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heterogeneous human-robot
teams
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David Feil-Seifer

Robotics Research Laboratory, Department of Computer Science and Engineering, University of
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This paper focuses on the problem of collaborative task execution by teams
comprising of people and multiple heterogeneous robots. In particular, the
problemismotivatedbytheneedfortheteammemberstodynamicallycoordinate
their execution, in order to avoid overlapping actions (i.e.multiple teammembers
working on the same part of the task) and to ensure a correct execution of
the task. This paper expands on our own prior work on collaborative task
execution by single human-robot and single robot-robot teams, by taking
an approach inspired by simulation Theory of Mind (ToM) to develop a real-
time distributed architecture that enables collaborative execution of tasks with
hierarchical representations andmultiple typesof executionconstraints by teams
of people and multiple robots with variable heterogeneity. First, the architecture
presents a novel approach for concurrent coordination of task execution with
both human and robot teammates. Second, a novel pipeline is developed in
order to handle automatic grasping of objects with unknown initial locations.
Furthermore, the architecture relies on a novel continuous-valued metric which
accounts for a robot’s capability to perform tasks during the dynamic, on-line
task allocation process. To assess the proposed approach, the architecture is
validated with: 1) a heterogeneous team of two humanoid robots and 2) a
heterogeneous team of one human and two humanoid robots, performing a
household task in different environmental conditions. The results support the
proposed approach, as different environmental conditions result in different and
continuously changing values for the robots’ task execution abilities. Thus, the
proposed architecture enables adaptive, real-time collaborative task execution
throughdynamictaskallocationbyaheterogeneoushuman-robot team, for tasks
with hierarchical representations andmultiple types of constraints.
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1 Introduction

Current techniques for human-robot teamwork focus on supervisory control of
(semi-) autonomous or teleoperated robotic systems by human operators. Although
advances have been made in the area of collaborative robots (co-bots), numerous
challenges remain for embedding human agents as teammates with an autonomous robot
team. A central problem for task execution in human-robot teams is the coordination
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FIGURE 1
Human-robot teamwork using a ToM approach, from the perspective of the Baxter robot.

of actions between teammates that have different communication
mechanisms and representations, to ensure that there is no
overlap between their actions and that the task is properly
executed according to its constraints. The task allocation and team-
self organization is further challenged by the heterogeneity and
variability in robot performance during a task.

We propose an approach in which each team member has its
own copy of the task representation, as shown in Figure 1. For
the robots, the representation is a hierarchically structured tree
that incorporates all the tasks constraints and also acts as the
controller that enables the robot to perform the task. For robot-
robot coordination, explicit messages are passed between sibling
nodes of the robots’ controllers. The human teammate also has
knowledge of the task constraints, but their mental representation
is unavailable to the robots. To enable coordination with people,
in a similar way as the coordination with robot teammates, we
propose a simulationTheory of Mind approach in which the robots
store a simulated copy of the human’s task representation, which is
continuously updated from visual observations to track the human’s
current working goals as well as to record past goals achieved. This
is described in detail in Section 2.3.

From the perspective of robot-only teams, a central problem
is the allocation of robots to task(s). Finding an optimal solution
to this problem is an instance of the MT-MR problem (Multi-Task

robots performing Multi-Robot tasks) as defined in (Gerkey and
Matarić, 2004). Heterogeneous robot teams have a more complex
problem due to the different capabilities of the robots. While
numerous approaches have been developed for both collaborative
task execution and heterogeneous teams, this paper addresses these
problems from a different perspective, with a focus on tasks with
complex hierarchical constraints, in order to expand the capabilities
of heterogeneous multi-robot systems.

In current approaches for multi-robot control, a robot’s ability
to perform certain actions or tasks (i.e., the team’s heterogeneity)
is known a priori and is represented by a binary value depicting
whether the robot can or cannot perform a task (without any
other options in between). These approaches also assume that these
capabilities are not changing over time (i.e., the robot has a fixed
set of skills throughout the entire task execution). While there are
situations in which there is a clear binary choice on a particular
capability (e.g., a robot without a mobile base cannot move), there
are also many situations for which the degree to which a robot
may perform a task covers a continuous spectrum. For instance, a
robot with a dexterous hand may pick up objects better than a robot
with a parallel gripper; both are able to perform the task, though
with varying degrees of effectiveness. Having a continuous-valued
metric that encodes this information can be highly beneficial for task
allocation in a multi-robot team, as it would allow the selection of
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the robot best suited for a given task.This is especially important for
hierarchical tasks in which portions of the task must be completed
correctly before the next step can begin, such as assembly tasks.This
metric would help to avoid issues with future steps in a hierarchical
task which rely on proper completion of prior tasks by ensuring
robots are allocated tasks which they can complete effectively.

Furthermore, the value of this metric may vary throughout the
task execution, as different environmental conditions may change
the degree to which the robot is able to perform the task or may
allow it to perform actions that would otherwise be impossible.
This paper introduces a metric that encodes a robot’s ability to
perform a particular task component (grasping of objects) over both
a continuous and discrete spectrum. The metric utilizes our novel
perception-manipulation pipeline, which is able to automatically
generate grasps for objects with unknown initial locations. The
metric is updated continuously, allowing for dynamic task allocation
that takes into account current environmental conditions.

The control architecture presented in this paper enablesmultiple
heterogeneous robots to coordinate their task execution with a
human. Furthermore, the architecture uses the novel metric, which
incorporates a robot’s varying capabilities, to enable dynamic, real-
time task allocation in the context of hierarchical tasks that have
the following type of execution constraints: 1) sequential: all the
steps must be performed in a fixed given order, 2) non-ordering:
all the steps must be performed, but the order is irrelevant, and
3) alternative paths: either some or others of the steps may be
performed in order to achieve the same goals. This work focuses
on complex tasks with the assumption that all of these constraints
may occur in the same task. Experiments with physical robots are
performedwith a heterogeneous team of two humanoid robots, with
and without the metric, to evaluate the usefulness of incorporating
information about heterogeneity in the task allocation process. A
human is added to this team and experiments are performed to
illustrate the ability of the robots to coordinate their task execution
with each other as well as a human partner.

