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A multi-user multi-robot
multi-goal multi-device

human-robot interaction
manipulation benchmark

Akito Yoshida', Rousslan Fernand Julien Dossa', Marina Di
Vincenzo, Shivakanth Sujit, Hannah Douglas and
Kai Arulkumaran*

Araya Inc., Tokyo, Japan

One weakness of human-robot interaction (HRI) research is the lack of
reproducible results, due to the lack of standardised benchmarks. In this work
we introduce a multi-user multi-robot multi-goal multi-device manipulation
benchmark (M4Bench), a flexible HRI platform in which multiple users
can direct either a single—or multiple—simulated robots to perform a
multi-goal pick-and-place task. Our software exposes a web-based visual
interface, with support for mouse, keyboard, gamepad, eye tracker and
electromyograph/electroencephalograph (EMG/EEG) user inputs. It can be
further extended using native browser libraries or WebSocket interfaces,
allowing researchers to add support for their own devices. We also provide
tracking for several HRI metrics, such as task completion and command
selection time, enabling quantitative comparisons between different user
interfaces and devices. We demonstrate the utility of our benchmark with a
user study (n = 50) conducted to compare five different input devices, and also
compare single-vs. multi-user control. In the pick-and-place task, we found
that users performed worse when using the eye tracker + EMG device pair, as
compared to mouse + keyboard or gamepad + gamepad, over four quantitative
metrics (corrected p < 0.001). Our software is available at https://github.com/
arayabrain/m4bench.
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1 Introduction

Most human-robot interaction (HRI) research focuses on real robots and specific use-
cases, but this can make reproducibility and comparisons between approaches difficult. In
contrast, the artificial intelligence community places emphasis on benchmarks in order
to track progress in algorithmic development. For instance, many continuous control
algorithms are first tested on benchmark tasks in MuJoCo (Todorov et al., 2012), and later
become deployed on real robots.

Driven by this ethos, we developed a multi-agent (Dahiya et al., 2023), multimodal
(Su et al,, 2023) HRI benchmark in order to study the interaction between multiple users
and multiple robots (Figure 1), as well as the usability of different input devices, in a
shared autonomy paradigm. Whilst we have designed the overall structure of M4Bench
to be modular and extensible, its architecture is particularly well-suited for investigating
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(a) Two users controlling 16 robots.

FIGURE 1

Usage of M4Bench. (a) Multiple users can join the same session for multi-robot control through our web-based server-client. (b) M4Bench supports
controlling up to 16 robots simultaneously, with info, diagnostics and experimental controls available in the panel on the right.
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(b) Close-up of the user interface.

human-robot collaboration (HRC), in which humans and robots
work together closely in a shared environment to achieve common
goals through mutual interaction and coordination (Ajoudani et al.,
2018; Villani et al., 2018; Nikolaidis et al., 2017), and particularly
in situations involving shared control and physical manipulation.
While other robot types—such as quadrupeds or drones—are also
explored in HRC research, M4Bench currently focuses on robotic
arm manipulators, given their widespread adoption and utility in
accomplishing collaborative tasks that involve physical interaction.

Our goal was to make a flexible benchmark that scales
across many dimensions: it supports multiple users, multiple
robots, multiple goals (for each robot), and multiple input devices
(M4Bench; Table 1). Unlike prior benchmarks that perform subsets
of these comparisons (Saren et al., 2024), or that focus primarily
on multi-robot systems (Puig et al., 2020; Zhang et al., 2023;
Mandi et al., 2024; Esterwood and Robert Jr, 2023), human-robot
coordination (Zhang et al., 2023; Thumm et al., 2024; Mandi et al.,
2024), or planning and control of robots or embodied agents via
natural language (Mandi et al., 2024; Chang et al., 2024), our
benchmark enables investigation of the usability, scalability and
ease-of-use of different input modalities under multi-user and
multi-robot configurations, in a controlled and reproducible setting.

Our implementation addresses several under-explored practical
challenges in HRI studies. Firstly, supporting multiple simultaneous
human users and robots to be controlled in a shared control loop
requires robust session management. Secondly, we built a modular
input device interface that not only integrates conventional inputs
(e.g., keyboard, mouse), but also biosignal-based devices (e.g.,
eye trackers, wearable electrodes), thereby allowing researchers to
systematically evaluate usability and cognitive load across control
modalities. In the current setup for M4Bench, the task (pick-and-
place) and robot controllers (inverse kinematics) were deliberately
picked to be relatively simple, which allows us to achieve better
consistency in quantifying HRI (Zimmerman et al., 2022). Finally,
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while various factors may be linked in other benchmarks, M4Bench
allows independent and controlled variation across number of
users, number of robots, number of goals, and input device
combinations, making it possible to isolate key variables in shared
autonomy studies.

We also conducted a user study (n = 50) to show the utility of
our benchmark. In the user study we were able to test hypotheses
over two different settings: a comparison over input devices, and a
comparison of single-vs. multi-user control. We found significant
differences between input devices, and largely no difference between
differing numbers of users'. Our M4Bench software, available
at https://github.com/arayabrain/m4bench, was designed to be
extended, and we hope it will be of use to the HRI community.

2 Related work
2.1 Multi-agent HRI

Although most HRI studies involve a single human and single
robot, HRI research has evolved to accommodate complex team
dynamics that can include multiple users, robots, or both. A system’s
team composition can be optimized to best suit the unique needs of
the task environment at hand.

