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Making social robots adaptable
and to some extent educable by
a marketplace for the selection
and adjustment of different
interaction characters living
inside a single robot

Sebastian Reitelshöfer*, Nina Merz, Gabriela Garcia,
Yuqiang Wei and Jörg Franke

Institute for Factory Automation and Production Systems, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Erlangen, Germany

The increasing integration of autonomous robotic systems across various
industries necessitates adaptable social interaction capabilities. This paper
presents a novel software architecture for socially adaptable robots,
emphasizing simplicity, domain independence, and user influence on robotic
behaviour. The architecture leverages a marketplace-based agent selection
system to dynamically adapt social interaction patterns to diverse users and
scenarios. Implemented using ROS2, the framework comprises four core
components: scene analysis, a bidding platform, social agents, and a feedback
service. A Validation through simulated experiments shows the architecture’s
feasibility and adaptability, with respect to varying feedback conditions and
learning rates. This work lays the foundation for scalable, adaptable, and user-
friendly robotic systems, addressing key challenges in industrial and social
robotics. Future improvements include enhanced scene analysis, integration of
machine learning techniques, and support formore complex behavioural scripts.
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1 Introduction

Foreseeable, a growing number of autonomous robotic systems will be employed
in numerous contexts including healthcare, service and consumer robotics but also in
production and logistics with more complex and location independent applications.
Aside from advanced mechatronic developments, recently evolved AI techniques like
large language models (LLM) and vision language models (VLM) are key enablers in
this respect. Reinforcement learning, task planning or decision making (Jeong et al.,
2024) is fuelling those complex autonomous robotic applications. Becoming progressively
more autonomous, it is highly likely that robotic systems will more often get into
close proximity and contact with very different groups of people. For example, a future
mobile service robot with enhanced capabilities may not only execute intralogistics tasks
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on a confined shopfloor but also manoeuvre between different
buildings and across company premises. As a result, it will likely
encounter not only trained shopfloor workers but also security
staff, personnel from other companies, and visitors. Realizing
accepted interaction or at least pleasant active coexistence with a
broad spectrum of different user categories will need basic social
adaptability of robotic systems. Of course, if the tasks get more in
the direction of social interaction at the core of a specific application,
social skills of robotic systems become correspondingly even more
important. This relevance is in addition underlined by the World
Economic Forum, stating that social robotics is one of the most
important emerging technologies (Corinna and Lathan, 2019).

Among other technological components, a software architecture
to realize and frame social adaptability is one core element to
realize social robots. Architectures for social robotic systems have
already been proposed in publications from the last century
(O'Hare et al., 1999). A frequently described application scenario
for deriving software architectures for social robots addresses the
interaction with older persons. For example, Bonaccorsi et al.
describe various cloud-based services with relevant functions for
service robots for elderly people (Bonaccorsi et al., 2016). Another
architecture consisting of the four components navigation, person
tracking, localisation and interaction that is designed for a specific
service robot operating as an assistant for older people has been
implemented by Coşar et al. (2020). A service-based architecture
with over 30 subcomponents is presented for application scenarios
of social robots in geriatric care (Portugal et al., 2019). A system for
carrying out exercises with older people, which uses six modules
to record people’s condition, trigger an exercise pattern and give
instructions via text-to-speech, is presented by Fasola and Mataric
(2013). Fan et al. present a robot coach architecture for elderly
care based on multi-user engagement models (Fan et al., 2017). In
another approach, a rule engine is used to execute certain robotic
actions on a NAO robot based on recorded medical data of older
people and a knowledge database to trigger suggestions by the
robotic system (Torta et al., 2014). Gross et al. describe a layer-based
architecture for a specific robot for interacting with elderly people
with five layers and over 20 subcomponents (Gross et al., 2011).