2 Materials and methods

2.1 Related work

The problem addressed in this paper falls in the areas of
human-robot collaboration andmulti-robot task allocation (MRTA)
(Gerkey and Matarić, 2004). A collaborative robot should be able to
execute complex tasks (Fraser et al., 2016), be aware of its teammates’
goals and intentions (Kelley et al., 2008), as well as be able to
make decisions for its actions based on this information. In recent
work Hawkins et al. (2013) use a probabilistic approach to predict
human actions and employ a cost based planner to determine the
robot response. Prediction of human actions is performed using a
forward-backward message passing algorithm in a Bayes network
representation of the task. However, a full conditional probability
table is needed for inference, which increases the complexity of the
process for large tasks. An extension of this work, with a new task
representation that includes multiple paths of execution, has been
presented in (Hawkins et al., 2014). The tasks are encoded as AND-
OR tree structures that need to be converted to an equivalent Bayes
network, with all alternative paths explicitly enumerated, in order to

support action prediction and planning.The task tree representation
used in this paper has a THEN-AND-OR tree structure which
also allows for sequential constraints. Furthermore, the proposed
approach enables a robot to make decisions based on a simulated
mental model of the human’s task, without having to enumerate all
possible alternative paths of execution.More recently, Heppner et al.
(2024) introduce an approach in which robot capabilities are
explicitly modeled as nodes in a behavior tree and a auction-
based systemenables run-time coordination betweenheterogeneous
robots in a find-and-decontaminate mission. In our proposed work,
the robots consider their ownutility to achieving task goals, similarly
to (Heppner et al., 2024), but combine this with mental models
of the other agents in the team, including humans, in order to
decide which goals to pursue. Fusaro et al. (2021) propose a reactive
task planner that generates behavior trees that uses action-related
costs and takes into account the presence of a human teammate. In
our proposed work, all agents in the team have knowledge of the
same task representation, while the self-organization of the team
is achieved dynamically at run time, based on individual action
cost assessment and knowledge of the mental models of the other
teammates.

Effective teamwork relies on understanding of the teammates’
intentions, in order to properly decide how to allocate the task across
the team. Intent recognition is a part of Theory of Mind (ToM),
providing the ability to interpret and predict other’s behaviors. In
the robotics domain, Kelley et al. (2008) present a Hidden Markov
Model based system for detecting human navigation intentions
using a simulation ToM approach (Gurney and Pynadath, 2022), in
which a robot predicts human actions by taking their perspective
and aiming to predict what it would do if it were performing the
same actions. In another approach relying on simulation theory,
Nguyen et al. (2018) propose a Dueling Deep Q-Network and
LSTM action learning mechanism for generating an agent’s own
decision-making model, which can later be used to predict the
intentions of others in a block building task. The system requires
the agents to take turns during collaborative execution, with one
being observer while the other takes actions according to its goals
and perceived intentions of the other. Hierarchical models of task
representations have also been employed in conjunction with ToM
approaches for intent recognition. Saffar et al. (2015) incorporates
contextual information with an Activation Spreading Network, in
order to enable a robot to disambiguate a human user’s intention and
naturally interact during a complex household task. In (Gao et al.,
2020) an And-Or hierarchical model of a collaborative task along
with a Bayesian inference approach is used in order to build a mind
model of a human user and to generate explanations about the task.
Bayesian inference has also been used by (Hernandez-Cruz et al.,
2024), in amulti-modal framework that fuses head/hand orientation
and hand movement in order to detect a human’s grasp intent in
a tabletop human-robot collaborative scenario. These methods, as
well as our approach, focus on the specific aspect of modeling the
intentions of others. While ToM includes other important aspects
(such asmental states, beliefs, thoughts, emotions), which can enable
more complex forms of reasoning, for the purpose of this work,
we propose an approach that relies on the ability to recognize and
represent others’ intentions in a simulated mental model of their
task representations, in order to enable cooperative task execution
in heterogeneous teams.
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In the area of human-robot teamwork, existing approaches
focus on optimizing the task allocation problem (Gombolay et al.,
2018), which result in approaches that cast the robots into fixed
roles that do not change over the course of the task execution.
For example, Gombolay et al. (2015) assumes that both the robot
and humans in the team have a fixed set of skills and full a priori
knowledge of the task details. In addition, both the robot and
humans have the capability of allocating sub-tasks to the individual
teammates. Once the task allocation has been completed, the team
members perform the task independently, with no interactions. In
practical applications the agents may have to work jointly on parts
of the task and their roles might change due to changes in the task at
run-time. In this research, an architecture is developed to take into
account the dynamic nature of teamwork and can handle real-time
task allocation based on the current state of the environment.

Early implementations of multi-robot systems include actress
(Asama et al., 1989), alliance (Parker, 1994), and murdoch (Gerkey
and Matarić, 2000). We focus on 1) dynamic team heterogeneity
in the context of 2) complex tasks with hierarchical representations
andmultiple types of execution constraints. To handle heterogeneity
in multi-robot teams, Parker (1994) proposed an architecture
called alliance and a related L-alliance architecture (Parker, 1996).
These approaches use continuous valued metrics for heterogeneity,
but the values stay fixed during the task and therefore cannot
reflect environmental changes as our approach does. Werger and
Matarić (2000) presents a distributed behavior based approach to
the problem of Cooperative Multi-Robot Observation of Multiple
Moving Targets (CMOMMT).The architecture uses cross inhibition
and cross subsumption between peer behaviors on each robot to
determine allocation of robots to targets, but all the robots have
the same capabilities and thus does not consider any heterogeneity.
Gerkey and Matarić (2002); Gerkey and Matarić (2000) proposed
MURDOCH, a dynamic task allocation approach for a group
of heterogeneous robots utilizing a publish/subscribe messaging
system. The approach is also validated with both a tightly coupled
multi-robot physical manipulation task and a loosely coupled
multi-robot experiment with long-term autonomy that included
tasks such as object-tracking, sentry-duty, cleanup, and monitor-
object. Although the tasks were somewhat complex, their inherent
constraints were mostly limited to sequential constraints between
atomic behaviors. Our proposed approach allows for more complex
constraints such as non-ordering and multiple paths of execution.

