantom (Model 074,
CIRS, United States) used in this study contains a slightly enlarged
thyroid gland positionedwithin an anthropomorphic neck.The chin
and clavicle are provided as external anatomical landmarks. The
phantom provides the trachea, internal jugular vein and common
carotid artery as internal anatomical landmarks. Each thyroid lobe
contains one cyst and one isoechoic stiff lesion. Various nodules can
be manufactured within the thyroid gland on a custom basis. All
materials are formulated to be ultrasonically realistic.

As depicted in Figure 1A, a master computer facilitated the
execution of the data acquisition and deep learning-based image
post-processing workflow. This pipeline incorporated the utilization
of an ultrasound-based radiomics analysis software (Ultrasomics-
Platform, version 2.1, Guangzhou, China) (Li et al., 2022), a
deep learning-based imaging segmentation AI system U-Net and
classification AI system ThyNet (Peng et al., 2021). ThyNet is
composed of three renowned backbone networks running in
parallel: ResNet, DenseNet, and ResNeXt. ResNet is a celebrated
backbone network in the field of computer vision, with the proposed
skip connections and network paradigm still widely used in various
models today. DenseNet employs dense connections to enhance
the associativity between different stages of the network. ResNeXt
uses group convolutions to better enhance the semantic information
of features. By jointly considering the output features of the
three backbone networks, more accurate image features can be
captured. The specifications of the three networks are ResNet101,
DenseNet201, and ResNeXt101, respectively.

2.3 Reproducibility and observer
consistency: auto-RUSS pipeline vs.
traditional ultrasound physicians

After establishing the Auto-RUSS system, its reproducibility was
compared with those of traditional ultrasound physicians. Eight
physicians were divided into two groups based on their experience
levels: the expert group (expert 1–4) and the non-expert group (non-
expert 1–4). The expert group comprised physicians with more than
5 years of experience in thyroid ultrasound, who had completed
both the standardized national residency training and specialized
ultrasound training.These experts review thyroid ultrasound images
from approximately 800 patients annually. In contrast, the non-
expert group consisted of radiologists with less than 3 years of
experience in performing ultrasound scans. These radiologists
had undergone a 3-year standardized national residency training
program, which included comprehensive instruction on thyroid
ultrasound examinations, and they evaluate thyroid ultrasound
images from approximately 600 patients per year. The study
compared the reproducibility of contact force, image acquisition,
image measurement, and AI-assisted classification between the
Auto-RUSS system and the physician groups.

2.3.1 Reproducibility of scanning contact force
We first conducted experiments on a tissue-mimicking

phantom. To assess intra-operator reproducibility of the scanning
contact force, we initially compared the performance of the PD
controller and the impedance controller. The auto-RUSS was tested
with both controllers at six different scanning speeds (1.0 mm/s,
3.0 mm/s, 5.0 mm/s, 7.0 mm/s, 9.0 mm/s and 11.0 mm/s). Each
speed was tested ten times, with the system maintaining a
consistent contact force of 2.0 N throughout. In addition, test-retest
reproducibility was evaluated through ten unique scans along the
longitudinal dimension of the phantom at a speed of 3.0 mm/s. For
evaluating inter-operator reproducibility, as depicted in Figure 1B,
both the auto-RUSS and eight ultrasound physicians (four experts
and four non-experts) were asked to independently scan along the
longitudinal direction of the phantom ten times.

To further validate the feasibility of the proposed system, we
extended the experiment to a human thyroid. Both the auto-RUSS
and the eight ultrasound physicians were asked to independently
perform ten scans along the longitudinal direction of the thyroid
of a volunteer. During each scan, the contact force and its variation
were continuously monitored using a force sensor (FT 300-S,
Robotiq, Canada).

