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A sliding-mode control based on a prescribed performance function is proposed
for discrete-time single-input single-output systems. The controller design aims
to maintain the tracking error in a predefined convergence zone described by
a performance function. However, due to the fixed structure of the controller,
the applicability and universality of this method are limited. To address this
issue, we separate the controller into two parts and analyze the principle of
the prescribed performance control (PPC) method. Then we can replace the
linear part of the controller with model-based control methods to adapt to
the specific characteristics of the controlled system. Compared with current
works, when the established system model is inaccurate, we can enhance the
smoothness or response speed of the system by introducing a penalty constant
to alter the system’s transient characteristics while the tracking error is within the
prescribed domain. Finally, numerical comparison simulations and a lower limb
exoskeleton experiment illustrate the established results and the effectiveness
of the proposed method.

KEYWORDS

prescribed performance, sliding-mode control, predefined convergence zone, lower
limb exoskeleton, transient characteristics

1 Introduction

Most control methods are performance-based methods. For example, the
parameters of the PID are designed either to obtain the desired performance of
rise time, maximum overshoot and steady-state error of the unit-step response
of the system, or to achieve the desired sheared frequency and phase margin
through Nichols plot or Bode diagram. If the performance of higher-order system
cannot be guaranteed by PID controller, we can not only introduce the state/output
feedback control and self-tuning method to achieve the desired locations of the
poles which determine the speed and damping of the system response, but also
apply the LQR, minimum variance control and predictive control methods to acquire
the optimal control performance (Mir and Senroy, 2020; Kim and Ahn, 2018;
Tajaddodianfar et al., 2019; Liang et al., 2019; Ahmed et al., 2017; Rosolia andBorrelli, 2017).
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Additionally, in consideration of some systems with the slight
nonlinearity, parameter uncertainty and even unknown structures,
the performance of adaptability ismade possible through combining
the online estimate algorithm with the above controller according
to the certainty equivalence principle (Åström and Wittenmark,
2013; Goodwin and Sin, 2009; Zhou et al., 2018; Zheng et al., 2016;
Xi et al., 2024; Chen et al., 2021).

Considerable efforts have been made to deal with the design of
the prescribed performance controller (PPC) for a kind of output
constrained control problem. This methodology originates from
(Bechlioulis and Rovithakis, 2008) and means that the tracking
error should converge to an arbitrarily small residual set. Its
advantage is that both transient and steady-state performance of
the system can be assured, i.e., the convergence rate is no less
than a prespecified value and the maximum overshot is less than
a small prespecified domain (Bechlioulis and Rovithakis, 2009;
Bechlioulis and Rovithakis, 2011; Bechlioulis and Rovithakis, 2014).
In addition, a series of state feedback control schemes are proposed
in combination with fault tolerance (Gao et al., 2022), fuzzy adaptive
(Chen et al., 2021; Sui et al., 2021), finite-time index (Dong and
Yang, 2022; Gao et al., 2021; Liang et al., 2022), and neural network
finite-time index (Shi et al., 2024; Deng et al., 2022) for realization
of the PPC.

The aforementioned PPCmethods are based on continuous state
space model, however, sometimes discrete-time control methods
are more difficult to analyze and are more suitable for computer
control in industrial setting. A kind of sliding mode control based
on ARX model was proposed by Nguyen et al. (2017) to maintain
the tracking error trajectory in a predefined convergence zone
described by the performance function. Similarly, (Liu and Yang,
2018; Liu and Yang, 2019a; Liu and Yang, 2019b), propose one
class of sliding mode control based on the equivalent dynamic
linearization model and introduce the online identification for
the adaptability of this class of method in nonlinear systems
(Zhang et al., 2020; Zhang et al., 2021). Generally speaking, we
shall begin with the topic on the certain linear system with ARX
model like Nguyen et al. (2017) for more easily understanding
the principle of this class of discrete PPC method (Nguyen et al.,
2017; Liu and Yang, 2018; Liu and Yang, 2019a; Liu and Yang,
2019b), because the adaptability for the uncertainty or nonlinearity
is radically introduced by on-line parameters estimation according
to certainty equivalence principle Åström and Wittenmark, 2013;
Goodwin and Sin, 2009). In addition, Nguyen et al. (2017) mainly
focuses on the tracking performance, which is determined by
performance function, and disregards the transient characteristics
which can be changed through the adjustment of the parameters in
controller. Actually, the prescribed performance is not the only index
of system performance, and many well-known and visible transient
performance indexes of the system should be concerned.