Additional market-based architectures focus on allocating tasks
distributively (Dias et al., 2006), while the team seeks to optimize
an objective function based upon individual robot utilities for
performing particular tasks (Parker, 2008). Wang et al. (2016)
proposed an algorithm which utilizes a task evaluation function
based on distance fitness and urgency. CeCoTA is a market based
algorithm for simultaneous allocation of multiple tightly couple
multi-robot tasks to coalitions of heterogeneous robots (Das et al.,
2014). The approach was validated in a simulated environment with
robots allocating a set of atomic tasks. However, the work does not
incorporate any inter-task dependencies, which are the basis of our
hierarchical task constraints.

Coalition formation is a prevalent approach for handling
team heterogeneity, enabling multiple robots to build small teams
that allow them to perform a larger overall task. ASyMTRe
enables the sharing of sensory and computational capabilities

(Zhang and Parker, 2010) in a navigation task in which only
one of the robots has localization capabilities. This approach
was extended in (Zhang et al., 2014), demonstrating formation
of coalitions in tightly coupled multi-robot tasks that need
to maintain a set of given sensor constraints, in a domain
in which robots need to navigate to various goals. Similar
coalitions have been demonstrated in cooperative manipulation
tasks: Chaimowicz et al. (2001) demonstrate an approach based on
two-robot leader/follower coalitions to carry a box. Furthermore,
Huntsberger et al. (2003),Huntsberger et al. (2004) present campout,
a Control Architecture forMulti-robot Planetary Outposts validated
on physical experiments of coordinated object transport and team
cliff traverse. However, these types of coalition formation methods
assume that the tasks are atomic behaviors which do not have
any inter-task constraints. These inter-task constraints are the
focus of our tasks which contain complex hierarchical constraints
between the tasks.

Methods that aim to handle more complex task representations
have been shown in (Koes et al., 2005; Ziparo et al., 2011), which
focus on the execution of tightly coupled tasks. In (Koes et al.,
2005), the task allocation problem is modeled as a mixed integer
linear programming (MILP) problem and a centralized anytime
algorithm is developed to provide an optimal solution that handles
the allocation, scheduling and path planning for a search and
rescue task with spatial constraints. Due to the centralized nature
of the algorithm, the method is dependent on prior knowledge of
a static environment and produces fixed allocations that do not
change during the course of the task. The Petri Net Plan framework
developed in (Ziparo et al., 2011) can represent multi-robot
plans using sensing, loops, concurrency, non-instantaneous actions,
action failures, and different types of action synchronization. This
does not consider heterogeneity as a factor for task allocation.
Furthermore, this method was tested on a homogeneous team of
robots (AIBO’s) with equivalent capabilities.

The proposed metric is similar to the utility functions computed
by the abovemarket-based approaches and to themotivation factors
used in the ALLIANCE architecture (Parker, 1994). It incorporates
task specific utility (such as a distance to a target object) with
both continuous utility (perceived grasp effectiveness) and discrete
information about the robots’ skills (ability/inability to grasp a
given object). However, the proposed work contributes this metric
for hierarchically structured tasks, that exhibit a combination
of complex constraints such as sequential, non-ordering, and
alternative paths of execution by a team of heterogeneous robots.

2.2 Prior work on collaborative task
execution

This work builds on two previously developed approaches
for collaborative execution of complex tasks: 1) a distributed
control architecture that allows for dynamic allocation of tasks
in homogeneous robot teams (Blankenburg et al., 2017) and 2) a
collaborative architecture that enables a single robot to coordinate
its task with a single human user (Anima et al., 2019). This
paper expands this work to teams comprising of heterogeneous
robots and humans, bringing new challenges for coordination and
communication.
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FIGURE 2
Representation of the joint task network for the heterogeneous team
experiments.

Theunderlying architecture for single robot control (Fraser et al.,
2016), which is the basis of this research, enables the encoding of
hierarchical tasks involving constraints such as sequential (THEN
nodes), non-ordering (AND nodes), and alternative paths of
execution (OR nodes), as shown in Figure 2. This representation
serves both as an encoding of the task constraints as well as the
actual controller that is executed by the robot. Goal Nodes are
the internal control nodes of the hierarchical task structure, and
include the THEN, AND, and OR nodes that are used by the tree
to encode the execution constraints of the task. Behavior Nodes are
the leaf nodes in the task tree structure and encode the physical
behaviors that the robot can perform, e.g., a behavior to pick and
place a cup will control the arm of the robot to pick up a cup
from the table and place it in another location. Each node in the
architecture maintains a state consisting of several components:
activation level, activation potential, active, and done. The state
information is continuously maintained for each node and is used
to perform top-down (activation level) and bottom-up (activation
potential) activation spreading that ensures the proper execution of
the task given the constraints. The state of each node in the task
structure is maintained via an update loop which runs at each cycle.
This loop uses the activation potential information to activate the
node that has themost availability for action (e.g., highest potential).