2.3.2 Reproducibility of visual servoing
acquisition

To assess the reproducibility of the ultrasound visual servoing
image acquisition, both the auto-RUSS and the physicians
independently captured the maximum cross-section of the centrally
positioned simulated tumor in the phantom ten times. For
objective analysis, we adopted quantitative radiomics features,
as suggested by prior research (Li et al., 2022), to facilitate
reproducibility analysis. Employing the Ultrasomics-Platform
(version 2.1, Guangzhou, China) (Figure 1A), we extracted 5,408
ultrasound features for each image.A total of 4,614 non-zero features
were identified from all US images and selected for subsequent
comparisons, including original features (n = 111, 2.41%), co-
occurrence of local anisotropic gradient orientation (CoLIAGe)
features (n= 570, 12.35%),wavelet features (n= 302, 6.55%), Shearlet
features (n = 2,944, 63.81%), Gabor features (n = 547, 11.86%), and
Pyramid Local Binary Pattern (PLBP) features (n = 140, 3.03%).

This analysis included a total of 90 complete original ultrasound
images. The coefficient of variation (COV) was utilized as a metric
to evaluate the reproducibility of the acquired features.

2.3.3 Reproducibility of image measurement
For the auto-RUSS, measuring a certain target’s volume involve

segmentation and 3D reconstruction techniques, both are essential
aspects of autonomous image analysis. In order to compare the
reproducibility of measurements on the same target in clinical
settings between the auto-RUSS and physicians, a simulated
human neck and thyroid phantom was employed. Both the auto-
RUSS and physicians performed ten scans on the phantom, with
relevant data to calculate the thyroid volume meticulously recorded.
The auto-RUSS utilized a deep learning segmentation U-Net
model (Figure 1A), continuously segmenting the thyroid during
the scanning process and recording segmented images. The 3D
reconstruction rendering and volume calculation of the thyroid
were accomplished using the 3D Slicer software (version 5.6.1). In
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contrast, physicians were instructed to individually measure the
height (L), width (W), and thickness (D) of the left and right thyroid
lobes following traditional procedures and calculate the thyroid
volume according to the following formula (Liang et al., 2017):

V(ml) = 0.479×D×W× L(mm)/1000.

The volume of the thyroid reconstructed from CT scans is
regarded as the gold standard.

2.3.4 Reproducibility of classification
Classification is a vital task inmedical decision-making, offering

direct assistance in tasks such as benign versus malignant diagnosis
and survival prognosis. To assess classification reproducibility,
a thyroid phantom was employed. The auto-RUSS and eight
physicians respectively conducted ten scanning to capture the
maximum cross-sectional area of the nodule. Subsequently, the
imageswere input intoThyNetmodel (Peng et al., 2021) (Figure 1A),
which assigns classification and malignant probability values to
the nodule.

2.4 Statistical analysis

To assess the reproducibility comparison between auto-
RUSS pipeline and ultrasound physicians, the participants were
partitioned into three groups: the auto-RUSS group; the non-expert
group, comprising four physicians with 0–4 years of experience; and
the expert group, made up of four physicians with over 4 years
of experience. All data were expressed as mean ± SD. For the
reproducibility of probe contact force, a boxplot was employed
to depict the median, interquartile range, maximum and minimum.
For the reproducibility of ultrasound visual servoing, which was
quantified by the extracted radiomics features, the coefficient of
variation (COV)was computed for each radiomics feature according

to the following formula:

COV = SD
Mean
× 100%

SD is the standard deviation of the feature values. IfMean is zero,
the statistics of this radiomics feature are removed.

Based on the COV, the reproducibility of ultrasound radiomics
featureswas classified into three levels: good (COV≤10%),moderate
(10% < COV ≤20%), and poor (COV >20%) (Li et al., 2022). For the
reproducibility ofmeasurement, a boxplot andCOVwere employed.
Wilcoxon signed-rank test was used to investigate whether there is a
significant difference between the measured thyroid volume values
and the gold standard. For the reproducibility of AI-assisted tumor
classification, a boxplot and COV were used to evaluate the model
output probability values. All statistics were performedusing Python
(version 3.8).