Multi-user, single-robot collaborative systems have been
popular in coordinating search and rescue operations, where the
robot is teleoperated in environments too hazardous for human
users. In such cases, the collaborating users typically take on
different roles. For example, one user may be operating virtual hands
while the other monitors robot feedback (Szczurek et al., 2023).

1 Our investigations explained away the one significant difference found

as an experimental artifact.
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TABLE 1 Comparison of our benchmark with existing HRC benchmarks (Section 2.2) across four axes: multi-user (more than one user), multi-robot
(more than one robot), multi-goal (tasks completed by choosing among discrete options; variable setting allows experimenter to change available
sub-tasks), and multi-device (more than one input device).

Benchmark Multi-user Multi-robot Multi-goal Multi-device
Watch-and-Help (Puig et al., 2020) F F F -
Co-ELA (Zhang et al., 2023) F - F F

The Warehouse Robot Interaction Sim (Esterwood and Robert Jr, 2023) F \% F F
Human-Robot Gym (Thumm et al., 2024) F F F F

RoCo (Mandi et al., 2024) F A% A%

PARTNR (Chang et al., 2024) F F A% F
M4Bench (Ours) A% \% F A%

For each axis, we specify the adequate setting among the following three possibilities: F means that the benchmark supports this factor in a fixed configuration; V means that the benchmark
supports varying this factor; and - indicates that the modality is either not available or not applicable.

Alternatively, the team could be composed of a single
user and multiple robots. When multiple robots are involved
in a system, it is important to consider whether they are
homogeneous or heterogeneous. Teams with homogenous robots
have been used in the context of human-swarm interaction (HSI)
(Gale et al, 2018). Outside of HSI, operators have controlled
homogenous robots to complete industrial workplace tasks in
mixed reality (Kennel-Maushart et al., 2023). Homogeneous
frameworks have also conceptually studied to help with the
identification of hazardous sources in turbulent environments
(Ristic et al., 2017). Heterogeneous systems have been similarly
used in search and rescue, where a single user commands a
heterogeneous team of robots based on their capabilities (Liu et al.,
2015). Regardless of the robot team’s composition, the human
generally takes on the supervisor role that assigns tasks to the
multiple robots. However, such systems can put excessive mental
workload on a user (Podevijn et al, 2016). Several solutions
have been proposed to combat user mental fatigue, including
simplifying the interaction task when the mental load detected
is deemed unsustainable for the user (Villani et al, 2020;
Rosenfeld et al., 2017).

Finally, several teams have attempted to build multi-user multi-
robot systems. Although many potential applications are still
being evaluated, there have been several notable studies that have
provided information on the important factors that contribute
to developing such systems. Multi-robot systems have also been
designed for social applications. In the classroom, robots have been
used as teaching aids, such as helping children learn handwriting
(Hood et al., 2015), or helping middle school students learn about
atmospheric science (Ozgiir et al., 2017). Industrial applications
of multi-robot systems have also been explored, such as in
automotive manufacturing, where robots contribute to increased
efficiency and safety on the production line (Wang et al., 2023;
Kennel-Maushart et al., 2023).

As HRI systems become increasingly complex and deployed
in a wide range of applications, comparing systems has become
increasingly difficult. To effectively evaluate how systems compare,
we must agree on standardised metrics.
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2.2 HRI metrics and benchmarks

Given the diversity of aspects involved in a human-robot
interaction, defining metrics that can fully capture every aspect is
a complex task. Even more challenging is to define metrics that are
generalizable across different studies. Indeed, such metrics would be
expected to fit various experimental setups, regardless of the task, the
type of robot, the number of users, or the control device employed.

In the early years of HRI, researchers already used a variety
of application-specific metrics that were often not directly
comparable (Steinfeld et al., 2006). This was mainly due to the
interdisciplinary nature of HRI, which created an inherently
decentralized research paradigm (Zimmerman et al., 2022). This
fragmentation hindered the development of unified frameworks and
slowed progress in the field. The milestone work of the DARPA/NSF
Interdisciplinary Study on Human-Robot Interaction (Rogers and
Murphy, 2002) identified the critical need for standardized metrics
in HRI, which Steinfeld et al. (2006) built upon by introduced a
comprehensive set of metrics for HRI, offering structured guidelines
for evaluating various aspects of HRI. While much progress has been
made since then, HRI metrics still remain an active research area.

Metrics in HRI have adopted a specific configuration across
the community, typically categorized based on which aspects of
the interaction they measure or evaluate. A survey from 2013
identified forty-two distinct metrics, with seven measuring the
human, six measuring the robot, and twenty nine measuring the
overeall system (Murphy and Schreckenghost, 2013).

Metrics can be both explicit qualitative subjective evaluations
or implicit quantitative measures. There are five primary methods
of evaluation used for human studies in HRI: (1) self-assessments,
(2) interviews, (3) behavioural measures, (4) psychophysiology
measures, and (5) task performance metrics. As reported in (Bethel
and Murphy, 2010) it seems essential to use three or more methods of
evaluation to establish study validity. The use of a single method of
measurement is not sufficient to accurately interpret the responses
of participants to a robot with which they are interacting. Using
more than one way ensures a comprehensive study with reliable and
accurate results that can be validated.

frontiersin.org
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Self-assessments are a primary evaluation method in HRI
studies, where participants provide direct feedback on their
interaction experiences, perceptions, and overall satisfaction with
the robot or system. Therefore, the HRI community is increasingly
adopting standardized tools such as the NASA task load index
(TLX) (Hart, 1988) for workload assessment and the system
usability scale (Brooke, 1996) for evaluating usability.