In the heterogeneous, multi-robot domain Blankenburg et al.
(2017), to enable cooperative execution of team tasks, each robot
maintains its own instance of the joint task tree structure, identical
to that of the other robots. Equivalent nodes in the task structures
across robots are called peers. These peers are the means of
communication between the robots and allow nodes to keep track
of other robots’ progress on the task. While the task hierarchy is
uniform across robots, the activation potential and activation levels
for each node are calculated individually by each robot. Using the
state of the peer nodes, each robot is able to identify if a given
node is currently being worked on or was already completed by
another robot. This is necessary to ensure there is no overlap in
the sub-tasks that the robots perform. The activation spreading
mechanism on a single robot utilizes the peer information in its
own task tree to determine the next step it should perform. The
process allows the robots to maintain and communicate the states
of all of the nodes to their corresponding peer nodes on the other
robots in order to ensure that the robots can work collaboratively
to complete the task in a manner that follows its constraints
(Fraser et al., 2016; Blankenburg et al., 2017).

In the single human single robot domain (Anima et al., 2019),
the robot stores a simulated copy of the human’s task controller,
representing the human’s mental model of the task. This second
representation is kept in parallel with the robot’s own representation,
and the status of various nodes in the human’s task (e.g., working,
or done) is updated by the robot using its camera. Peer nodes on
both the robot’s and the human’s controllers continuously exchange
messages that communicate their status information, enabling the
robot to infer what part of the task the human is working on. The
robot decides its next action based both on the constraints of the
joint task and the behavior of the human partner.

2.3 Simulation theory of mind approach to
heterogeneous human-robot teams

Given a team of robots and a common task with hierarchical
structure and temporal execution constraints the goal is to design
an architecture that allows the team to dynamically self-organize
(i.e., decide who does what), based on the current state of the
environment. The major challenge in this context is to coordinate
the actions of the teammates such that they do not overlap, meaning
to work on the same parts of the task, and that the task is
performed correctly according to the specified constraints. Our
proposed solution is based on simulation theory, based on the
underlying assumption that all the teammates have a complete
and identical representation of the task constraints, allowing
each of them to understand the states of the others from a
similar perspective.

To enable coordination within the human-robot team, each
robot teammate is equipped with several capabilities. First, each
robot has its own task representation (in the form of a hierarchical
tree as shown in Figure 2), which is the robot’s actual controller used
to perform the task. All robots update their task controllers during
execution, keeping track of which nodes are currently active and
which are done. Beyond their own controller, each robot stores a
separate mental model of the task representation for each of the
human teammates. This takes the form of a simulated controller,
identical in nature with the robot’s own, whose state is updated
based on observations from the sensors, in order to keep track
of the humans’ current and past goals achieved. The process is
illustrated in Figure 3: the robot uses its sensors (depth camera,
laser rangefinder) to track the location of the human’s hand in 3D
coordinates. Based on the current and past hand locations, the robot
infers what is the most likely object that the human is reaching
for: from change in distance and vector movement of the hand
toward all objects, the object of interest is the one for which the
distance is decreasing the fastest and angle between the movement
vector and hand vector to object is the smallest. As the object of
interest (intent) is recognized, the robot increases the activation
potential of the corresponding behavior node in the human’s task
controller, causing the node to become active. The human’s task
controller does not perform any actual work, it is only employed
to keep an updated status of the human’s current goals and the
parts of the task that have already been achieved.Thus, through this
process, the visual tracking of the human’s hand, enables the robot
to recognize the human’s intent in the context of tasks involving
manipulation of objects. The robot ascribes the detected intent
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FIGURE 3
The human’s task controller is continuously updated based on detected human intent.

to the human, updating the corresponding mental model of the
human’s task, which further enables the human-robot coordination,
as described below.

In the proposed architecture, coordination is achieved through
messages between peer nodes of the corresponding controllers,
either from robot to robot or from robot to human controllers.
Thus, during task execution, each robot controller continuously
communicates with all other robot controllers as well as all the
simulated human controllers, in order to ensure that the behavior it
selects for execution obeys the task’s ordering constraints and that
it is not in execution by another team member. When choosing
a behavior to perform, there could be two situations: 1) none
of the other teammates are currently working on, or have the
intent to perform that behavior, and 2) another teammate is
already working on or has the intention to perform that behavior.
The communication and behavior activation process for these
situations is described below, for both robot-robot and robot-human
coordination.

Figures 4–6 show the steps of node activation for human-robot
coordination, for a generic task of placing some food and kitchen
items. Throughout the entire execution the robot continuously
updates the human’s simulated controller in order to keep track with
the human’s task execution.

Figure 4 illustrates the decision process for situations in which
the human and robot choose to work on different sub-tasks. Due to
the THEN constraint at the top of the task, the left sub-tree is the
first that needs to be performed. The human decides to place the
burger, which, through the robot’s continuous observations, leads
to activating the PLACE-burger node from the human’s controller.
At the same time, if the robot’s activation level is highest for
PLACE-cup (due to closeness to that object), the robot aims to
activate that behavior. At this time both PLACE-burger (from the
human controller) and PLACE-cup (from the robot) send messages
to check the peer nodes on the other’s controller (step 1). Next,
the nodes receive peer status messages indicating that the other
teammate does not work on the same sub-task (step 2). This
leads to activating the corresponding behaviors on both controllers
(step 3).

If the human and the robot decide to work on the same sub-
task, a dialog is initiated by the robot to ask the human user if
they prefer to continue (Figure 5) or if the task is conceded to
the robot (Figure 6). The answers are given verbally with a yes/no,
which is detected through a microphone. Of particular interest,
are the situations when the human and robot decisions are made
simultaneously, meaning that the human has initiated actions to
the same sub-task as the robot, but the simulated controller model
has not yet been updated to indicate it as an active sub-task. If
the human’s peer subtask is active when the robot sends status
check messages, the robot always concedes the subtask execution
to the human.