The therapeutic area is another setting forwhich several different
architectures for social robots have already been developed. An
exemplary architecture describes the behaviour of a robot on
an abstract level and then maps it onto the morphology of the
robot (Cao et al., 2016). Cao et al. also present a more complex
architecture with over 20 subcomponents for the therapeutic context
(Cao et al., 2019). There are systems that are specifically designed
for screening people with autism spectrum disorder using for
instance a special bird-like robot (Dehkordi et al., 2015). For the
training children with autism spectrum disorder another approach
exists with a straight forward ROS architecture where a therapist
can select behaviours on the robot Pepper (Sessner et al., 2022).
An example of a more complex, level-based architecture for the
implementation of social robot applications in the medical field and
for healthcare is presented for the robotics middleware ROCOS
(Jayawardena et al., 2016). Another publication shows a proposed
architecture for an assistance system in cardio-rehab scenarios
for robots using the Naoqi framework, based on state machines
(Casas et al., 2018).

In addition to the specific fields of application addressed in
the medical context, some architectures for different other contexts
have also been developed. Kim et al. show a very complex level-
based architecture in which social robots with potentially many
possible applications are orchestrated as agents (Kim et al., 2009).
Furthermore, an approach to accompany users’ planned activities
throughout the day and to trigger adapted behaviour patterns with a
service robot is described by Louie et al. (2014). Another publication
presents a set of software modules for using a specific robot
platform for games with humans (Gonzalez-Pacheco et al., 2011).
Yet another quite complex architecture with 15 components for the
implementation of social robots in different application scenarios
based on layers is presented by Asprino et al. (2022). An emotion-
based approach for social robots in general, which triggers certain
behaviour patterns based on detected emotions on the basis of a
complex hierarchical behaviour control, is described by Hirth et al.
(2011). A multimodal, emotion-based approach for human robot
interaction is presented by Hong et al. (2021), whereby four main
components encapsulate a quite complex architecture with a total of
18 elements. Social navigation, which has already been considered
in numerous publications (Mavrogiannis et al., 2023), can also
be accounted as a relevant field of technical implementations for
social robots. Bera et al. present a multimodal emotion learning
approach for socially assistive robot navigation (Bera et al., 2020).
Multi-agent systems are described as well in the context of social
navigation. Similar to the work of Kim et al. mentioned at the
beginning of this section, a multi-agent system for path planning
of social robots is described by Chandra et al. (2023). Specialized
simulators can be used to carry out studies on social navigation
with multi-agent systems (Chandra et al., 2024). Independent of
the specific application, like solving navigational tasks, multi-agent
systems are often used to describe approaches where several robots
are coordinated, as shown for example in a case study (Botelho et al.,
2020). In addition, multi-agent systems can also be used, for
example, to enable different robots to share the results of learning
approaches (Orr and Dutta, 2023). The area of socially assistive
robotics, which is characterized by social rather than physical
support of humans, is also detached from a specific application (Feil-
Seifer and Mataric, 2005). An generalist approach to the behavioral
control combing a ontology with artificial intelligence that conceives
socially assistive robots as complex systems with a multitude of
internal and external elements is presented by Umbrico et al. (2020).

To summarise, the brief overview provided shows that a large
number of proposed architectures in the context of social robots is
primarily aimed at geriatric or medical applications. If approaches
contain multi-agent concepts, several robots are practically always
mapped as agents and not several agents are assumed to live in
one single robot. Just a view architectural concepts are addressing
application domains other than health and care like for example
education or are application agnostic. Social navigation to some
extends stands out among these fields of application, as this area is
being researched relatively intensive. In the class of socially assistive
robots, domain-independent approaches are also being developed.
In future, there may be further approaches to control socially
assistive robots in multi domain scenarios in conjunction with
artificial intelligence. To date, no architectures for social robots have
been proposed directly and specifically for the use in an industrial
production context. Also all the described approaches are somewhat
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intended to realize complex behavior patterns at the cost of high
complexity rather than allowing for simple adaptation mechanisms
to different user groups. Furthermore, in most cases a stringent
development for the specific robotic system is recognisable, which
was the object of investigation in the respective projects. There
continues to be a need for research into software systems that are
designed to develop adaptable social robots as independently as
possible of the application domain and specific systems. In addition,
many of the architectures are very complex, which, together with
the aforementioned special development for certain target systems,
makes it difficult for new developers to reuse those approaches for
other projects.