This paper proposes a new sliding mode control with a
prescribed performance function. To enhance the applicability and
universality of the PPCmethod, we separate the proposed controller
into two parts: the linear feedback part and the nonlinear part. The
linear part stabilizes the system by placing the poles of the system at
the origin point to hold the system output and satisfy the optimal
control index. Meanwhile, the actual output zone is enlarged by
adding the nonlinear part of the controller, while the output error is
still guaranteed within the prescribed zone defined by Nguyen et al.

(2017) and Liu and Yang (2018), Liu and Yang (2019a), Liu and
Yang (2019b). More precisely, simulations show that the linear part
is the prerequisite for guaranteeing the convergence of tracking error
within a predefined arbitrarily small zone. At the same time, the
maximum overshot is less than the desired constant.

Themain contributions are summarized as follows: i) To address
the issue where the linear part of the controller cannot ensure
sufficiently small errors under conditions of inaccurate modeling,
we modify the denominator of the controller by introducing a
penalty constant to tune the system behaviors. In this way, we
can guarantee the system’s output within the prescribed zone and
tune the introduced penalty constant to further improve the other
system’s transient characteristics, such as smoothness, response
speed, overshoot, etc. ii) We replace the linear part of the PPC
controller with a dynamic model of the exoskeleton, and propose
an incremental PPC controller based on PID + dynamics to ensure
that the tracking error remains within a predefined region. The
proposed control method is then successfully applied on a lower
limb exoskeleton.

The rest of the paper is organized as follows: Section 2
provides the problem formulation and preliminaries. Section 3
introduces the design procedure and stability analysis of the
proposed method. Section 4 presents simulations to study the PPC
method and an experiment to test the controller. The conclusion
is given in Section 5.

2 Problem formulation and
preliminaries

2.1 System description

Consider the single-input and single-output discrete-time linear
dynamical system (Equation 1) as follow:

A(z−1)y(k) = B(z−1)u(k) + ζ(k) (1)

where u(k) is the control input; y(k) is the measured output; ζ(k) is
the unknownmodeling errors and nonlinearities.A(z−1) and B(z−1)
are defined as Equation 2

A(z−1) = 1+ a1z−1 + a2z−2 +⋯+ anaz−na

B(z−1) = b1z−1 +⋯+ bnbz−nb
(2)

where na and nb are the orders of system output and control input,
respectively.

Assumption 1:The unmodeled dynamics ζ(k) is slowly varying with
respect to the sampling frequency and the unmodeled dynamics
estimation error satisfies the condition that | ̃ζ(k)| ≤ δ, where δ is a
small positive number.

2.2 Prescribed performance function

The prescribed performance control method proposed by
Nguyen et al. (2017) and Liu and Yang (2018), Liu and Yang (2019a),
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Liu and Yang (2019b) is designed to ensure adherence to specified
tracking error constraints (Equation 3) as follows:

−ρkχk < e(k) = yd(k) − y(k) < ρkχk (3)

where yd(k) represents the desired output of the system at the time k;
χ
k
and χk represent the lower and upper bounds, respectively. ρk is a

bounded and strictly positive decreasing function with the property
(Equation 4) as follow:

lim
k→∞

ρk = ρ∞ (4)

and have given the performance function and the upper and lower
bounds (Equations 5–7) as follow:

ρk+1 = κρ∞ + (1− κ)ρk (5)

χk+1 = κ + (1− κ)χk (6)

χ
k+1
= κ + (1− κ)χ

k
(7)

where ρ0 ≥ ρk ≥ ρ∞ ≥ 0 and 0 < κ < 1.
To address the constrained control issue (Equation 3), we

transform the tracking error e(k) into an unconstrained equivalent
form and give a strictly increasing function Θ(τk) of a transformed
error τk. Define

e(k) = ρkΘ(τk) (8)

The strictly increasing function must satisfy the following
conditions (Equations 9, 10).