Considering the same task as before, the behavior activation
proceeds as follows: if the robot’s highest activation level is for
PLACE-cup, the robot’s corresponding node will send a check status
message to its peer from the simulated human controller. If the
peer node responds as not active (step 2), the robot activates its
PLACE-cup behavior (step 3). However, if the PLACE-cup node on
human controller becomes active immediately after, a statusmessage
is sent from the human controller to the peer node on the robot
(step 4). Since this represents a conflict of overlapping goals, the
robot stops its execution and initiates a dialog (step 5). If the human
indicates a preference to continue with the task (step 6) via a verbal
response, the robot lowers its activation for the PLACE-cup behavior
and chooses another task, which in this case is for PLACE-burger
(step 8). If the human decides to concede the sub-task to the robot
(step 6 in Figure 6), the robot continues with performing it (step 7)
and the human chooses a different sub-task (step 8).

Figure 7 shows the steps of node activation for robot-robot
coordination, in situations in which the robots choose to work on
different sub-tasks: robot 1 begins by choosing to place the bread
for the sandwich, while robot 2 begins by choosing to place the cup
for the tea. Initially, the nodes for PLACE-bread (on robot 1) and
PLACE-cup (on robot 2) check the status of the peer nodes on the
other robot (step 1) and wait for the peer status message (step 2).
Since the peer nodes indicate that the other robot does not intend to
activate the same node, each robot decides that it can activate their
nodes and begin the sub-task execution (step 3).
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FIGURE 4
Human-robot decision making: non-overlapping sub-tasks.

FIGURE 5
Human-robot decision making: overlapping sub-tasks, human prefers to continue

Figure 8 shows the node activation process when the robots
decide to work on the same sub-task: in this scenario both robots
choose to work on placing the bread for the sandwich. Initially
(step 1) the nodes for PLACE-bread on both robots check the
status of the peer nodes and then wait for their status message
(step 2). The response messages indicate that both robots plan to
work on the same node, but have a timestamp indicating which
robot first initiated the activation. The robot that has the earliest
activation timestamp would then activate its node (steps 3–4), while
the other robot lowers its activation for the same sub-task (step
5). This enables another node in robot 2’s network (e.g., PLACE-
cup) to get a higher activation level, and thus to begin working on
another part of the task (step 6).

2.4 Task allocation for heterogeneous
teams with dynamic capabilities

2.4.1 Task allocation using activation potential
The architecture in Section 2.2 assumes that all the robots in the

team have the same capabilities, all robots are capable of performing
all the sub-tasks/behaviors, and the activation potential of each
behavior node is computed using a distance-based metric. We
introduce a generalized and extensible approach for considering
the robot’s degree of ability to perform a task that: 1) covers a
discrete and continuous spectrum and 2) is variable in different
environmental conditions. This modulation of the architecture is
able to handle cases where robots have different capabilities. This
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FIGURE 6
Human-robot decision making: overlapping sub-tasks, human concedes to robot.

FIGURE 7
Multi-robot decision making: non-overlapping sub-tasks.

degree of ability can be utilized to compute the activation potential
to reflect the dynamic grasp capabilities of the different robots.

To handle the variable heterogeneity between robots, several
factors are incorporated into a single metric representing a robot’s
perceived level of capability for executing a specific behavior.
In addition, the metric is continuously updated during the task
execution, enabling the team to take into account the most recent
environmental conditions for task allocation. For the team of
humanoid robots used for this work, the main type of behavior
node used is a manipulation (pick and place) behavior (represented
in short as PLACE in the task representations); therefore, the cues

considered relevant for the metric are specific for manipulation
tasks. The components taken into account are the distance between
the arm and the objects and a grasp score that represents a
robot’s perceived effectiveness of grasping an object. Different
environmental conditions are reflected in the grasp score, provided
through a novel sensory pipeline, which is able to generate
grasps for objects with unknown initial locations. To represent
a distinct heterogeneity between the robots used in our task,
different constraints were placed on the grippers for each robot.
For the PR2, the enforced constraints only allow the robot to get
grasps in which the gripper is sideways, i.e., nearly parallel to
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FIGURE 8
Multi-robot decision making: overlapping sub-tasks.

the floor. For the Baxter, a similar method is used to enforce the
gripper to grasp the objects top down, i.e., the gripper is nearly
perpendicular to the floor. These constraints enforce the maximum
distinction in grasping functionality between the robots to illustrate
the extent of heterogeneity for which the proposed method allows.
These constraints force several of the objects to become nearly
un-graspable by the PR2, namely, the apple, the orange, and the
sandwich. The grasp scores for these objects returned by our novel
perception-manipulation pipeline (Section 2.4.2) are close to 0 due
to the fact that the objects are too wide for the PR2’s gripper to
fit around them when the gripper is constrained in this manner.
The constraints on the Baxter do not inhibit its grasp capabilities
for any of the objects, but result in different grasp scores for the
robot in different environments. These metrics are combined using
a weighted linear combination, as shown in Equation 1:

activation_potential = wd ⋅ distance_score+wg ⋅ grasp_score (1)

wd and wg represent weights assigned to each metric,
distance_score encapsulates how far the end effector is from
the object to be grasped, and grasp_score encodes how good
is the grasp returned from the grasp pipeline. Details on the
grasp_score are provided in Section 2.4.2. The distance_score is
computed in Equation 2, where x⃗obj and x⃗arm represent the 3D
positions of the object and arm, respectively.

distance_score = 1
‖x⃗obj − x⃗arm‖

(2)

The values of weights used can be selected to assign a higher or
lower significance to eachmetric; in thisworkwd = 1 andwg = 0.001,
to ensure that the grasp score is the same order of magnitude as the
distance metric.