2 Materials and methods

In the mentioned context, the use of a widespread framework
such as the Robot Operating System (ROS) to implement the
framework of an architecture for adaptable robots would also be
desirable. ROS2 will enable the development of commercial ROS-
based products and services on a broader scale in the future. Within
the ROS ecosystem, packages or collections of packages have been
established for a number of key issues in robotics, such as coordinate
transformations (Foote, 2013), path planning (Coleman et al., 2014)
and navigation (Macenski et al., 2020). Packages that specifically
and comprehensively address sociality functionalities are not yet
available.

From the short reflection of the state of the art and the
summarised challenges described above, we derive five long-term
development goals for our architecture proposal presented below,
which should serve as guidelines for initial implementation and
continuous further development.

- A software architecture for customisable social robots should
be as domain-independent as possible.

- The basic structure of an architecture should be as easy to
understand as possible in order to minimise the time required
to familiarise users with its use.

- Humans should be able to understand, why a social robot
selected to show a certain behaviour pattern and human end
users should be able to influence robotic behaviour schemes.

- The concepts developed should be reusable.
- The architecture should be based on ROS.

In the following section, we present a new software architecture
for adaptable social robots. An overarching goal is to take into
account the five guidelines mentioned above. The architectures
described in the state of the art can certainly be used to map very
complex social behaviour patterns for robotic systems - but often
at the price of a high complexity of the underlying architectures.
There is also a broad and heterogeneous state of the art for defining
social robotics (Merz et al., 2024). In the following, very simple
adaptation processes will initially be assumed as social adaptability
by the authors. This selection is motivated by the fact that in
robotic systems already in productive use, existing interaction
patterns are practically always fixed and linearly scriptedwithout any
adaptability at all. For example, mobile transport robots available on
the market for intralogistics tasks from different manufacturers can
ask to clear a path via voice output. If they encounter an obstacle

on their planned path, they repeat this request at a set time interval,
depending on the setting, even if the path is blocked by a non-human
obstacle. By constantly repeating these acoustic signals, nearby
personnel can be significantly hindered in the fulfilment of their
tasks. It can therefore happen that the positive feature of voice output
is completely deactivated. In such cases, even a very simple and
basic adaptability, such as changing the behaviour after a maximum
number of unsuccessful communication attempts or selective
communication based on object and person recognition, would very
likely lead to a significant increase in acceptance. Asking a ladder
to clear the way is useless even in the first attempt. The authors’
initial aim is to develop and research the architecture described
belowwith regard to such simple adaption processes. A possible first
application scope for categorisation is shown in Figure 1. In such a
randomly selected example, there are several transport robot units at
an airport. When an airport employee approaches such a system to
have his or her tools or materials transported, an efficient interface
designed for professional users is shown. The robot signals that it
is ready for input with a green status light. The employee can then
directly command a transport destination, the robot briefly displays
the destination for confirmation and then drives off immediately. If,
in this hypothetical example, such a fleet of transport systems is to
be used simultaneously by passengers for transporting luggage who
may never have had contact with a robot system before, the same
transport robot must certainly offer a different interaction pattern
with explanatory elements for such a user group.The constant initial
presentation of information on how to use the robot would in turn
limit the acceptance of the professional users mentioned above.
It may even make sense to offer different interaction patterns for
older and younger passengers. The aim of the architecture presented
below is to allow robots to adapt automatically in such scenarios
and at the same time to continuously improve the strategies for
selecting suitable interaction patterns during operation based on
user feedback.