On the other hand, performance metrics are based on different
aspects of the robotics system, such as accuracy, speed, reliability,
robustness, adaptability, scalability, usability, safety, and cost.
Depending on the type, domain, and purpose of the robotics
system, some metrics may be more relevant than others (Russo,
2022). Across the most commonly used performance metrics
in HRI, we identified several key measures: task completion
time; error rate; success rate; efficiency; task accuracy; and
interaction effort among others (Steinfeld et al., 2006; Olsen and
Goodrich, 2003; Hoffman, 2019).

Given our goal of developing a system capable of adapting to
different tasks, robots, users, and control interfaces, we selected
the following metrics for implementation: task completion time,
command selection time, and error rate, combined with the NASA
TLX as a standardised tool for workload assessment. A detailed
description of these can be found in Section 3.5.

While these metrics can be adapted to specific studies conducted
through our platform, they remain primarily suited for comparisons
within similar studies and configurations. This underscores the
importance of further exploring standardized metrics in HRL
To tackle this challenge, HRI benchmarks play a crucial role
in providing a structured framework for testing and evaluation,
ensuring consistency and comparability across different subfields
and task groups.

Establishing benchmarks that encompass the diverse range of
HRI contexts remains a challenge. Nevertheless, several efforts have
been made by the research community to unify testing standards
within specific categories. One significant advancement has been
the adoption of simulated environments for HRI benchmarking.
One of the first notable platforms for multi-agent interactions in
realistic environments was VirtualHome (Puig et al., 2018), designed
to simulate rich home settings where agents interact with objects
and each other. The authors later introduced a benchmark alongside
this platform, with a structured evaluation protocol assessing AI
agents on success rate, speed-up, and cumulative reward to test
generalization and collaboration (Puig et al., 2020).

Similarly, The Warehouse Robot Interaction Sim is an open-
source immersive platform that provides a flexible environment for
evaluating cooperative human-robot interaction tasks. It features
real-time simulation, customizable task scenarios, and adaptive
robot behaviours, allowing for in-depth analysis of interaction
dynamics and task modifications as needed (Esterwood and
Robert Jr, 2023). Another noteworthy initiative is Human-Robot
Gym (Thumm et al., 2024), which offers HRC benchmarks with
diverse collaborative tasks, supports multiple robot systems, and
facilitates comprehensive evaluation through predefined tasks and
reproducible baselines. Similarly, Mandi et al. (2024) introduced
RoCo, a benchmark with tasks geared toward evaluating the ability
of large-language models (LLMs) to control and coordinate robot
arms, with the possibility of having a human directly interacting
with a robot arm in the real-world while communicating via natural
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language. To the best of our knowledge, PARTNR (Chang et al.,
2024) represents the most comprehensive benchmarking framework
currently available. It integrates multiple evaluation methodologies,
supports a wide range of collaborative tasks, and offers the
most extensive set of standardized HRI assessments, making it a
significant reference point in the field.

However, as shown in Table I, unlike PARTNR and other
existing benchmarks, our M4Bench introduces major flexibility
across multiple axes, allowing variable configurations for multi-user,
multi-robot, and multi-device testing.

2.3 Multimodal HRI

Multimodal HRIs
in settings with industrial robots, assistive mobile robots,

have commonly been implemented
robotic exoskeletons, or robotic prosthetics (Su et al, 2023).
Given that humans naturally communicate through multiple
modalities, using multiple input or output devices simultaneously
can improve system usability, particularly for users with
limited motor control. In elderly users, fusing multiple input
modalities has been found to significantly increase human
gesture recognition performance (Rodomagoulakis et al., 2016).
Multimodal systems have also been found to benefit hemiplegic
users, who showed enhanced engagement and improved
movement prediction when combining biological signals like
electromyographs (EMG) and electroencephalographs (EEG)
during rehabilitation (Gui et al., 2017).

Early works explored integrating visual and audio input to
make intuitive HRI systems (Goodrich and Schultz, 2008). Since
then, the effectiveness of diverse combinations of input modalities
has been tested including voice and facial expression (Alonso-
Martin et al., 2013), speech and gesture (Rodomagoulakis et al.,
2016; Strazdas et al., 2022), and facial expressions with EEG
signals (Tan et al, 2021). Input modalities have been more
recently extended to include haptic feedback and physiological
sensing (Wang T. et al, 2024; DAttanasio et al., 2024). With
recent developments in LLMs, LLM-based robotic systems are
showing promise in HRI by demonstrating their ability to adapt to
multi-modal inputs when determining appropriate assistive actions
(Wang C. et al,, 2024; Zu et al., 2024).

Several studies have compared different input devices for
HRI. Some examples include: PS3 gamepad versus PC keyboard
(Adamides et al., 2017), mobile robot control with an app versus
gamepad (Mallan et al.,, 2017), and robotic navigation with a keypad
versus a Nintendo Wii controller (Guo and Sharlin, 2008). All studies
reported significant differences between devices and highlight the
importance of selecting appropriate input methods for optimized
HRI performance.