This metric is incorporated into our distributed control
architecture through the activation potential (Section 2.2). The
activation potential for each individual pick and place node is
computed and updated at each step using Equation 1, which takes
into account the differentmetrics described above.This value is then
used by each robot to determine what behavior node to activate. In
order to ensure proper coordinationwith the other robot teammates,
such that no two robots decide to execute the same behavior, the
process described in Section 2.2 is followed. Incorporation of the
metric allows the task allocation to account for the robot’s degree
of ability to perform a task; the metric 1) covers a discrete and
continuous spectrum and 2) is variable in different environmental
conditions.

2.4.2 Perception-manipulation pipeline
The metrics used in Equation 1 are continuously computed

from sensory data, through the pipeline shown in Figure 9. This
pipeline is capable of generating grasps for objects with unknown
initial locations. This allows for two contributions to the previously
developed architecture described in Section 2.2: 1) the metric is
able to accurately reflect the varying capabilities of the robots in
different environmental conditions and 2) the architecture is able to
automatically grasp objects. In the previous architecture, the grasps
of the objects were pre-determined based on specific orientations.
Utilizing this pipeline, grasps can be automatically generated for
objects with arbitrary positions and orientations. This enables us to
extend the architecture to allow for dynamic task allocation with
different environmental conditions.

The perception-manipulation pipeline consists of multiple
modules. The first module performs object detection using our
previously developed vision system described in (Hoseini et al.,
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FIGURE 9
Perception-manipulation pipeline.

2019). This system uses input from a Kinect mounted on the robot’s
head to detect the objects.

The object detection module returns objects and their locations
in the 2D camera view; this is combined with depth information
to obtain locations of the objects in the robot’s 3D coordinate
frame. This is used to compute the end effector distance to each of
the objects in the scene, and as input to a module that computes
possible grasps for the detected objects, based on the GPD library
(Gualtieri et al., 2016). Given a point cloud, the GPD library is
designed to return a set of grasps (6-DOF position and orientation,
grasp quality score). According to (Gualtieri et al., 2016), the grasps
returned by GPD are robust and reliable in cluttered environments
(grasps were shown to have a 93% success rate).

However, GPD makes one of two assumptions: 1) any graspable
object in the scene is acceptable; or 2) only a single object is in the
point cloud.These assumptions did not hold for our use, so wemade
several modifications to utilize GPD. To force GPD to return grasps
on a single object, each object in the task tree utilizes its own instance
of the GPD library, which observes a subset of the point cloud from
the Kinect centered around the location of the object (from the
object detectionmodule). As the object moves around, its respective
location in the point cloud changes. The GPD workspace associated
with that object has to be continually updated aswell, which required
some modifications to GPD’s interface with the Robot Operating
System (ROS) (Quigley et al., 2009). We modified GPD further to
extract, for each object, the grasp with the highest rating score from
the set of possible grasps.

These modifications to GPD resulted in a single rating score per
object. We take the continuous-valued score returned by GPD and
add two additional discrete filters to the score in order to obtain the
final grasp score. The first filter checks whether or not the grasp is
within the robot’s reachable space. If it is, the original score is kept.
Otherwise, the grasp score is set to 0. The grasp score returned by
the first filter is then fed into the second filter. The second filter
checks whether the orientation of the grasp is within a provided
range of orientations which represent the possible configurations of
the robot’s gripper. For the purposes of this experiment, this range
is hard-coded to enforce different grasp patterns on the robots as
specified in Section 2.4.1 but could be automatically computed using
the computed grasp position and an inverse kinematics solver for
the robot. If the grasp is within the set of feasible configurations for

the robot, the score passed from the first filter is kept, otherwise the
score is set to 0. The result of this second filter becomes the final
grasp score for the given object. This grasp score therefore provides
a measure of the robot’s perceived capability for grasping an object
in varying environmental conditions with unknown orientations.

The grasps generated by GPD along with their newly computed
grasp scores are returned by the compute grasps module. The
distance and the grasp scores are then used to compute the activation
potential for each of the objects in the scene as explained in
Equation 1.This value is used by the update loop to determinewhich
node should be activated by each robot, as described in Section 2.2.

3 Results

3.1 Experimental setup

The proposed architecture has been validated in two types of
experiments, specifically designed to illustrate the key proposed
contribution: 1) the ability to coordinate complex task execution
in teams consisting of both human and multiple robot teammates
and 2) the ability to handle dynamically changing capabilities in the
context of heterogeneous multi-robot teams.

The objects used in the experiments include a wooden tea-set
(consisting of a cup, a sugar container, and a teapot) in addition to
several fake food objects (namely, an apple, a burger, an orange, and a
sandwich).The task structures are shown in Figure 4, for the human-
robots experiments, and in Figure 2 for themulti-robot experiments.

The human-robots task consists of placing some of the
food/household objects in the order shown by the hierarchical tree
representation: first, the burger and the cup have to be placed in their
desired destinations, without any constraint on which is placed first,
and then the teapot and sugar are placed at their destinations, also
without any constraints.

The joint task structure for themulti-robot experiments consists
of two main sub-tasks that can be executed in parallel. The first is
a tea-setting task which is shown in the left sub-tree of the task
structure.This sub task consists of first placing the cup, then placing
the sugar and the teapot (in any order) to their goal locations. The
second sub-task is the food-setting task which is shown in the right
sub-tree of the task structure. This sub-task consists of first placing
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FIGURE 10
Experimental setup. Left: Human and 2 robots scenario. Right: placement of objects for the three distinct robot-robot scenarios. Figure contains
images of the author(s) only.

the sandwich, followed by placing either the orange or the apple, and
then finally placing the burger to their respective goal locations.

The pick and place nodes take as input the desired grasp
location of an object provided by the perception-manipulation
pipeline (Section 2.4.2) and place the object at a pre-specified
location. End-effector trajectories to the grasp location are generated
using MoveIt (Sucan and Chitta, 2013).The right arm on each robot
was used. The complete motion must be completed in order for the
pick and place node to be marked as done. Until the place command
finishes, the robot waits before it activates another node, since only
one node per robot can be doing work at any given time.