2.1 Marketplace-based robotic solutions as
an archetype

To put the architecture presented in this contribution into
context, related approaches from other domains are briefly
described. An agent-based structure will be used to encapsulate
different social behaviours and functions. A marketplace-based
approach is then to be utilised for selecting the agents. Market-
based approaches build on microeconomic principles can generally
be used as a paradigm for the coordination and control of complex
robotic systems (Zlot et al., 2002). By modelling robots or software
components as self-interested agents that participate in market-like
interactions such as auctions or negotiations, these approaches can
achieve emergent coordination and adaptation without relying on
centralised control or explicit pre-programming (Lagoudakis et al.,
2005). To illustrate the concept of the developed architecture for
socially adaptable robots, a quite similar agent-based approach from
the field of intralogistics (Scholz et al., 2019) is briefly described
below. The aim of the comparable approach is to replace a central
control unit in a logistics system that allocates transport jobs
to intralogistics robots according to a pre-programmed scheme.
Instead, Scholz et al. show that a self-regulating system can be
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FIGURE 1
An adaptive social robot should be able to autonomously select different and best suited interaction schemes depending on the type of person an
interaction takes place with. Based on user feedback it should also be able to automatically improve its selection rules. Images generated by the
authors with DALL-E.

created if transport jobs are placed on a bidding platform in a
decentralised manner. Transport robots with different capabilities
and parameters like size, speed or cost can then submit bids to
process the jobs. These bids are generated on the basis of parameters
that describe the characteristics of the individual robots. A transport
robot with the shortest transport time, for example, then wins
the transport job and carries it out. Finally, the central element
of this approach is that the robots receive an evaluation after each
completed task, which the robots then use to adjust their parameters
for future bid generation. If, for example, a robotic system often
wins transport jobs because it offers short transport times that it is
then unable to fulfil during execution, the robot receives negative
ratings with regard to transport speed and lowers its internal speed
parameter in response. As a result, the robot henceforth makes
more conservative bids in terms of speed. Simulations show that
intralogistics systems organised in this way autonomously adjust
themselves to optimal parameters (Scholz, 2019). The approach
described below, which is inspired by the structure shown, can
be used to realise an adaptive software architecture for social
robot systems.

2.2 Architectural concept of a
marketplace-based system for adaptable
social robots

With respect to the example presented in Section 2.1 as an
archetype, a marketplace-based architecture for social robots is
proposed and described here. In this architecture, agents represent
different social behaviour patterns for interacting with different user
groups. This means that one single social robot is home to different
agents. A scene analysis layer and a feedback system complete the
four essential components of the first version of the architecture
presented in Figure 2.

The functional principle of the architecture is shown in the
following simplified form, inspired by the example in Section 2.1.
The scene analysis module shown in Figure 2 on the left uses
different sources of information like for example face recognition

algorithms to map a current scene to a descriptive parameter set.
This parameter vector describes selected aspects that characterise an
upcoming interaction situation, whereby the individual parameters
are mapped to numerical values. Possible parameters can be, for
example, the age of an interaction partner, level of familiarity, mood
or stress level. In such an example, the value of one for the “age”
parameter can stand for a very young interaction partner and, for
example, the value five for a very old person. The value one for
the exemplary parameter “familiarity” represents an unknown first-
time user and five means a previously known professional user
and so on and so forth. After a scene analysis has been carried
out, a created parameter set is placed as a new interaction task
on the bidding platform of the marketplace module. All agents
living in a robot can then place a bid for the processing of the
upcoming scene. The bids represent the individual parameter sets
that characterise the individual agents. For example, an agent can
also have an “age” parameter, whose value of five indicates its
suitability for interactions with very old people. Another parameter
for “familiarity” with a value of two shows the suitability of the agent
for rather inexperienced users. With the help of defined rules or
other mechanisms such as learning approaches, the best offer or
the best agent for handling the pending interaction is then selected
by the marketplace module and scheduled for execution by this
system. Initially, very simple agents are assumed, which either load
an efficient professional-user interface or an interaction system for
first-time users with explanatory videos before an actual command
is accepted. Finally, at the end of such an interaction cycle, user
feedback is obtained regarding all or selected parameters and then
fed back to the agent that carried out the respective case. For
example, if an agent receives feedback that it is well suited for elderly
people, it will automatically increase the value of the “age” parameter
for each such feedback according to defined rules. The parameters
of agents on the system can thus be adjusted over several feedback
cycles to influence the chances of their bids. User feedback can
therefore be used to ensure that in similar situations, other or more
appropriate agents win bidding rounds based on several feedback
cycles, thereby automatically adapting the perceived behaviour of
social robots over time to a certain extent.
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FIGURE 2
The proposed architecture includes four main components. The scene analysis maps an actual scene onto a set of parameters. This set is put on a
market place. Agents can make bids to handle the scene. After winning and handling a scene an agent gets human feedback to adjust its parameters
for future bidding rounds.