Θ(τk) ∈ (−χk,χk) (9)

lim
τk→+∞

Θ(τk) = χk and lim
τk→−∞

Θ(τk) = −χk (10)

Due to the above properties of Θ(τk) and ρk ≥ ρ∞ > 0, the
inverse transformation can be obtained by Equation 11

τk = Θ−1(
e(k)
ρk
) (11)

With regard to the given tracking error e0, if ρ0 is selected such
that −χ

0
ρ0 < e(0) < ρ0χ0 and τk is bounded, then Θ(τk) ∈ (−χk

,χk)
holds and (Equation 3) is guaranteed.

We introduce a strictly increasing function (Equation 12) for
control design.

Θ(τk) =
χke

bτk − χ
k
a

ebτk + a
(12)

Then we have the transformed error τk as follows:

τk =
1
b
ln a(

χ
k
ρk + e(k)

χkρk − e(k)
) (13)

When a = 1 and b = 2, (Equation 13) will degenerate into the
transformed error in Nguyen et al. (2017).

The above prescribed performance function design in
Liu and Yang (2018), Liu and Yang (2019a), Liu and Yang
(2019b) is designed for the system without consideration
of unmodeled dynamics, then Nguyen et al. (2017)
further modified the tracking error constraint (Equation 3)
into

−δ − ρkχk < e(k) < ρkχk + δ (14)

Which takes the unmodeled dynamics including the disturbance
and nonlinearities and offset error into consideration. δ is a
small constant (Nguyen et al., 2017).

3 Prescribed performance control
design

Consider the following sliding mode function (Equation 15):

s(k) = θ(k) − 1 (15)

where θ(k) is a variable derived from the transformed error and is
defined as Equation 16

θ(k) =
χ
k
ρk + e(k)

χkρk − e(k)
(16)

Then the reaching condition is given as follows:

s(k + 1) − s(k) = −qTs(k) −Λssign(s(k)) (17)

where Λs > 0. In this note, we adopt

Λs = qT (18)

We can obtain the one step-ahead tracking error as follows

e(k+ 1) = yd(k+ 1) − y(k+ 1)

= yd(k + 1) + a1(k) +⋯anay(k − na + 1) (19)

−b1u(k) −⋯bnbu(k − nb + 1) − ζ(k − 1)

Here, we define ̂ζ(k) as the estimated unmodeled
dynamics. According to the discrete-time perturbation
estimation technique (Nguyen et al., 2017), we can
estimate this unknown term by one-step delayed value as
follows:

ζ(k + 1) ≈ ζ(k) = y(k) + a1y(k − 1) +⋯+ anay(k − na) − b1u(k − 1)

−⋯bnbu(k − nb) (20)

We define the perturbation estimation error ̃ζ(k) as follow

̃ζ(k) = ̂ζ(k) − ζ(k) (21)

From Equations 17, 18, 20, 21, we have
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FIGURE 1
Tracking performance comparisons and convergence zone.

FIGURE 2
Control input of each controller.

χ
k+1

ρk+1 + e(k + 1)

χk+1ρk+1 − e(k + 1)
= (1− qT)θ(k) + qT −Λssign(s(k)) (22)

Then we have (Equation 23) by simplifying (Equation 22).

e(k + 1) + a1Δy(k) +⋯+ anaΔy(k − na + 1)

−b1Δu(k) −⋯− bnbΔu(k − nb + 1) + ̃ζ(k + 1)

−
χk+1[(1− qT)θ(k) + qT −Λssign(s(k))] − χk+1
(1− qT)θ(k) + qT + 1−Λssign(s(k))

ρk+1 = 0 (23)

where Δy(k− i) = y(k− i) − y(k− 1− i), (i = 0,⋯,na) and
Δu(k− j) = u(k− j) − u(k− 1− j), (j = 0,⋯,nb). Because the
unmodeled dynamics estimation error ̃ζ(k) is unknown
in experiment (Nguyen et al., 2017), we can obtain the

FIGURE 3
Tracking performance comparison.

FIGURE 4
Tracking performance comparisons and convergence zone.

control output (Equation 24) through solving (Equation 23)with the
absence of ̃ζ(k).