3 Results

3.1 Autonomous pipeline of RUSS

To evaluate the methods and algorithms proposed in this
study, experiments were conducted using the proposed auto-RUSS
depicted in Figure 1. The master computer obtained real-time point
cloud data with a frequency of 30 Hz using an RGB-D camera. The
YOLOv3 detection model was employed to update the phantom’s
pose, enabling the planning of the scanning trajectory. The master
computer communicated with the Franka robotic arm’s controller at
a frequency of 1 kHz, ensuring stable motion and feedback on robot
poses and end-effector contact force. The probe was then adjusted
to the target point through coordinate system transformation, and
the scan was carried out along the planned trajectory, conducting
image post-processing (Figure 2). During the scan, the robotic arm’s
trajectory was regulated in real-time based on contact force and

FIGURE 2
Scanning process of the proposed auto-RUSS pipeline. The first row represents the real-world scene, the second row shows the acquired real-time
ultrasound images, and the third row displays the autonomously segmented ROI. Each column corresponds to a different time point.
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ultrasound image content, ensuring the reproducibility of both
contact force and image quality through image post-processing.

The ultrasound settings used in this study were as follows: the
frequency was set to 7.5 MHz, the gain was adjusted to 105 dB, the
focus was set at 2 cm, the dynamic range (DR) was set to 80, the
mechanical index (MI) was 0.7.

3.2 Reproducibility of probe contact force

For evaluating intra-operator reproducibility of the scanning
contact force in the auto-RUSS group, as shown in Figure 3A,
both the force feedback control algorithms kept the end-probe
contact force near the desired value (2 N) at different speeds to
simulate different clinical scan conditions. However, while the
impedance control exhibited smoother overall behavior at some
speed values, it also presented more extreme values, particularly
at scanning speeds of 3.0 mm/s, 7.0 mm/s, and 9.0 mm/s. For the
PD control, the contact forces for scanning at 1 mm/s, 3 mm/s,
5 mm/s, 7 mm/s, 9 mm/s, and 11 mm/s were 2.2 ± 0.5 N, 2.1 ±

0.6 N, 2.2 ± 0.6 N, 2.2 ± 0.6 N, 2.1 ± 0.5 N, and 2.1 ± 0.5 N,
respectively. This indicated that the PD control algorithm could
effectively regulate the contact force of the probe. In addition,
considering safety and comfort, the phantom was scanned ten times
at a speed of 3 mm/s to evaluate the test-retest reproducibility.
As illustrated in Figure 3B, for the PD control, the auto-RUSS
systemmaintained the contact force predominantly within the range
of 1.0–3.0 N, demonstrating good intra-operator reproducibility,
for the impedance control. In contrast, while impedance control
appeared more stable during the first five scans, it became
increasingly unstable in subsequent tests. Therefore, we selected the
PD control for further experimental analysis.

For inter-operator reproducibility, we first conducted
experiments on a tissue-mimicking phantom. The force control
capabilities of the auto-RUSS group, expert group, and non-expert
group were compared and analyzed. The COV of the contact force
in the auto-RUSS group was lowest with mean of 1.9 N. Subsequent
experiments on the human thyroid exhibited a similar trend, with
the COV of contact force in the auto-RUSS group being the lowest,
with a mean of 2.1 N. These results indicated that the auto-RUSS

FIGURE 3
The reproducibility of contact force was examined through the following experiments: (A) the contact force during repetitive scans at varying speeds
by the robotic ultrasound system with PD controller and impedance controller, (B) the contact force during repetitive scans by the robotic ultrasound
system with PD controller and impedance controller, (C) a comparison experiment on a phantom of the contact force between the auto-RUSS group,
expert groups, and non-expert groups, (D) a comparison on a volunteer of the contact force between the auto-RUSS group, expert groups, and
non-expert groups, and (E) Force measured at 3 mm/s scanning speeds. The expected contact force is 2.0 N.
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TABLE 3 The comparison of the contact force between the auto-RUSS
group, expert groups, and non-expert groups.

Phantom
experiment

Human experiment

Groups Mean
(/N)

SD COV Mean
(/N)