2.3 ROS2 based implementation of the
architecture

In order to achieve simple usability in terms of the overarching
objectives mentioned above, all elements of the architecture concept
described above are implemented using the framework ROS. Here,
the ROS2 LTS version Humble Hawksbill is used. All elements
are designed either as publisher/subscriber, services or actions.
The logical flow of the utilisation of the architecture is shown
in a simplified state machine in Figure 3. Reflecting the structure
described in Section 2.2 the elements are grouped in the four main
packages Scene Analyses Layer, Marketplace Biding Platform, Agent
Template and Feedback Service. Executing the architecture runs
elements of the four packages in a cascaded way.

2.3.1 Scene analysis layer
The purpose of the scene analysis layer is to map different

information streams onto a parameter vector describing a scene.
It can therefore be used to aggregate the input of multiple sensory
systems and upstream algorithms. It can for instance be used to
collect data from topics of a ROS instance wrapping the SHORE
software (Garbas et al., 2013) and in parallel, like depicted in Figure 4
read from a ROS node using deepFace which wraps several state
of the art face recognition models (Serengil und Ozpinar, 2020).
Here the scene analysis layer is a subscriber of topics from both
elements mentioned prior. The information derived from SHORE
can be used to set a parameter “mood”. If the deepFace messages
contain a name of a person a value “familiarity” can be set to five or

in case of the value unknown in the name member of a deepFace
message the value “familiarity” can be set to the value one. The
deepFace can also be used in the described example to set a value
“age”. For the experiments described in Section 3 another generic
mock up scene analysis layer is used, that simply sets predefined
values of an exemplary scene. Independent from subscriptions to
different information acquisition topics the scene analysis layer
always subscribes to a trigger topic. Once a trigger message is
received an actual parameter vector filled with recently processes
information from all inputs will be published. In the actual version
of the described architecture this vector has a predefined number of
elements, defining at the same time the set of system-wide known
parameters for all agents, and the marketplace module.

2.3.2 Marketplace biding platform
The marketplace biding platform receives a vector describing a

scene to be handled from the scene analysis layer. This vector then
represents a new bidding round on themarketplace and is filled with
the parameters aggregated in the analysis layer. Receiving such a
vector triggers the bidding platform to publish a topic informing
all individual agents of the robot that they can hand in a new bid
in form of their actual self-describing parameter vector. To stream
line this process agents can register to the marketplace platform
beforehand. At the moment, a unique integer value is created when
agents call the registration service of the platform and the name of
the agent’s ROS node name is used to identify the agents. Knowing
the agents, the binding platform can close an actual biding round
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FIGURE 3
The depicted state machine shows the logic of running the
architecture from an initial agent registration, a scene analysis, a bid
collection and selection, the execution and feedback collection and
processing.

after it received bids from all know agents before a set deadline e.g.,
of 500 milliseconds is reached.

At the moment the platform then uses the Manhattan Distance,
to determine the parameter set or agent closest to the current bid,
since the Manhattan Distance is well suited to efficiently calculate
a minimum distance even with a large number of given higher-
dimensional vectors, as for example outlined by Chiu et al. (2016).
After the selection based on Formula 1 the action server like
described in Section 2.3.3 is called.

d(a, t) =
n

∑
i=1
|pai − pti| (1)

with: d(a, t) distance between an agent and a scene
pa actual parameter set of an agent and a scene
pt parameter set describing a scene
The finals step after awaiting the execution of an agent’s action

execution to finalize is the initialization of the feedback collection
described in section 2.3.4.