Δu(k) = b−11 [

[
yd(k + 1) + a1y(k) +⋯+ anay(k − na + 1) − b2u(k − 1)

−⋯− bnbu(k − nb + 1) − ̂ζ(k + 1)

−
χk+1[(1− qT)θ(k) + qT −Λssign(s(k))] − χk+1
(1− qT)θ(k) + qT + 1−Λssign(s(k))

ρk+1]

]

= b−11 [

[
e(k + 1) + a1Δy(k) +⋯+ anaΔy(k − na + 1)

− b2Δu(k − 1) −⋯− bnbΔu(k − nb + 1)

−
χk+1[(1− qT)θ(k) + qT −Λssign(s(k))] − χk+1
(1− qT)θ(k) + qT + 1−Λssign(s(k))

ρk+1]

]
(24)
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FIGURE 5
Tracking error and prescribed zone for the error.

FIGURE 6
The control input of each controller.

To further study the principle of controller (Equation 24), we
separate the controller into two parts as follows:

∆ulinear(k) = b1−1[

[
e(k + 1) + a1∆y(k) +⋯+ ana∆y(k − na + 1)

−b2∆u(k − 1) −⋯− bnb∆u(k − nb + 1)]

]
(25)

∆unonlinear(k) = −b
−1
1

χ
k+1
− χk+1[(1− qT)θ(k) + qT −Λssign(s(k))]

(1− qT)θ(k) + qT + 1−Λssign(s(k))
ρk+1
(26)

where Δulinear(k) is the linear part which places all the poles of
the system to the original point and it can be regarded as one-step-
ahead control (OSAC);Δunonlinear(k) denotes a nonlinear part which
keeps system output not beyond the prescribed domain, although it
may cause the output of system away from the desired trajectory.

FIGURE 7
Tracking performance comparisons and convergence.

FIGURE 8
Control input of each controller.

We name (Equation 24) by OSAC-PPC and name (Equation 25) by
OSAC for conveniently discussion in the simulations.

Then the control law (Equation 24) can be rewritten as Equation 27

u(k) = u(k − 1) +Δulinear(k) +Δunonlinear(k) (27)

Theorem 1: Consider the nonlinear system (Equation 1) with
sliding control law (Equation 24). If the initial parameters χ0, χ0
and ρ0 are properly selected to satisfy −δ− χ

0
ρ0 < e(0) < χ0ρ0 +

δ, the prescribed performance described by Equation 14 will be
guaranteed for all k > 0.

Proof: The proof of Theorem 1 is given in the Appendix.

Remark 1: Similar to the existing PPC approaches in Nguyen et al.
(2017) and Liu and Yang (2018), Liu and Yang (2019a), Liu and
Yang (2019b), this paper discusses a transformed error algorithm
combined with a new sliding mode control strategy to guarantee
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FIGURE 9
(A)Three-dimensional modeling of the lower limb exoskeleton robotic system; (B)Three joints lower limb exoskeleton system.

FIGURE 10
Exoskeleton hardware control architecture.

the tracking error converges to a predefined zone. The control law
is separated into two parts: the linear part and nonlinear part. The
linear part defined as Δulinear(k) in this note is to stabilize the system
by placing the poles of the system to origin point for the optimal

control performance. The nonlinear part defined as Δunonlinear(k) in
this note keeps the output trajectory not crossing the boundaries
of the prescribed domain based on the linear part. More precisely,
the actual output zone is comparatively enlarged when we add
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TABLE 1 Dynamic parameters of exoskeleton.

Parameters Hip (1) Knee (2) Angle (3)

mi(kg) 2.09 1.6 0.55

miLci(kg•m) 0.1567 0.0689 0.0024

Li(m) 0.37 0.36 ∗

J i(kg•m2) −0.304 0.0002 0.0097

fci(Nm) 0.0847 0.6758 1.7567

fvi(Nm•s/rad) −3.2967 −3.7335 −12.2408

TABLE 2 Controller parameters.