The initial setups for the human-robot and multi-robot
experiments are shown in Figure 10. For this setup, the Baxter and
PR2 robots were placed on either side of a table with the objects in
between them. In the human-robot experiments, the human sits at
one of the free sides of the table.The goal locations for the objects are
as follows: the burger and the teapot are placed on the human side of
the table, while the cup and the sugar are placed on the opposite side.

For the multi-robot experiments, three different scenarios were
performed, in which the objects were placed in different locations
to show that the architecture can dynamically determine different
task allocations based on the specifics of the environment. Figure 10
shows the placement of the objects for the different scenarios. For
all of the scenarios, the goal locations were as follows: the apple
and the orange are placed into the bowl on the right side of the
PR2; the cup, sugar, and teapot are placed next to the bowl; and the
burger and the sandwich are placed onto the plate on the left side
of the PR2. In order to assess the impact of the proposed metric
as defined in Section 2.4.1, each scenario consisted of two separate
trials. The first trial used a metric (named distance-only) that took
into consideration only the distance from the robot’s gripper to the
objects for the activation potential (first term in Equation 1). The
second trial used the full heterogeneitymetric (nameddistance-and-
grasp) shown in Equation 1 which incorporates both the distance
and the grasp score into the activation potential.

3.2 Experimental results

3.2.1 Human-robot experiments
Figure 11 illustrates key stages from the execution of the

experiments performed with the team of 2 humanoid robots and a
human teammate. Stage 1 shows the initial setup, prior to the start

of the experiment. In stage 2, the Baxter robot selects the task of
placing the burger, while the PR2 and the human both sel ect to place
the cup. Through the decision process described in Section 2.3, the
robot detects this conflict and initiates a dialog as shown in Stage
3. Through the dialog, the human acknowledges giving up on the
task and allowing the robot to continue. Stage 4 the robot confirms
receiving the human’s decision and activates the cup placing task.
In stage 5 both robots execute their current tasks (place-cup by the
Baxter and place-burger by the PR2). At this time, two sub-tasks
remain to be executed, which are placing the sugar and the teapot.
Due to closeness to the sugar cup, the PR2 robot decides to place
it, with no other teammates being interested in that task (stage 6).
At the same time, the Baxter and the human both decide to place
the teapot. The Baxter robot initiates a dialog and gets confirmation
from the user that they want to continue with that task (stage 7).
The Baxter acknowledges the decision of the human teammate and
lowers the activation for placing the teapot (stage 8). Stage 9 shows
the final step of the task being executed by the human teammate.

3.2.2 Heterogeneous robot team experiments
The timing diagrams for the different scenarios are shown in

Figures 12–14. In each figure, the results of the two trials within
a single scenario are shown. The top row illustrates the results of
the first trial using the distance-only metric on the PR2 and Baxter.
The bottom row illustrates the results of the second trial using the
distance-and-grasp metric. Each of the individual timing diagrams
illustrate the change of state of each node in the task tree for a
given robot. The different color bars in the figure represent the
times during which a particular pick and place behavior node is
in one of the following states: inactive, active, running, or done.
The intervals corresponding to the running state identify when a
given node is being executed and are thus indicative of the order
in which various sub-tasks have been performed. Additionally, the
grasp scores for the different scenarios for each robot are given
in Tables 1, 2. These scores differ across trials and robots due to
the different environmental conditions in each scenario as well as
different grasp capabilities of each robot.The results of each scenario
are discussed below.

In Scenario 1 there were several differences in the allocation of
objects between the trials for the distance-only and the distance-
and-grasp metrics. For the distance-only trial, first the PR2 picked
up the sandwich while the Baxter grabbed the cup, then the PR2
grabbed the orange while the Baxter grabbed the teapot, and lastly
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FIGURE 11
Key stages of the human-robot experiment. Figure contains images of the author(s) only.

FIGURE 12
The timing diagrams for Scenario 1. These diagrams represent the times at which the state of a node in a given task tree changed. Top row: Provides
the timings for the PR2 and the Baxter using the distance-only metric. Bottom row: Provides the timings for the PR2 and the Baxter with the
distance-and-grasp metric which utilizes the heterogeneity component. Within each graph: Each row corresponds to a behavior node named
according to its corresponding object. The horizontal axis is increasing time. Brown→ inactive, Orange→ active, Green→ working, and Blue→ done.

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2025.1533054
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Nicolescu et al. 10.3389/frobt.2025.1533054

FIGURE 13
The timing diagrams for Scenario 2. These diagrams represent the times at which the state of a node in a given task tree changed. Top row: Provides
the timings for the PR2 and the Baxter using the distance-only metric. Bottom row: Provides the timings for the PR2 and the Baxter with the
distance-and-grasp metric which utilizes the heterogeneity component. Within each graph: Each row corresponds to a behavior node named
according to its corresponding object. The horizontal axis is increasing time. Brown→ inactive, Orange→ active, Green→ working, and Blue→ done.

FIGURE 14
The timing diagrams for Scenario 3. These diagrams represent the times at which the state of a node in a given task tree changed. Top row: Provides
the timings for the PR2 and the Baxter using the distance-only metric. Bottom row: Provides the timings for the PR2 and the Baxter with the
distance-and-grasp metric which utilizes the heterogeneity component. Within each graph: Each row corresponds to a behavior node named
according to its corresponding object. The horizontal axis is increasing time. Brown→ inactive, Orange→ active, Green→ working, and Blue→ done.

the PR2 picked up the sugar and the Baxter grabbed the burger. Since
the metric used in this trial only utilizes distance to the objects,
this allocation grasps the closest objects first, while adhering to
the constraints defined in the task structure. However, because the
PR2 cannot accurately grasp the sandwich or the orange due to the
constraints of the gripper, these objects get knocked over during
the execution of this task. At this time, the robots do not have the

capability to detect that the object was dropped, so they assume
that the place behavior was successful and the task will continue
on. This will be addressed in future work. In the trial utilizing the
grasp score, the cup, sugar, and tea were all allocated to the PR2, and
the other objects were allocated to the Baxter.This illustrates that by
utilizing the grasp score in the metric for the activation potential,
the architecture is able to allocate objects which are graspable by
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TABLE 1 Table of grasp scores for the PR2 for each scenario (rounded to
nearest integer).