2.3.3 Agent Templates
Agents are used in the described architecture to implement

and encapsulate certain characteristics of behaviour and interaction
patterns. All agents carry a current and, as described in the
following paragraph, continuously adaptable parameter vector with

the suitability of the agent with regard to certain parameters
that characterise social scenes. In the version of the architecture
described here, agents are designed as subscribers of a bidding topic
and as clients of a registration service in order to receive a unique
integer identification number in addition to the node name, which
is unique system-wide in ROS. This number can be used in future,
for example, to keep several agents in a single ROS node. Parameter
updates for its own characterisation can be received by means of a
service offered.The actual behaviour, inwhich, for example, a certain
form of interaction with users is mapped via short voice commands
or via a graphical user interface with explanatory elements, is
encapsulated in a ROS action in order to monitor the progress of
an interaction and to be able to cancel ongoing interactions. For a
simple implementation of new agents, all agents are derived form
a template class and only the action handles are overwritten in the
agent implementations.

2.3.4 Feedback service
The final element completing the architecture is the feedback

service. This component is triggered as a service after an agent
has finished the handling of a user interaction action. In its actual
implementation for experimentation a mock up feedback system
can be used, to process a previously generated list of simulated user
feedback automatically in individual feedback loops. Furthermore,
a simple user interface can be used to manually set feedback. After
retrieving the feedback either from a user interface or from a list of
synthetic feedback for experimentation, the feedback instance calls
a service of the respective agent to set a new vector of parameters
for the agent. To calculate this new set of parameters the positive
or negative distance of the user feedback from the corresponding
parameter is calculated.Multiplied with a factor for the learning rate
those new parameters form the next future bid of the very agent.

3 Results

To validate the feasibility and adaptability of the market-based
behaviour selection framework, we conducted experiments, each
designed to evaluate different aspects of agent performance and
system response under varying conditions. In the implementation
of the actual architecture especially the learning rate is of interest,
as it is responsible for defining the adaption speed of the individual
agents to feed back as well as the stability of the adaption process,
as feedback can contain false feedback given intentionally or
unintentionally.

3.1 Experimental parameters and initial
setup

In each experiment, we defined three parameters for each
agent: age, profession level, and emotional level. These parameters
serve as the foundation for decision-making within the marketplace
module, which uses a predefined rule set to select the optimal
agent for a given task. In the following experiments the Agent
1 has an example goal parameter set of [5, 4, 1]. The initial
parameters are set at [2.5, 2.5, 2.5], serving as a baseline before
any feedback or adjustment is applied. Since the experiments
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FIGURE 4
The scene analysis layer is used to collect from different information sources like algorithms pre-processing sensors data. It publishes a parameter
vector describing a scene when it is triggered. On the right side an example is shown how parameters are mapped to a scene describing vector.

FIGURE 5
By applying constant feedback, the parameters of an agent converge to a descriptive set regarded as the best fitting values for the exemplary agent.

were conducted in a simulated environment without actual robotic
platforms, the selection of each agent is determined based on the
rule set in the marketplace which uses the Manhattan Distance and
simulated feedback.

3.2 Experiment 1: feasibility validation

The first experiment aims to verify the feasibility of the
framework by simulating a scenario with agents, with parameter
values as defined above. In this experiment, Agent 1 is assumed
to be the most suitable for the interaction scenario based on
predefined rules in the marketplace. To test the adaptability of the
framework, we simulate 100 feedback cycles, during which feedback
is consistently provided to Agent 1. This feedback loop serves to

reinforce Agent 1’s selection, allowing us to observe the framework’s
ability to adjust agent parameters based on accumulated feedback as
depicted in Figure 5.