Parameters Joint 1 Joint 2 Joint 3

qi 5 5 5

κ 0.001 0.001 0.001

χi0 1 1 1

χi
0

1 1 1

ρi0 2 2 2

ρi∞ 0.05 0.05 0.03

kiP 300 300 400

kiI 3 1.5 4

the nonlinear part into the principal linear part of the controller,
whereas the output error is still guaranteed within the prescribed
zone which is depicted by ρ0, ρ∞ κ, χ

k
and χk. In other words, the

linear part is the key to guarantee the tracking error convergent to
a predefined arbitrarily small zone with convergence rate no less
than a preassigned value and the maximum overshoot less than a
desired constant. To this end, we can replace the linear part with
any other kind of model-based control methods, such as PID, self-
tuning control and Model predictive control (MPC), etc., as long as
they are able to guarantee the tracking error within a sufficient small
range, so as to accommodate the effects caused by nonlinear part
for the achievement of the prescribed performance in Nguyen et al.
(2017) and Liu and Yang (2018), Liu and Yang (2019a), Liu and
Yang (2019b).

On the other hand, to avoid the estimated parameter ̂b1 close to
zero or to change the control effect of the linear part, we can modify
the OSAC-PPC (24) into (28) with introducing the parameter λ in
denominator as follow:

∆u(k) =
̂b1

λ+ ̂b12

[[[[[

[

e(k + 1) + ̂a1∆y(k) +⋯+ ̂ana∆y(k − na + 1)
− ̂b2∆u(k − 1) −⋯− ̂bnb∆u(k − nb + 1)

−
χk+1[(1− qT)θ(k) + qT −Λssign(s(k))] − χk+1
(1− qT)θ(k) + qT + 1−Λssign(s(k))

ρk+1

]]]]]

]
(28)

where ̂a1,⋯, ̂ana, ̂b1,⋯, ̂bnb represent the estimated values of
a1,⋯,ana,b1,⋯,bnb, respectively. Then the modified controller
(Equation 28) has the identical structure with those in Liu and
Yang (2018), Liu and Yang (2019a), Liu and Yang (2019b).
And we name (Equation 28) by improved OSAC-PPC.

4 Experiment and result

Example 1: Consider the system (Equation 29) in
Nguyen et al. (2017).

y(k + 1) = a1y(k) − a2y(k − 1) + b1u(k) + b2u(k − 1) + ζ(k + 1)
(29)

where a1 = −0.1903, a2 = −0.00906, b1 = 0.4906 and b2 =
0.04723. We assume ζ(k) = 0 at beginning to exhibit the effects
of controllers more clearly. All the simulation settings including
reference output, convergence zone described by Equation 14, and
the controller parameters T = 0.0005, κ = 0.05, ρ0 = 10 , ρ∞ =
0.5, χ

0
= 1 and χ0 = 2 are chosen in common with Nguyen et al.

(2017). The proposed OSAC-PPC method (24) choose controller
parameter q with different values: 300, 200 and 5. To be consistent
with Nguyen et al. (2017). Figure 1 shows the step response
comparison between the proposed OSAC-PPC method and the
Nguyen’s method. Control input of each controller is shown in
Figure 2.

Figure 1 obviously shows that each output of system controlled
by these methods is in prescribed zone. From Figure 1, we can see
that: i) from the time of [0, 0.02], the tracking error of system
controlled by the proposed OSAC-PPC method is smaller than
that of Nguyen. Besides, we can change the transient performance
by adjusting q. When the parameter q decreases, the convergence
speed and the oscillation of system controlled by proposed method
will increase; ii) from the time of [0.06, 0.066], the output of
system controlled by the proposed OSAC-PPC method with q = 5
consistently converges to the desired trajectory; The output of the
system controlled by the proposed OSAC-PPC method with q =
200 passes through the output trajectory of Nguyen’s controller; The
output of the system controlled by the proposedOSAC-PPCmethod
with q = 300 is designed so as to be tangent to the actual output
zone of Nguyen.

From Figure 1, we can conclude that the tracking error of
the proposed method is smaller than that of Nguyen under
the same prescribed performance. In addition, by decreasing
the controller parameter q, we can change the system transient
characteristics to obtain a better convergence speed, nevertheless
the oscillation is enlarged. Therefore, the proposed OSAC-
PPC method is more flexible than Nguyen’s controller for
introducing the key adjustable parameter q. As a result, we
have more choices for the system behaviors and transient
characteristics.