While existing HRI benchmarks (Table 1) typically focus
on agent coordination, language grounding, or simulated avatar
control, M4Bench was designed to foreground the human-robot
interactions themselves—specifically in how they scale across
different users, robots, goals and input modalities. This introduces
several design and engineering challenges, including synchronized
interactions and hardware abstraction for non-
traditional control devices. M4Bench offers a foundation for

multi-user
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Software diagram. The brain-robot interface (BRI) web application server provides an endpoint to access the user interface, and additionally runs the
underlying robot simulator, listening for user commands, and executing them. Users access the interface through a browser, which contains camera
feeds from the robot simulator and experiment controls. The browser receives and processes user inputs either through native browser events (e.g., for
mouse, keyboard, or gamepad) or dedicated processing modules (e.g., for an eye tracker or EMG/EEG electrodes). Device inputs map to robot

selection and/or command selection.

systematically studying shared autonomy across these dimensions,
as highlighted in Table 1.

3 Materials and methods

Figure 2 provides an overview of our software, which consists
of a web server (running robot simulators), a web interface that
receives inputs and displays the robot(s), and, optionally, additional
processes to translate inputs from devices such as eye trackers or
EMGT/EEG. The front-end uses standard HTML, CSS and JS, and is
compatible with major browsers (Edge, Safari, Chrome and Firefox).
The back-end uses Python and is compatible with Windows, OS
X, and Linux. These software architecture choices were made to
maximise compatibility and ease of extending the benchmark.

We built our web server using the FastAPI framework?. The web
server responds to various HTTP endpoints, runs a multiprocess
environment runner, manages WebRTC streams (delivering images
from the simulators), and handles user session management. We
built the front-end using Bootstrap® to structure and manage the
user interface. As shown in Figure 2, the web server, web interface
and device processes use WebSockets to communicate real-time
information, such as device outputs. A notable exception is the use of

2 https://fastapi.tiangolo.com/
3 https://getbootstrap.com/
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WebRTC for streaming video, as it is better suited for such use-cases,
and can use peer-to-peer technology to send the images directly
from the simulator to the interface.

The environment runner runs one robot simulator process per
robot, allowing us to achieve real-time interaction even when scaling
up the number of robots to control. We built a pick-and-place
environment for our benchmark in RoboHive (Kumar et al., 2023),
arobot learning framework that uses MuJoCo (Todorov et al., 2012)
as its underlying robot simulator. A primary benefit of RoboHive
is that it abstracts robot control policies for both real robots and
simulated robots to have the same structure, making it easier to
develop in a simulator and deploy in the real world: with the
right configuration sets, deploying a controller tested in simulation
on the real robot is simply a matter of changing an environment
flag in RoboHive. Similarly, simulated sensors such as cameras
can be replaced by their real-world counterparts by editing the
environment configuration files. The other necessity for transferring
planning-based manipulation controllers to the real world is object
detection, which can be achieved either through ArUco markers
(Garrido-Jurado et al., 2014) or other machine learning/computer
vision methods (Bai et al., 2020).

Our benchmark is set up to allow users to control 1, 4, or
16 robots simultaneously. This allows us to display robots in a
regular grid, which simplifies the layout for users. The different
numbers of robots allow us to test how human-robot interaction
scales across a range of robot numbers, with the single robot scenario
also providing a simplified setting with which different input devices

frontiersin.org
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can be tested. Simultaneously, multiple users can join an experiment
to control robots together by joining from a web browser. It is even
possible to allow remote participation, if the web server is made
accessible publicly.

3.1 Robot task and control

We constructed a simple pick-and-place task for HRI
experiments, as our purpose is to test and quantify the interaction
between humans and robots, and not the performance of robots
at fulfilling complicated tasks. For the task, a robot arm—a 7 DoF
Franka Panda—is placed on the centre of a large square table, with
different groups of colored blocks to its sides and front, with bins for
each group of blocks placed at the edge of the table. When the robot
isinstructed to pick a block of the specified color, it will begin picking
the specified type of block and placing them in the corresponding
bin one by one. We use four groups of two blocks each, which we
found provided a good trade-off between goal diversity (number of
groups) and robot execution time (amount of time spent picking
and placing blocks).

In our task setting, the robot will ignore any other commands
until all of the specified blocks are placed. Based on user feedback
in early experiments, we added a LED indicator around the base
of each robot which lights up when it is active, and remains off
when it can be controlled again. As demonstrated in prior work
(Baraka et al., 2016; Portner et al., 2018), light indicators are cheap
and effective tools for HRI.

The robots are controlled through a simple inverse kinematics
motion planner with hard-coded waypoints to place the end-effector
above a block, reach down and grasp it, and move it above the
bin before opening the gripper. Once the path is planned, the
trajectory is executed as fast as possible whilst respecting joint
velocity limits. Although this planner does not guarantee 100% task
success, in practice we never observed a single failure. However,
in order to ensure that experiments can always be completed, if
the planner were to fail our software will still count it as a success
for the user.

3.2 User interface

When first accessing the user interface via a web browser,
the user is directed to a registration page (Figure 3a), where
demographic information is collected. After registering, the
user is directed to the main menu (Figure 3b). The user can
select different input device combinations, and proceed to
either data collection or task execution with differing numbers
of robots.

When the user enters a task execution session, they are
presented with a view of the robot(s), status information, and
experiment controls (Figure 4). Task execution sessions (number
of robots) are shared across users, so if multiple users join the
same session before it starts, they can jointly control the robot(s).
If a task execution session has been started and another user tries
to join, they will be blocked until the session has finished. Data
collection sessions are not shared, so multiple users can collect data
simultaneously.
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3.3 Task execution and devices

During task execution, robot selection is performed by mapping
a device to the cursor, and moving the cursor onto the camera
view(s) (2D continuous control). For this we have implemented
support for a mouse, gamepad (joystick), and a Pupil Core eye
tracker. Goal (color) selection is performed by mapping a device to
the four colors (4D discrete control). For this we have implemented
support for a keyboard, gamepad (buttons), and g.tec EMG/EEG
devices. Further devices can be added using either native browser
libraries or WebSockets.