SD COV

Auto-
RUSS

1.9 0.2 0.11 2.1 0.5 0.09

Expert 1 1.4 0.5 0.36 2.8 0.8 0.29

Expert 2 2.4 0.5 0.21 2.4 0.5 0.20

Expert 3 1.7 0.4 0.24 3.0 0.6 0.21

Expert 4 0.4 0.2 0.50 2.4 1.0 0.41

Non-
expert 1

3.1 0.8 0.26 3.4 1.6 0.48

Non-
expert 2

5.1 1.0 0.20 6.6 2.4 0.36

Non-
expert 3

4.2 0.9 0.21 4.6 1.8 0.39

Non-
expert 4

3.4 0.8 0.24 7.0 1.3 0.19

FIGURE 4
The reproducibility comparison of image acquisition, which was
quantified by the extracted radiomics features, between the
auto-RUSS group using the ultrasound visual servoing image
acquisition method and traditional ultrasound imaging conducted by
physicians of various experience levels. Based on the COV, the
reproducibility of ultrasound radiomics features was classified into
three levels: good (COV ≤10%), moderate (10% < COV ≤20%), and poor
(COV >20%), and the deeper the color, the higher the reproducibility.

group maintained the contact force at an optimal level with high
reproducibility (Figures 3C, D; Table 3).

Finally, we visualized the changes in contact force during a scan
across different groups. In the robot group, the parameters were set
to a contact force of 2 N and a speed of 3 mm/s. The variations in

FIGURE 5
The reproducibility comparison between the auto-RUSS group using
deep learning method and physicians of various experience levels in
thyroid volume measurement based on ultrasound image.

TABLE 4 The comparison of the thyroid volume measurement between
the auto-RUSS group, expert groups, and non-expert groups.

Mean (/mL) SD COV P-value

Auto-RUSS 34.3 0.3 0.01 0.285

Expert 1 31.6 1.1 0.04 0.005
∗

Expert 2 31.0 1.1 0.03 0.005
∗

Expert 3 33.0 1.5 0.05 0.022∗

Expert 4 32.0 1.1 0.03 0.005
∗

Non-expert 1 26.8 2.7 0.10 0.005
∗

Non-expert 2 29.2 1.9 0.07 0.005
∗

Non-expert 3 27.5 2.3 0.09 0.005
∗

Non-expert 4 29.7 3.8 0.13 0.007
∗

P-values were calculated by comparing the measurements with the thyroid volume
reconstructed after CT (34.48 mL).
∗P < 0.05.

force in the robot group were significantly more stable compared to
the expert and non-expert groups (Figure 3E).

3.3 Reproducibility of ultrasound visual
servoing image acquisition

Figure 4 depicted the comparison of reproducibility between
the auto-RUSS group, which utilized ultrasound visual servoing
for image acquisition, and the physician groups, who obtained
ultrasound images using traditional methods. The analysis of the
radiomics features of the images indicated that the auto-RUSS
group achieved a superior level of reproducibility, with 75.73%
of radiomics features demonstrating good reproducibility. This
outcome wasmarginally better than that of the expert groups, which
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FIGURE 6
The reproducibility of the auto-RUSS, expert, and non-expert groups
in AI-assisted tumor classification. The ordinate represents the
malignant probability values outputted by the model.

had a mean of 73.43% (with a range of 72.52%–75.08%). Both the
auto-RUSS group and the expert groups had higher levels of good
reproducibility than the non-expert groups (mean 70.70% with a
range of 69.40%–71.69%).

3.4 Reproducibility of measurement

The results of thyroid volume measurement reproducibility
are presented in Figures 5, 7C and Table 4. The auto-RUSS group
demonstrated the highest reproducibility with a coefficient of
variation (COV) of 0.01, while the measurements from the non-
expert groups exhibited the greatest instability, with the highest
SD and COV values. There was no statistically significant difference
between the thyroid volume measured by the auto-RUSS group and
the gold standard (34.3 mL vs. 34.5 mL, P = 0.285). This indicated
that the auto-RUSS could accurately measure the anatomical
structure with high repeatability, thereby demonstrating a high level
of reliability. The expert groups exhibited superior reproducibility
compared to the non-expert groups (COV 0.03-0.05 vs. 0.07-0.13),
but both were significantly less accurate than the gold standard
(31.0–33.0 mL vs. 26.8–29.7 mL vs. 34.5 mL, P < 0.05).