On the other hand, to further study this kind of prescribed
performance method, we choose ρ0 = 0 and ρ∞ = 0 with
an aim to remove the nonlinear part of the controller, i.e.,
Δunonlinear(k) = 0. The output of the system controlled by the
only linear part of OSAC-PPC method (Equation 24) [i.e.,
OSAC (Equation 25)] and Nguyen’s method are shown in
Figure 3.
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FIGURE 11
Tracking performance comparisons.

From Figure 3, we can see that the system controlled by
OSAC (Equation 25) exhibits a better performance even without
overshoot in simulation. It is natural for us to conclude that
the effectiveness of the proposed method can be separated
into two parts: i) the stability of the system is guaranteed
by the linear part of the OSAC-PPC controller (Equation 24)
whose intrinsic design is for the achievement of the optimal
performance. ii) The actual output zone is virtually widened by
the nonlinear part of the controller (Equation 26); however, the
system is still guaranteed within the prescribed zone depicted by
ρ0, ρ∞ and κ.

When we change the reference trajectory to y(k) =
sin(2× 10‐5t), while keeping the controller parameters unchanged,
the corresponding tracking performance is depicted in Figure 4.
The tracking error is shown in Figure 5, and the control inputs are
illustrated in Figure 6.

From Figures 4, 5, it can be observed that both the proposed
OSAC-PPC method and Nguyen’s method keep the system outputs
and tracking errors within the prescribed zone. Moreover, the
proposed OSAC-PPC method exhibits a smaller tracking error
compared to Nguyen’s method.

Example 2: This example shows that the improved OSAC-PPC
(Equation 28) are more suitable for the case of inaccuracy of
estimate parameters. We assume that the inaccurately offline
estimated parameters are ̂a1 = a1 + 0.3, ̂a2 = a2 + 0.7, ̂b1 = b1 − 0.1
and ̂b2 = b2 − 0.02 in Example 1.Then the corresponding unmodeled

dynamics will be Equation 30

ζ(k + 1) = −0.3y(k) − 0.7y(k − 1) + 0.1u(k) + 0.02u(k − 1) (30)

The output of the system controlled by Nguyen’s controller
and improved OSAC-PPC (28) with λ = 0.2 and λ = 1 is shown
in Figure 7, respectively. The control input of each controller
is shown in Figure 8.

From Figure 7, we can find that the output of the system
controlled by Nguyen’s controller or improved OSAC-PPC (28)
with λ = 0.2 oscillates at the beginning owing to the estimate
parameter error. By comparison, when we choose λ = 1, the
output oscillation of the system controlled by improved OSAC-
PPC (Equation 28) is eliminated. On the other hand, Figure 8 also
shows that the control input of Nguyen oscillates obviously from
beginning to end. By comparison, the oscillation of the control
input of improved OSAC-PPC (28) is eliminated through letting
λ = 1, since the increment of penalty constant λ constrains the
change of the control output. Owing to the system’s transient
characteristics can be changed through adjusting the introduced
penalty constant λ, the improved OSAC-PPC (28) are more
stable and suitable for the cases of inaccuracy of estimate
parameters.

There aremanywell-knownperformance indexes for the system,
we should not focus on only one index (i.e., prescribed performance)
but should consider more system transient indexes such as system
convergent speed, smoothness, overshoot and so on.These examples
show that some transient performances can be improved by
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FIGURE 12
Tracking error and its convergence zone.

our improvements meanwhile the prescribed performance is still
satisfied.

Owing to the system’s transient characteristics can
be changed through adjusting the introduced penalty
constant λ, Furthermore, we can replace the linear part of
improved OSAC-PPC (28) with MPC or self-tuning PID.
It will also achieve the comparable performance in the
same way.

Example 3: We validate the PPC controller in a three joints SEA-
based lower limb exoskeleton system, which is shown in Figure 9.
The joints of this system are actively controlled through
current loops, with each joint’s torque values calculated by
the controller and then converted into control inputs. This
motor-driven approach enables the exoskeleton to follow the
reference trajectories, which are scaled versions of gait cycle joint
angles, specifically chosen to test the controller’s performance.
The exoskeleton operates on an EtherCAT-based motor drive
system.