To prevent users having to recall the color-to-goal associations
in our user study (Section 4), we pasted colors on the keyboard keys
(1-4), and put a diagram of the EMG mapping (Figure 5) on the
wall in front of the participants. The colored gamepad buttons could
directly be mapped to the goals.

Mouse and keyboard control is achieved using native browser
events, and gamepad control is implemented using the native web
Gamepad APL

For eye tracker control, we use the Pupil Core API#, which sends
x-y coordinates of the user’s fixation (as well as associated confidence
values) over a ZeroMQ socket’ to a custom device process. In our
preliminary tests and pilot studies, we used the raw Pupil Core API
eye tracker mappings to the screen surface, which resulted in erratic
cursor movement. Based on iterative testing and users’ feedback of
eye tracking stabilisation methods, we settled on averaging the last
eight gaze samples with a confidence > 0.75. Finally, we send the
smoothed values over WebSockets to the browser to control the
cursor position.

For EMG/EEG control, we use the g.HIsys Simulink toolbox®
for acquiring and filtering data from g.tec devices, and stream
the filtered data using Lab Streaming Layer’ to a custom device
process. The device process can record the data, and if given a
trained classifier, outputs a predicted goal, as well as a probability
distribution over the goals.

3.4 Data collection

We implemented a data collection mode that presents a
randomised sequence of cues (corresponding to the different goals)
to the user, and allows us to collect user input data (e.g., EMG
signals) for training classification models. The duration of the cues,
rest periods, number of trials, and other parameters can be set by the
experimenter via the user interface (Figure 6).

In practice, we collect EMG data and train simple channel-wise
threshold-based binary classifiers for each user. To map between
EMG signals and the four goals (colors) in the task, we place
pairs of electrodes at four sites (the left and right forearms and
calves). The users are instructed on the correspondence between
sites and goals, i.e., the left forearm maps to red cube, the left calf
to the green cube, right calf to the blue cube, and finally the right

https://docs.pupil-labs.com/core/developer/network-api/
https://zeromq.org/
https://www.gtec.at/product/g-hisys/

N o o b

https://github.com/sccn/labstreaminglayer
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User registration and main menu. (a) In user registration, we collect a user name, age, gender, and handedness. (b) In the main menu, the user can
select between different input device options, participate in data collection, or join a task execution session with either 1, 4, or 16 robots.
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forearm to the yellow cube. The user is then presented with a video
demonstration of the data collection flow during which they practice
moving the limb that corresponds to the sequentially displayed color
cues until they are comfortable with their performance. The next
step is to perform the actual data collection for model calibration
as follows: first, a countdown of 2,000 ms is triggered, followed
by a random color cue (red, green, blue or yellow) displayed for
2,500 ms during which the users contracts the appropriate limb.
An inter-trial rest period of 500 ms is then introduced before
proceeding to the next cue. An inter-block rest period of 1,000 ms
is introduced every trial block, which is formed by four color
cues. We settled for data collection with five blocks, although
this can be set by the researcher (Num Blocks field in Figure 6)
on a per-case basis. This resulted in a total of 20 trials collected
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over approximately 1 min and 45 s, allowing for quick experiment
iterations across users.

We save the EMG data, tagged with the associated goals,
in HDF5®%, MNE FIF (Gramfort et al., 2013) and EEGLAB’s
.set (Delorme and Makeig, 2004) formats, allowing it to be read
easily by several libraries. For each site/EMG channel we train
a support vector machine on the maximum signal amplitude
(over a 2,500 milliseconds window) to maximise the classification
accuracy. With EMG the signal's amplitude increases as the
user contracts their muscles, and thus it is straightforward to
achieve high accuracies with this simple classifier. The trained

8 https://www.hdfgroup.org/solutions/hdf5/
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FIGURE 4

Gaze: connected
EEG/EMG: connected [8002]

Start

Stop & Reset

Back to Menu

Running...

Debug Log

Task execution interface (4 robots). The centre contains camera views of the robots and their workspaces. The plots in the top-right display predictions
over the goals, and also serves as indicators once a goal is selected. From top to bottom, the right panel contains: connected users; device connection
status; start and reset experiment buttons; status info; and a collapsible debug log. If the eye tracker device is selected, AprilTags (Wang and Olson,
2016) are displayed for calibrating the eye tracker's position with respect to the screen.

classifiers are saved and deployed for the users in the following
experiments.

We use Hydra (Yadan, 2019) and scikit-learn (Pedregosa et al.,
2011) to automatically construct classifier pipelines from YAML
files, allowing quick experimentation over different preprocessing
steps and model types. For example, the aforementioned threshold

classifier is specified as follows:

feature_extractor:

_target_: feature_extraction.

MaximumAmplitude
vectorizer:

_target_: mne.decoding.Vectorizer
classifier:

_target_: sklearn.svm.SVC

kernel: 'poly’

C: 1

probability: True

Where the pipeline is constructed from composing each item in
order, with _target_ specifying a class to instantiate, and other
properties specifying the instantiation arguments.
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3.5 Metrics

We selected a set of performance and user experience
metrics that capture both task efficiency and cognitive workload.
As discussed in Section 2.2, identifying metrics that are both
meaningful and generalizable across HRC scenarios is a known
challenge. Based on a review of commonly used metrics in the
literature, we selected those that offer good adaptability across task
types and experimental setups.