3.5 Reproducibility of classification

The stability of classification reproducibility was quantified by
measuring the COV and SD of the malignant probability values
output by the AI model (Figures 6, 7E). For the same benign lesion,
all sets of images acquired by three groups were accurately classified.
Regarding the predicted probability values, the auto-RUSS group
exhibited the lowest COV (0.2874) and SD (0.003) value among all
groups (Table 5). Additionally, based on Figure 6, it was evident that
all groups, except for the auto-RUSS group, had outliers, providing
further evidence of the higher reproducibility in the auto-RUSS
group. This demonstrated that images acquired by auto-RUSS and

analyzed by AI yield more consistent results, further advancing the
integration of ultrasound and AI-based image analysis.

4 Discussion

In this research, we developed a robotic ultrasound scanning
system aiming to enhance the reproducibility of ultrasound
scanning while providing a fully autonomous pipeline for
ultrasound image acquisition and analysis. To the best of our
knowledge, this is the first study that offers a comprehensive
evaluation of a robotic ultrasound system’s reproducibility
in comparison to traditional ultrasound practitioners. This
examination encompasses four crucial aspects: force control, image
acquisition, image measurement, and AI-assisted classification.
By minimizing operator subjectivity, the auto-RUSS enhances
the reproducibility of ultrasound features, thus establishing
a robust basis for the development of highly generalized
ultrasound AI models.

Prior research has revealed that varying probe contact force
levels can impact the reproducibility of ultrasound images and
elastography measurement (Sai et al., 2022; Zhang et al., 2022;
Wang et al., 2021; Wang et al., 2019; Tan et al., 2022; Kaminski et al.,
2020). Our auto-RUSS was established primary based on force
control. The result suggests that the algorithms can maintain the
contact force at different scanning speeds. In clinical practice,
different contact forces may lead to change in ultrasound image
features, thus directly affecting diagnostic outcomes (Tan et al.,
2022). It was observed that compared to the other groups, the
non-expert group tended to use larger forces for image acquisition
and exhibited higher variability, suggesting a significant operator-
dependency of contact force. Furthermore, we validated the
feasibility of the system on human subjects, and the auto-RUSS
group also demonstrated the most stable force control, further
confirming the system’s effectiveness.

Image acquisition based on ultrasound visual servoing wields
a significant influence on various downstream tasks including
segmentation, 3D reconstruction, and classification, all of which
are integral components of comprehensive medical analysis and
procedures (Zielke et al., 2022; Liu et al., 2023; Bi et al., 2022). The
analysis of ultrasound radiomics features showed that the images
acquired by the auto-RUSS group had the highest proportion of
reproducible features, suggesting that ultrasound visual servoing-
based acquisition significantly enhances feature reproducibility.

The reproducibility of ultrasound image measurement was
subsequently analyzed. A thyroid phantom was utilized, and
its volume was repeatedly measured. During this process, the
robot employed automatic segmentation and 3D reconstruction
techniques, both crucial in image analysis. The results indicated
that the thyroid volume measured by the auto-RUSS was the only
that has no statistically significant difference with the gold standard
among all groups, and reproducibility was superior to the other
groups. This highlights the advantage of the robot arm in image
processing and demonstrates its potential in clinical applications,
such as measurements of certain anatomical sites.

In further exploring the clinical utility of diagnostic AI models,
specifically AI-assisted classification, our findings suggest that
images obtained by the auto-RUSS show superior reproducibility
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FIGURE 7
Boxplots of the coefficient of variation (COV) and standard deviation (SD) values across different experiments comparing the auto-RUSS group, expert
group, and non-expert group. (A, B) Boxplots of COV and SD values for the reproducibility of contact force measurements on both the phantom and
human subjects. (C, D) Boxplots of COV and SD values for the reproducibility of thyroid volume measurements. (E, F) Boxplots of COV and SD values
for the reproducibility of AI classification results.

compared to images manually acquired. The autonomous pipeline,
therefore, presents itself as a transformative technology with the
potential to significantly enhance ultrasound image reproducibility
and lessen operator dependence. This comprehensive approach
not only alleviates the workload of ultrasound physicians but also
bolsters the efficiency of the examination process. The auto-RUSS
can assist physicians in accurately positioning the ultrasound probe,
measuring lesion sizes, and identifying potential abnormalities
based on the AI analysis system, enabling more proactive and
accurate detection of potential health issues.