3.3 Experiment 2: effect of feedback noise
on parameter adjustment

The second experiment is designed to evaluate the system’s
robustness in the presence of noisy feedback. We introduce
controlled noise into the feedback loop and observe how different
learning rates impact agent stability. For this experiment, we set
Agent 1’s initial parameter values to [2.5, 2.5, 2.5] and assume its true
parameter values to be [5, 4, 1]. The feedback loop includes three
scenarios with varying learning rates.
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FIGURE 6
Even with noise in the feedback data a low learning rate leads to a slow but stable convergence.

FIGURE 7
While a low learning rate of 0.02 after 30 feedback cycles only sees a directed shift of the parameter value towards the hypothetical descriptive
parameter set, a more aggressive learning rate sees a conversion only after maximum of eight feedback cycles. As expected, the fast-converging rate
comes at the cost of quick fluctuations when noise is introduced in the feedback.

3.3.1 Conservative learning rate
With a low learning rate, we simulate 200 feedback

cycles. Due to the conservative rate, parameter adjustments
occur slowly, requiring a large number of cycles to reach
the true values. This scenario illustrates the system’s response
to slow adaptation in noisy environments like shown
in Figure 6.

3.3.2 Aggressive learning rate with noise
Here, we use a high learning rate, but introduce random

noise into the feedback loop, where every third feedback
entry randomly assigns a value of 5. This noise causes Agent

1’s parameters to fluctuate significantly, as it quickly adjusts
to feedback changes. However, when erroneous feedback
(e.g., two consecutive instances of a feedback score of 5)
occurs, the parameters abruptly shift to higher values, leading
to instability. A comparison of the behavior in case of
disturbances for a low and an aggressive learning rate is shown
in Figure 7.

3.3.3 Moderate learning rate
In this scenario shown in Figure 8, we apply a

moderate learning rate and introduce a 5% probability of
erroneous feedback. Despite the occasional noise, Agent
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FIGURE 8
A moderate learning rate combines a medium convergence rate with rather robust reactions to noise in simulated feedback signals.

FIGURE 9
Simulated feedback for three different agents assumed as examples shows the behaviour of the architecture over 25 steps with a learning rate of 0.2.
After just ten cycles, in which the agents always receive feedback corresponding to their exemplary target values, the appropriate agents are always
selected in this example. The individual three parameter values of the individual agents are the same in each case.

1’s parameters gradually converge toward a stable value
near the true parameter values, demonstrating resilience to
noise. This scenario exemplifies the framework’s capacity to
balance stability and adaptability when the learning rate is
appropriately tuned.

This experiment illustrates the importance of choosing an
appropriate learning rate for stable and efficient parameter
adaptation. When comparing these three scenarios, we find
that a moderate learning rate strikes a balance between
stability and responsiveness and maintains robustness
in the presence of noisy feedback.

3.4 Experiment 3: automatic agent
selection based on simulated user feedback

In a next experiment, the behaviour of the architecture is shown
when selecting three exemplary agents. For a simple visualisation, it
is assumed that the three agents are best describedwith the following
parameters:

Agent 1: [1,1,1]
Agent 3: [3,3,3]
Agent 5: [5,5,5]
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FIGURE 10
Future tests of the architecture can include robotic systems used in care or in intralogistics scenarios to collect feedback from test subjects via a
graphical user interface.

If one of the agents is selected in a simulated experiment based
on its Manhattan distance to a scene vector in a simulation step,
it receives the appropriate feedback. For example, Agent 5 always
receives the feedback [5,5,5]. As shown in Figure 9, the scenes,
[1,1,1], [3,3,3] and [5,5,5] are alternately set as new interaction
scenes on the bidding platformwith a simulated scene analysis layer.
The order of the scenes is chosen randomly. All agents are initially
started with the values [2,5.2.5,2.5]. A factor of 0.2 is set as the
learning rate for the feedback.

According to the distribution of the randomly shown scene
parameters, adjustments of the individual agents in the direction of
their exemplary assumed values become visible. Together with this
adaptation process, an increasingly targeted selection of agents takes
place, although all agents were initialised with the same parameters,
as in the other examples.