We evaluate system performance based on the following three
quantitative metrics:

e Task Completion Time: the time from the start of the task
to its successful completion. This is the most commonly
used metric in HRC, as it provides a direct measure of
how efficiently the human-robot team completes a given
task, and offers a straightforward indicator of overall system
performance. In scenarios comparing different input devices
for controlling the same system, a shorter task completion time
would naturally suggest a more efficient input device. Likewise,
when comparing single-user and multi-user collaboration,
improved coordination and division of labor in the multi-
user setting would be expected to reduce the overall time
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FIGURE 5

EMG mapping between muscle contractions and goal colors provided
to participants during task execution.

7

required. Therefore, the lower the task completion time, the
more effective the interface or interaction strategy.

e Command Selection Time: represents the time needed for the
user to issue a valid command. In the single-robot scenario,
it refers to the time the robot waits for a valid input. In
the multi-robot case, it captures the time between selecting a
robot and confirming a valid goal. This metric is crucial for
evaluating the interaction process, as it reflects how quickly
users can communicate their intent. It is particularly important
when comparing different input modalities or control devices.
A lower command selection time indicates that users can
issue commands more rapidly, suggesting that the device or
interface allows for efficient and fluid interaction. Therefore,
systems that minimise this time are generally more intuitive
and effective for user control. The metric most similar to
ours in definition is the one presented in Shukla et al
(2017), where it is referred to as interaction effort or
interaction time. Several studies have used similar terms,
though definitions vary widely across the literature. We chose
to use the term command selection time to avoid confusion
about which aspect of the interaction this metric actually
measures.

e Error Rate: the proportion of invalid goal selection commands
sent; the command is invalid if the goal (color choice) is
already completed. The entire set of valid/invalid commands
are stored, so that summary statistics can be applied
afterwards. This metric is essential to assess the accuracy
and reliability of the human-robot interaction, as it reflects
how often users attempt actions that cannot be executed,
highlighting potential issues in user understanding, interface
design, or system feedback. A system that enables users
to make fewer errors is, by definition, more effective and
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better designed, as it supports more accurate and reliable
interactions.

This set of quantitative metrics provides a balanced framework
to evaluate key aspects of HRC. By analysing relative differences
in values of these metrics, researchers can explore how different
factors such as input devices, number of users, or system
modifications impact overall performance and interaction quality.
This approach also enables the assessment of improvements
resulting from changes in system components, such as biosignal
classifiers, supporting a systematic and data-driven refinement of
HRI systems.

In addition to quantitative performance metrics, evaluating the
usability and user experience of the system is essential in human-
robot interaction, where task efficiency alone does not fully capture
the quality of collaboration. To this end, we selected the NASA
TLX as our subjective workload assessment tool. Widely adopted
in HRI studies, NASA TLX is a validated and reliable metric that
captures users’ perceived cognitive and physical demands during
interaction. Its multidimensional structure makes it particularly
suitable for complex, interactive scenarios, such as those involving
shared control between humans and robots. We created a webpage
for the NASA TLX questionnaire, which users are directed to after
completing an experiment (Figure 7). The questionnaire measures
the user’s perceived workload over six items—Mental Demand,
Physical Demand, Temporal Demand, Own Performance, Effort,
and Frustration Level—using a 21-level Likert scale (normalised
from 0-100, with lower values being better). The individual scores
can then be averaged to calculate the overall task load index.
Although it is possible to weight the items separately, we stick to
the unweighted, “raw TLX” form (Hart, 2006), which provides less
biased results (Bustamante and Spain, 2008).

3.6 Logging

We save user (demographic) data, experiment metrics, and
questionnaire results in a hierarchical folder structure that
resembles BIDS (Gorgolewski et al.,, 2016), but which separates
experiment-specific and user-specific data into different folders.
All of this data is stored in JSON format to be both human- and
machine-readable.

3.7 Localisation

In order to enable users with different native languages to
use our software comfortably, we implemented a language toggle
(currently supporting English and Japanese), available on the user
registration and main interface. This allows the experimenter/user
to dynamically set the language on the user interface during
experiments in order to accommodate users from different linguistic
backgrounds. This feature is particularly important for collecting
questionnaire data, so that questions can be conveyed in the
user’s native language. The localisation code allows additional
languages to be added by adding translations for relevant text
to a single localisation file, where text for the interface is
extracted from.
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FIGURE 6

Data collection interface. A view of the robot is presented at the centre of the screen, with countdowns and cues overlaid during data collection. The
experimenter can set the initial countdown, cue duration, rest periods, and the number of blocks (sets of goals).
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4 Results
4.1 Hypotheses

In order to demonstrate the capabilities of our benchmark, we
designed and ran a user study to test several hypotheses, under
two settings (Table 2). In the first setting, we investigated differences
between pairs of input devices for robot and goal selection: mouse
+ keyboard; gamepad + gamepad; and eye tracker + EMG. In this
setting, we have a single user controlling four robots, with the three
different devices pairs. In the second setting, we investigated the
differences between single- and multi-user control. In this setting,
we have either a single user or two users control 16 robots, using
the mouse + keyboard device combination. For both settings, the
hypotheses we test are:

H1: There are differences in the mean task completion time.