PR2 Scenario 1 Scenario 2 Scenario 3

Cup 25 33 14

Sugar 57 17 23

Tea_Pot 13 41 50

Sandwich 0 0 0

Orange 0 0 0

Apple 0 0 0

Burger 15 91 5

Scores in bold are the objects which the PR2 grabbed during each scenario.

TABLE 2 Table of grasp scores for the Baxter for each scenario (rounded
to nearest integer).

Baxter Scenario 1 Scenario 2 Scenario 3

Cup 10 8 2

Sugar 14 2 2

Tea_Pot 2 17 13

Sandwich 44 26 27

Orange 12 14 8

Apple 13 9 7

Burger 16 13 11

Scores in bold are the objects which the Baxter grabbed during each scenario.

the robot, while still adhering to the various types of constraints
provided in the task structure.

Scenario 2 illustrates the continuous-valued element of the
proposed metric. At the time when the allocation of the burger was
determined, theBaxter’s gripperwas at the goal location for the orange
and the PR2’s gripper was at the goal location for the sugar. Due to the
fact that the pick location of the burger is slightly closer to the orange’s
goal location than to the sugar’s goal location, in the original trial the
Baxter picked up the burger since only the distance from gripper to
objectwasused.Theburger’s grasp score for thePR2 ishigher than that
of theBaxter (91vs. 13).Thus, in the trialwhichutilizes thegrasp score,
the burger is allocated to the PR2 instead of the Baxter.This illustrates
that the proposed metric is able to properly allocate objects based on
a skill which can be performed to various degrees (continuous-valued
score) rather than a simple binary (yes/no) skill.

Scenario 3 illustrates a combination of the findings from the
previous two scenarios. Utilizing the proposed distance-and-grasp
metric which accounts for the variable heterogeneity: 1) allows the
objects to be allocated such that the robots can grasp all of the objects
allocated to them and 2) is able to allocate objects with a higher
chance at being grasped according to a continuous-valued metric.
Using the distance-only metric, the apple is allocated to the PR2.

However, the apple cannot be reliably grasped by the PR2 due to the
gripper constraints. Thus, in the trial with the distance-and-grasp
metric, the apple is instead allocated to the Baxter. This is similar
to the finding in Scenario 1. In the distance-and-grasp metric trial,
when the burger is allocated, the PR2 is at the sugar goal location
and the Baxter is at the orange goal location. The PR2 has a higher
grasp score on the teapot than the burger (50 vs. 5); while the Baxter’s
scores are very similar (11 vs. 13). Thus, the PR2 grabs the teapot
while the Baxter grabs the burger. This illustrates that, similar to
Scenario 2, the distance-and-grasp metric which accounts for the
heterogeneity is able to allocate the objects to the robots which have
a higher chance of grasping them reliably.

These scenarios illustrate that the inclusion of the heterogeneity
component in the scoring metric of the architecture results in
allocations of the objects to the robots which are best suited to
grasp them. The proposed architecture is able to handle variable
heterogeneity during the task allocationwhich takes into account the
most recent environmental conditions as the task progresses while
adhering to the complex task constraints.

4 Discussion

4.1 Future work

An immediate extension of this work is to include additional
features in the computation of the robot’s performance metric, such
as a feature that provides insight into the efficiency of the trajectories
computed to reach the objects and the destination. Additionally, the
use of both arms for each robot can lead to increased team efficiency.
Specific modules for obstacle avoidance will be developed to avoid
collisions during the task. Furthermore, an additional capability will
be added to track the status of the task execution in order to detect
failed actions and then re-attempt them. Furthermore, to add to the
repertoire of current experiments, new scenarios will be developed
that would rely not only on the robot’s manipulation capabilities,
but also on their navigation skills to reflect further heterogeneity
between robots, since the PR2 robot is mobile but the Baxter is not.

4.2 Conclusion

This paper presents a real-time distributed control architecture
for collaborative task execution of manipulation tasks by
heterogeneous human-robot teams. The main contributions of the
approach are the ability to coordinate task executionwith robots and
human teammates, the ability to handle variable robot heterogeneity,
the ability to handle automatic grasping of objects with unknown
initial locations, and the collaborative execution of tasks with
hierarchical representations and multiple types of constraints. This
is achieved through a theory ofmind approach in which robots store
simulated mental models of the human’s task and through the use of
a continuous-valued metric that encodes a robot’s ability to perform
a particular task component; the metric is updated continuously
during task execution, allowing for dynamic task allocation that
takes into account the most recent environmental conditions.

Additionally, the architecture provides a novel perception-
manipulation pipeline which is able to automatically generate grasps
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on objects with arbitrary positions and orientations. This pipeline is
utilized by the updated metric which allows it to accurately reflect
the varying capabilities of the robots in different environmental
conditions. Experimental validation is performed with teams of
two humanoid robots and a human, as well as two heterogeneous
humanoid robots performing household manipulation tasks. The
outcomes of the experiments support the proposed contributions.
First, humans and robots can effectively coordinate their actions and
correctly execute tasks with complex constraints. Second, different
environmental conditions result in different and continuously
changing values for the robot’s task execution ability, resulting
in dynamic task allocation among the heterogeneous robot team
performing complex hierarchical tasks.
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