The platform is equipped with two 24 V serial batteries
providing the necessary power for the lower limb exoskeleton.
The drive module comprises six modular joints, divided
equally between the left and right limbs, corresponding to
the human body’s hip, knee, and ankle joints. Absolute

encoders installed at each joint measure the angles of
rotation.

Figure 10 illustrates the hardware control architecture of the
exoskeleton. The heart of the exoskeleton’s control system is an
industrial PC (IPC) equipped with an i7 7600U processor running
the Ubuntu operating system. This IPC serves as the control center
where the core control strategies are implemented. Communication
between the IPC and the supervisory computer is established via
SSH, with the startup program initiated and control commands sent
using TCP communication. The exoskeleton’s status information is
transmitted using LCM.

In terms of exoskeleton control commands, the IPC is connected
to the drivers and operates as the EtherCAT master using the IgH
EtherCAT Master for Linux, while the drivers function as slaves.
The communication between the IPC and the exoskeleton includes
sending and receiving control commands and sensor information
with a control cycle of 1,000 Hz.

To establish a baseline for comparison, we included two
control groups in our study. The first control group employs an
incremental PID + dynamics controller that we developed, which
integrates dynamic feedforward compensation to enhance control
performance. The second group uses a traditional incremental PID
controller, serving as a baseline to assess the advancements offered
by our proposed solutions.
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FIGURE 13
Enlarged view of Figure 12.

The dynamic model (Equations 31, 32) is given by

(H(q) + ST)q̈+ (B+ S)θ̈M +C(q, q̇)q̇+G(q) + τf = u (31)

H(q) =ML(q) +MR(q) + S(q)B−1ST(q) (32)

where, H(q) is the total inertia matrix; B is the inertia
matrix of the motor considering the reduction ratio; and S is
the motor-link coupling matrix, which is a constant matrix.
MR(q) is the added inertia matrix of the connecting link
introduced by the motor (Li et al., 2017; Chen et al., 2019;
Siciliano and Khatib, 2016).

The dynamic parameters of links are inaccurately identified
and given in Table 1.

Since the leading coefficient of control input is an identity
matrix, we can describe the linear part of the controller as

Δulinear(k) = KP[e(k+ 1) − e(k)] +K Ie(k+ 1) + (H(q(k)) + ST)q̈(k)

+ (B+ S)θ̈M(k) +C(q(k), q̇(k))q̇(k) +G(q(k)) + τ f

− [(H(q(k− 1)) + ST)q̈(k− 1) + (B+ S)θ̈M(k− 1)

+C(q(k − 1), q̇(k − 1))q̇(k − 1) +G(q(k − 1)) + τf ]
(33)

where, KP = diag(k
1
P,k

2
P,k

3
P) and K I = diag(k

1
I ,k

2
I ,k

3
I ).

Meanwhile, the nonlinear part can be described as

Δunonlinear(k) =

[[[[[[[[[[[

[

χ1k+1[(1− q
1T)θ1(k) + q1T −Λ1

s sign(s1(k))] − χ1k+1
(1− q1T)θ1(k) + q1T + 1−Λ1

s sign(s1(k))
ρ1k+1

χ2k+1[(1− q
2T)θ2(k) + q2T −Λ2

s sign(s2(k))] − χ2k+1
(1− q2T)θ2(k) + q2T + 1−Λ2

s sign(s2(k))
ρ2k+1

χ3k+1[(1− q
3T)θ3(k) + q3T −Λ3

s sign(s3(k))] − χ3k+1
(1− q3T)θ3(k) + q3T + 1−Λ3

s sign(s3(k))
ρ3k+1

]]]]]]]]]]]

]
(34)

where, ∗i represent the parameters for i-th joint.
Then we propose an incremental PID + dynamics based PPC

controller as Equation 35

u(k) = u(k − 1) +Δulinear(k) +Δunonlinear(k) (35)

The controllers used for comparison are incremental
PID + dynamics feedforward control (Equation 33), and
incremental PID (Equation 36).