H2: There are differences in the mean Command Selection Time.
H3: There are differences in the mean error rate.

H4: There are differences in the mean overall task load index.

The most effective device combination and number of users
would ideally lead to a shorter task completion time (H1), a faster
command selection time (H2), a lower error rate (H3), and a lower
level of perceived workload (H4). Such a combination can provide
a practical upper bound on performance, serving as a baseline for
evaluating alternative interfaces. If another combination delivers
command selection times comparable to this baseline, it can be
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considered functionally competitive. Lower error rates may also
suggest benefits beyond accessibility, such as easier use or reduced
cognitive effort.

We note that we provide these analyses as suggestions for
system evaluation methods, and do not claim that one setup
in necessarily superior to another. For example, our modular
benchmark also allows for identifying setups tailored to individual
users, accommodating diverse user needs and preferences.

4.2 User study

We recruited 50 volunteers for our user study (18 female, four
left-handed, with an age distribution of 28.1 + 7.2 years), forming
25 pairs for single-vs. multi-user control. At the beginning of the
study, each user was briefed on the experiments, and asked to
sign a consent form. If they consented, we proceeded with the set
of experiments. Figure 8 shows the flow of the user study for pairs of
users. Upon completion of the study, users were given a gift card. Our
study was given ethical approval by the Shiba Palace Clinic Ethics
Review Committee.

4.3 Input device comparison

The overall results for the input device comparison setting
are reported in Table 3 and the detailed NASA TLX results

frontiersin.org


https://doi.org/10.3389/frobt.2025.1528754
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Yoshida et al. 10.3389/frobt.2025.1528754

Mental Demand
How mentally demanding was the task ?
Very Low o) Very High
Physical Demand
How physically demanding was the task ?
Very Low o Very High
Temporal Demand
How hurried or rushed was the pace of the task ?
Very Low 0 Very High
Performance
How successful were you in accomplishing what you were asked to do ?
Perfect o Failure
Effort
How hard did you have to work to accomplish your level of performance ?
Very Low 0 Very High
Mental
How insecure, discouraged, irritated, stressed, and annoyed were you ?
Very Low g Very High

FIGURE 7

NASA TLX questionnaire. Users are presented with the six items, explanations of each item, and a slider from "Very Low" to “Very High” agreement.

TABLE 2 User study experimental settings. We either varied the input devices (experiment 1) or number of users (experiment 2).

Experiment # Users # Robots Devices
1 1 4 mouse + keyboard vs. gamepad + gamepad vs. eye tracker + EMG
2 1vs.2 16 mouse + keyboard

are shown in Figure 9. We checked that the data for our hypotheses
was approximately Gaussian-distributed, and then ran a repeated
measures ANOVA test (« = 0.05). This test revealed significant
effects of device type on Task Completion Time [F(2, 98) = 62.81,
p < 0.001], Command Selection Time [F(2, 98) = 26.74, p < 0.001],
Error Rate [F(2, 98) = 54.27, p < 0.001], and Overall Workload
[E(2, 98) = 34.66, p < 0.001]. We then conducted post hoc Tukey
HSD tests to examine pairwise differences. The eye tracker + EMG

device pair performed significantly worse across all metrics. No
significant differences were found between the mouse + keyboard
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and gamepad + gamepad input devices. Bonferroni correction
was applied to each p-value from the pairwise comparisons to
account for multiple comparisons (correction factor = 3 per metric,
capped at 1.0):

Task completion time

e Eye tracker + EMG vs. gamepad + gamepad: M = -25.71; T =
—9.32, corrected p < 0.001

e Eye tracker + EMG vs. mouse + keyboard: M = —-27.08; T =
—9.82, corrected p < 0.001
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TABLE 3 HRI metrics for different combinations of devices for robot and goal selection, with a single user controlling four robots. Average + 1 standard
deviation reported over 50 participants.

Robot-goal selection = Task completion time (s) Command selection time (s) Error rate =~ Overall workload
Mouse + Keyboard 105.6 4.2 0.423 +0.443 0.005 + 0.029 147 +13.5
Gamepad + Gamepad 106.9 £5.8 0.596 + 1.155 0.014 + 0.041 174+15.3
Eye Tracker + EMG 132.7 22,5 0.846 + 1.284 0.292 +0.263 40.8 +20.1

e Mouse + keyboard vs. gamepad + gamepad: M =1.37; T = 0.50,
corrected p = 1.0

Command selection time

e Eye tracker + EMG vs. gamepad + gamepad: M = -0.35; T =
—4.98, corrected p < 0.001

e Eye tracker + EMG vs. mouse + keyboard: M = —0.52; T =
—7.47, corrected p < 0.001

e Mouse + keyboard vs. gamepad + gamepad: M =0.17; T = 2.49,
corrected p = 0.1109

Error rate

e Eye tracker + EMG vs. gamepad + gamepad: M = -0.28; T =
—8.90, corrected p < 0.001

e Eye tracker + EMG vs. mouse + keyboard: M = —0.29; T =
—9.18, corrected p < 0.001

e Mouse + keyboard vs. gamepad + gamepad: M = 0.01; T = 0.28,
corrected p = 1.0

Overall workload

e Eye tracker + EMG vs. gamepad + gamepad: M = -23.38; T =
—7.00, corrected p < 0.001
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e Eye tracker + EMG vs. mouse + keyboard: M = -26.12; T =
—7.82, corrected p < 0.001

e Mouse + keyboard vs. gamepad + gamepad: M =2.73; T =0.82,
corrected p=1.0

The individual NASA TLX results complement this finding, as
the eye tracker + EMG device pair was deemed more demanding
to use across all items. Direct behavioural analysis from observing
particpants also supports this, with the setup time and concentration
required to perform the task with the eye tracker + EMG
combination increasing the workload on the users.