4 Conclusion and outlook

4.1 Conclusion

In this contribution, we propose a new architecture for socially
adaptable robots. As the goal is a rather simple to implement
architecture, the ROS based approach integrates four major
components scene analyses, marketplace based biding platform,
agents and feedback system. The actual version of the architecture
is combining an agent selection process based on the Manhattan
Distance of individual agent’s descriptive parameter sets to an
observed scene with a learning rate for incorporating feedback
from the user that can be used to adapt the selection chances of
individual agents over a number of feedback cycles. As expected,
in simple simulated feedback rounds the parameters of an agent
converges towards the parameter set defined as descriptive for the
respective agent in the hypothetical scenarios whereas the speed
of convergence is influenced by the learning rate. In addition, the
feedback rate defines the stability of the parameters when statistical
noise is introduced.

4.2 Outlook

In the presented work a simple version of the new architectural
concept is introduced to describe and show the basic proof of
the principle. This basic implementation leaves room for several
future improvements. First, the scene analysis module at the
moment is considered perfect and unfailing. To overcome this
simplified solution, a scene analysis layer should also be able to
deal with missing information with regard to several parameters
know system wide as well as with uncertainties resulting from
imperfect aggregation or upstream information processing. Either
default values or a value estimation based on earlier activations
of the module can be a way to compensate the aforementioned
aspects. For the bidding platform the rule-based selection in this
contribution is hard coded to use theManhattan Distance of agent`s
parameter sets to observed scene vectors. A modular approach for
the dynamic integration and selections of rule sets and selection
strategies of agents can result in a better adaptability of the
architecture to different scenarios. For example, machine learning
based approaches such as LLMs can be used to select different agents
from a pool of multiple options when the comprehensive collection
of user feedback is difficult to realise, for instance when numerous
parameters form scene and agent describing vectors. Regarding
the feedback collection aside from the presented approach of
creating user feedback about all categories describing an agent
at the end of every agent execution more sophisticated solutions
are conceivable. One possible way for improvement can be a
utilization of the scene analysis module when it is running in
parallel to the execution of agents. For instance, a detected change
of “mood” parameter of a person while interacting with an agent
could be used for an automated feedback creation. Finally, the basic
action behaviour of agents can be improved by rather triggering
more complex state machines or behaviour trees instead of simple
actions. Ultimately, state machines could replace agents in order
to allow developers using the architecture to rather define scripts
of interactive components and skills of a robot instead of coding
individual agents for specific purposes.
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The experiments presented in this article provide basic proof of
the feasibility of the outlined technical solution for the adaptability
of robotic systems based on feedback. Future experiments with
real subjects, scenes and robot systems will be necessary to further
develop and improve the proposed software architecture beyond the
theoretical scenarios constructed. For example, the robot systems
shown in Figure 10 can be used to obtain feedback from test
subjects using a graphical user interface. Preliminary tests and
workshops in care facilities, inwhich test subjects fromdifferent user
groups had to complete simple questions and answer tasks with the
robot system Pepper shown in Figure 10, indicated that care givers
find voice interaction pleasant, while older residents had problems
understanding the robot’s spoken output acoustically. Here, for
example, practical tests can be carried out to determine whether the
architecture presented adapts initially equally parameterized agents
based on feedback, so that, for example, after several test runs,
voice output is automatically selected for younger people and textual
instructions for older people. In order to enable an investigation in
a non-nursing context, studies on the navigation behavior of large
transport robots can also be carried out. Here, evasive trajectories
can be selected for encounters in confined spaces, for example
with unknown persons. This also enables experiments on indirect
feedback strategies, as generally positive or negative feedback can
be mapped to all parameters of an agent for experimental purposes.
In those cases, one strategy would be to shift all parameters of the
agent in the direction of the recognized scene in case of positive
feedback or away from the actual scene parameter set in case of
negative feedback.
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