ΔuPID(k) = KP[e(k + 1) − e(k)] +K Ie(k + 1) (36)

It should be noted that the incremental PID + dynamics-
based PPC controller is obtained by summing the PID +
dynamics feedforward compensation controller (Equation 33) with
the nonlinear part (Equation 34). Both controllers use dynamics
feedforward compensation in differential form.
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FIGURE 14
Control input of each controller.

The controller parameters are given by Table 2. The sampling
time T = 0.001s. Figure 11 shows the tracking performance of each
joint of the exoskeleton. Figure 12 shows the tracking error of each
joint and Figure 13 shows the enlarged view of Figure 12.The control
input of each joint is shown in Figure 14.

From Figure 11, it is evident that compared to incremental
PID, both incremental PID + dynamics-based PPC controller
and incremental PID + dynamics controller significantly enhance
the tracking accuracy of the three joints. This indicates that
our designed differential form of dynamics-based feedforward
effectively compensates for the accuracy deficiencies caused by
the low stiffness and elastic characteristics of the SEA. From
Figures 12, 13, we can observe that the system controlled by
the incremental PID + dynamics-based PPC controller does not
perform superior to the incremental PID + dynamics controller.
However, the tracking errors for both remain within the prescribed
zone. The design of the PPC is not intended to enhance the
controller’s performance; rather, control accuracy and response time
might be reduced due to the prescribed performance index or
constraint of the tracking error.Despite this, themethod ensures that
errors are maintained within the prescribed zone limits.

5 Conclusion

In this paper, we propose a discrete-time sliding-mode
control method based on prescribed performance control

method to cope with a kind of tracking error constrained
problem in the discrete-time dynamical system. By separating
controller into two parts, we analyzed the principle of
a family of PPC methods which aim to ensure that the
tracking error converges to a predefined region. Moreover,
we give some alternative improvements for the linear
part of the controller for its alterable performance and
yet not to impact the premise of prescribed performance.
Simulations and experiments are provided to validate the
established results and the effectiveness of the proposed
method.
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Proof: Appendix of Theorem 1

If the tracking error e(k) satisfies −δ− χ
k
ρk < e(k) < χkρk + δ at

any time k, through the proposed controller (Equation 24), we
want to demonstrate that one step ahead tracking error e(k+ 1)
also satisfies the prescribed performance control: −δ− χ

k+1
ρk+1 <

e(k+ 1) < χk+1ρk+1 + δ. Thereafter, the control algorithm can be
repeated in the next sampling cycle.

Todemonstrate this result, based onEquations 18–21, 23,wehave

e(k + 1) =
χk+1[(1− qT)θ(k) + qT −Λssign(s(k))] − χk+1
(1− qT)θ(k) + qT + 1−Λssign(s(k))

ρk+1 + ξ(k + 1)

(A1)

From Equations 21, A1, we can obtain Equation A2.

e(k + 1) <
χk+1[(1− qT)θ(k) + qT +Λs] − χk+1
(1− qT)θ(k) + qT + 1+Λs

ρk+1 + δ (A2)

Obviously,
χk+1[(1−qT)θ(k)+qT+Λs]−χk+1
(1−qT)θ(k)+qT+1+Λs

ρk+1 is a function with respect
to θ(k) and is monotonic increasing with θ(k). Therefore, we have

e(k+ 1) < lim
θ(k)→∞

χk+1[(1− qT)θ(k) + qT−Λs] − χk+1
(1− qT)θ(k) + qT+ 1+Λs

ρk+1 + δ

= χk+1ρk+1 + δ (A3)

With the help of Equations 21, A1, we have Equation A4.

e(k + 1) >
χk+1[(1− qT)θ(k) + qT −Λs] − χk+1
(1− qT)θ(k) + qT + 1−Λs

ρk+1 − δ (A4)

Similar to the proof process of (Equation A3), we can infer that

e(k + 1) > lim
θ(k)→0

χk+1[qT −Λs] − χk+1
qT + 1−Λs

ρk+1 − δ = −χk+1ρk+1 − δ

(A5)

From (Equations A3, A5), it can be concluded that

−δ − χ
k+1

ρk+1 < e(k + 1) < χk+1ρk+1 + δ (A6)
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