Currently, international evaluations of ultrasound robotic systems
primarily focus on single metric such as force reproducibility or the

quality of acquired ultrasound images. For example, Matthew et al.
assessed the stability of robotic systems by measuring the pressure
exerted by the end effector (Gilbertson and Anthony, 2015b), while
Jiang et al. evaluated ultrasound image quality using confidencemaps
(Jiang et al., 2020). Additionally, Risto et al. compared the consistency
of image acquisition and measurement between human-operated
and robotic systems (Kojcev et al., 2017). However, there is still
a lack of standardized evaluation criteria, particularly for unified
human-machineassessmentof critical indicators suchas force stability
and image quality reproducibility. Our study offers an objective
and standardized evaluation method to assess the performance of
ultrasound robotic systems on these key metrics.
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TABLE 5 The comparison of the classification results between the
auto-RUSS group, expert groups, and non-expert groups.

True label Pred Mean SD COV

Auto-RUSS B B 0.009 0.003 0.29

Expert 1 B B 0.005 0.007 1.42

Expert 2 B B 0.008 0.017 1.97

Expert 3 B B 0.009 0.019 2.01

Expert 4 B B 0.004 0.004 0.97

Non-expert 1 B B 0.002 0.002 0.74

Non-expert 2 B B 0.004 0.005 1.09

Non-expert 3 B B 0.007 0.012 1.60

Non-expert 4 B B 0.005 0.006 1.18

B = benign.

The Auto-RUSS system not only provides a robust reference
framework for future research but also establishes a foundation for
the clinical adoption and application of ultrasound robotic systems.
By automating the ultrasound scanning process, Auto-RUSS
simplifies operations, particularly in resource-limited environments
or high-volume clinical settings where manual scanning is
labor-intensive and time-consuming. Additionally, ultrasound
examinations are physically demanding for operators and often
contribute to occupational health issues such as neck, shoulder, and
lower back pain. Integrating such a system into clinical practice
has the potential to alleviate the physical burden on clinicians.
Furthermore, ultrasound diagnosis is inherently subjective, with
variability in diagnostic outcomes among physicians. Auto-RUSS
has the potential to address this challenge by minimizing operator-
dependent variability, thereby enhancing diagnostic consistency and
accuracy—both of which are crucial for reliable clinical decision-
making. Additionally, by enhancing repeatability and reducing the
need for rescans due to suboptimal imaging, Auto-RUSS could
improve patient throughput and reduce waiting times. By enabling
standardized and reproducible imaging, Auto-RUSS may also lower
healthcare costs by reducing reliance on highly skilled operators and
mitigating variability-related expenses associatedwithmisdiagnoses
or repeated procedures. Future research should comprehensively
evaluate the system’s impact on healthcare efficiency and patient
care quality to further support its clinical integration.

This study has a few limitations. First, as the volunteer included
in this study was healthy individuals, human experiments were only
conducted with respect to the reproducibility of force. However, we
have verified the feasibility of this system in real-world settings.
Future plans involve conducting further experiments on a larger
and more diverse group of volunteers, including those with and
without thyroid nodules, to validate the reproducibility of the
system in subsequent stages. Second, this study was limited to
the use of a single ultrasound machine and probe, and the
effects of devices from different manufacturers were not compared,
which limits the generalizability of our findings across systems

from other manufacturers. Previous research has shown that
using equipment from the same manufacturer can enhance study
reproducibility by minimizing instrument-induced variability in
feature measurements (Li et al., 2022). However, the impact of
different ultrasound devices on the reproducibility of the robotic
arm system remains unexplored. Future studies should investigate
the performance of the Auto-RUSS system across a variety of
ultrasound devices from different manufacturers to enhance its
robustness and ensure its broad applicability in diverse clinical
environments.

In conclusion, we have developed a robotic arm ultrasound
scanning system (auto-RUSS), based on force feedback control,
ultrasound image visual servoing to achieve a fully autonomous
pipeline for ultrasound image acquisition and analysis. Through
comprehensive human-machine comparison experiments, the
system was shown to effectively improve the reproducibility of
ultrasound images and minimize human-induced variability.
Our system can provide high-quality ultrasound image data for
developing and constructing stable AI models, thereby improving
their generalizability. In the future, wewill develop scanning systems
for various organs and validate their effectiveness on real-world
volunteers.
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