4.4 Number of users comparison

The overall results for the number of users comparison
setting are reported in Table4 and the detailed NASA TLX
results are shown in Figure 10. We checked that the data for our
hypotheses was approximately Gaussian-distributed, and then ran
a paired t-test (a = 0.05). The resulting p-values were Bonferroni-
corrected to account for multiple comparisons (correction factor
= 2). No significant differences were found in Task Completion
Time, Error Rate, or Overall Workload. There were no noticeable
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FIGURE 9
NASA TLX scores for different combinations of devices for robot and goal selection, with a single user controlling four robots. Average + 1 standard
deviation reported over 50 participants.

TABLE 4 HRI metrics for single-vs. multi-user robot control, with users controlling 16 robots. Average + 1 standard deviation reported over 50
participants.

# Users Task completion time (s) Command selection time (s) Error rate Overall workload
One 1229+ 11.7 0.237 +0.282 0.007 £ 0.033 225+ 18.8
Two 122.6 £9.5 0.319 + 0.594 0.001 £ 0.004 199 +£15.7
100
B Single User W Two Users
80
8 60
o
~
S
= 40
20 A
0 N . .
Mental Physical Temporal Oown Effort Frustration
Demand Demand Demand Performance Level

FIGURE 10
NASA TLX scores for single-vs. multi-user robot control, with users controlling 16 robots. Average + 1 standard deviation reported over 50 participants.

differences in the individual NASA TLX results. After correction, this detail to illustrate the utility of M4Benchs detailed metric
we found a significant difference in Command Selection Time  logging.

between one and two users controlling 16 robots [t(49) = -3.71,

corrected p =0.001], with two users taking longer to interact.

However, because the multi-user runs always included a novice 4.5 General observations

user by design, this introduces a confound, which we were able

to confirm using a t-test on the difference in the mean command Beyond each device’s intrinsic usability, prior experience with
selection time between the first user and second user in a pair.  the devices played an important role in performance across tasks.
Whilst we therefore cannot draw conclusions on H2, we leave  Nearly all users were highly accustomed to keyboard and mouse

Frontiers in Robotics and Al 13 frontiersin.org


https://doi.org/10.3389/frobt.2025.1528754
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Yoshida et al.

setups, having used them regularly. This familiarity enabled efficient
performance, with only minor differences across age groups.
Conversely, elderly users were unfamiliar with gamepads, and were
slightly less proficient with them. Finally, the eye tracker and EMG
combination was entirely new to participants in our user study, and
the brief practice sessions we conducted failed to make up for the
extensive experience gap; anecdotally, the authors themselves are
able to achieve similar results using all device pairs.

We also observed that the Performance item in the NASA
TLX questionnaire was interpreted differently depending on the
users. Some users rated themselves purely on whether the task
was completed, whilst others rated themselves based on how long
they took. This is of course a common issue with qualitative
questionnaires.

5 Discussion

The flexibility of our software makes it a suitable testbed for
investigating HRC with different input devices, as a precursor to
more challenging tasks. For instance, this platform would allow
iterating on decoding algorithms for EMG/EEG, before deploying
them to real-world settings. Whilst we believe our benchmark is
useful by itself, it also has greater potential for trialling novel HRI
approaches that can then be ported to different scenarios.

While M4Bench is currently centred on HRC—with an
emphasis on physical interaction, shared control, and collaborative
manipulation—its modular and extensible architecture offers
a foundation for broader applications. There are numerous
improvements and additional functionalities that could be
implemented in the system. For instance, adding support for
new devices will enhance the platform’s flexibility, allowing it
to accommodate a broader range of interfaces and enable more
versatile HRI studies. Expanding customization options for device-
specific parameters would make the system even more adaptable,
especially for complex devices like EEG/EMG. Such devices offer
a wide variety of configurations—from adjusting the number
of classes to choosing paradigms and customizing training.
Providing options to fine-tune these details would give researchers
greater control, allowing them to optimize the system for diverse
experimental needs and usage contexts.

Moreover, enhancing the platform with additional metrics
would significantly improve its adaptability and relevance across
diverse research contexts. This enhancement could involve adding
both more system-calculated metrics and standardized qualitative
measures. To further support customization, the platform could also
allow researchers to pre-select the metrics most relevant to their
specific study needs.

Although the platform currently calculates the metrics
automatically, the analysis of the results is performed externally.
A valuable enhancement would be to integrate automated analysis
directly within the system. This could include the ability to compare
different experimental conditions, generate detailed performance
reports, and provide real-time insights, offering researchers an
efficient and seamless way to evaluate their data without needing
additional tools. This could improve the overall research workflow
and allow for a more comprehensive understanding of the outcomes
directly within the platform.
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The system could include built-in basic tasks as a starting point,
offering ready-made configurations for standard experimental
scenarios. These basic tasks could also serve as templates,
which researchers could customize further to suit their specific
experimental goals.

All these features would enable researchers to tailor the
M4Bench platform in detail to meet their specific objectives, making
our system versatile, robust, and adaptable to a wide range of
research needs and environments.
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