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Introduction: Neurological tremors, prevalent among a large population, are
one of the most rampant movement disorders. Biomechanical loading and
exoskeletons show promise in enhancing patient well-being, but traditional
control algorithms limit their efficacy in dynamic movements and personalized
interventions. Furthermore, a pressing need exists for more comprehensive and
robust validation methods to ensure the effectiveness and generalizability of
proposed solutions.

Methods:This paper proposes a physical simulation approachmodelingmultiple
arm joints and tremor propagation. This study also introduces a novel adaptable
reinforcement learning environment tailored for disorders with tremors. We
present a deep reinforcement learning-based encoder-actor controller for
Parkinson’s tremors in various shoulder and elbow joint axes displayed in
dynamic movements.

Results:Our findings suggest that such a control strategy offers a viable solution
for tremor suppression in real-world scenarios.

Discussion: By overcoming the limitations of traditional control algorithms, this
work takes a new step in adapting biomechanical loading into the everyday life
of patients. This work also opens avenues for more adaptive and personalized
interventions in managing movement disorders.

KEYWORDS

deep reinforcement learning, soft exoskeleton, Parkinson’s disease, tremor, physics
simulation, human–robot interaction

1 Introduction

Neurodegenerative diseases are characterized by the loss of neurons in the central
nervous system, which can impact an individual’s quality of life by causing cognitive,
motor, or behavioral symptoms Lamptey et al. (2022). The occurrence of these disorders
is expected to increase, partly due to the recent growth in the aging population
Heemels (2016). Neurological tremors are the most common of the movement disorders
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Louis et al. (1995), present in multiple neurodegenerative disorders
such as essential tremor Deuschl et al. (1998) and Parkinson’s
disease Lang and Lozano (1998b), Lang and Lozano (1998a).
Tremors can be described as involuntary, oscillating, or rhythmic
movements Bhatia et al. (2018). Although these are not life-
threatening, movement disorders pose serious difficulties in daily
activities, functional disabilities, and social inconvenience, as well
as difficulties performing tasks that require fine motor skills for
two-thirds of the affected patients Rocon et al. (2007b).

Although there is no cure for neurodegenerative diseases,
current treatments aim to alleviate symptoms and enhance patient
well-being. Invasive options, such as deep brain stimulation
Oliveira et al. (2023); Faraji et al. (2023), neurosurgery Albano et al.
(2023), and stem cell therapies Heris et al. (2022), can be effective
but often come with high costs and severe side effects. Non-
invasive treatments have been explored, ranging from medication
Asil et al. (2020) and traditional Chinese therapies Cai et al. (2023) to
advanced wearable technologies.These include robotic exoskeletons
Rocon et al. (2007a); Herrnstadt and Menon (2016) and soft
exoskeletons Skaramagkas et al. (2020); Awantha et al. (2020);
Zahedi et al. (2021), as well as functional electrical stimulation (FES)
devices Dosen et al. (2014); Jitkritsadakul et al. (2017), which use
electrical stimulation. Additionally, afferent neuroprostheses have
been developed to stimulate the patient’s central nervous system
Pascual-Valdunciel et al. (2020); Dideriksen et al. (2017). Of all
the non-invasive treatment options, the use of exoskeletons has
been proven to be the most efficient method for the suppression
of tremors Lora-Millan et al. (2021).

Wearable exoskeleton research mainly focused on reducing the
weight of exoskeletons Yi et al. (2019); Wang et al. (2023) due to
their bulk and weight limiting their adoption. Therefore, control
algorithms were not the main interest of these studies, which
often utilized repetitive control Rocon et al. (2007a), traditional
control methods Herrnstadt and Menon (2016); Zhou et al.
(2017); Yi et al. (2019); Zahedi et al. (2021), tremor frequency
noise filtering Taheri et al. (2013), or equivalent-input-disturbance
(EID) tremor suppression Xie et al. (2024). Traditional control
methods, though widely used, have significant limitations. They are
typically validated on low-degree-of-freedom systems and under
static conditions, overlooking tremor propagation and the natural
frequencies of voluntary movements. Evaluations often rely on
healthy subjectsmimicking tremors, which fails to capture themulti-
harmonic characteristics of Parkinson’s tremors. Additionally, these
methods do not quantify or account for interference with voluntary
motion. For dynamic movements, traditional methods require
either time-consuming patient-specific training with human-in-
the-loop optimization Siviy et al. (2023); Ding et al. (2018) or
manual rule design for each activity, limiting the scalability and
adoption of wearable robotics Slade et al. (2022). In contrast, recent
advances in deep reinforcement learning (DRL) have shownpromise
in managing stochastic action spaces in robotics Jin et al. (2022);
Kaufmann et al. (2023); Haarnoja et al. (2023) and are gaining
traction for rehabilitation exoskeletons, as DRL enables simulation-
based training without additional patient involvement Luo et al.
(2021), Luo et al. (2023), Luo et al. (2024).

Therefore, our work aims to incorporate recent advances in
DRL and makes the following central contributions to the field of
biomechanical loading exoskeletons:

• We create a human–exoskeleton simulation environment
that is capable of simulating multiple different dynamic
movements, different types of tremors, and human–exoskeleton
interactions.

• We propose a model-free deep RL-based tremor-suppression
controller capable of suppressing generated tremors across
various axes of the shoulder and elbow joints during amultitude
of dynamic movements.

• We demonstrate that the soft exoskeleton Figure 1A, coupled
with our DRL-based controller, can accurately mitigate the
effect of generated tremors.

The result is an intelligent tremor-suppression controller that
minimizes its effects on the patient’s original movements and
posture, with no additional training required from the patient to
adapt to the exoskeleton.

In the following sections, we detail the underlying physical
simulation and the DRL framework, describe the experimental
setup and evaluation metrics, present our results, and discuss the
implications of our approach for future wearable robotics in the
treatment of neurodegenerative movement disorders.

2 Methods

2.1 Tremor-suppression physical
simulation

To facilitate the training of a reinforcement learning-based
controller, we established a physical simulation environment to
ensure a secure and cost-effective learning process. The simulation
uses a human torso model with the addition of the right arm,
in which the tremors induced will be suppressed. The simulation
environment uses the Pybullet physics engine Coumans and Bai
(2016) and the Open AI gym Brockman et al. (2016) to create a
reinforcement learning environment.

The human–exoskeleton simulation is made up of three distinct
parts. The movements were recorded using two Velcro sleeves
fixed around the upper and lower arm, with an additional inertial
measurement unit (IMU) sensor fixed on the scapula of the right
arm, as presented in Figure 1B. These parts of the simulation are
illustrated in Figure 2, and described in the following sections.

2.1.1 Acquiring reference movements
The reference movements represent the patients’ voluntary

movements, which act as the base trajectory for the environments.
In the reference motions, we have recorded four distinct movements:
shoulder flexion/extension, shoulder abduction/adduction, elbow
flexion/extension, and the external rotation of the shoulder. Two
distinct recordings are used for each distinct movement pattern for
training toaddvariabilityand improve therobustnessof thecontroller.

Of the five IMU sensors this system possessed, IMU 2 and IMU
4 were chosen. From the accelerations and angular accelerations
measured, we could approximate the quaternions of the shoulder
and elbow joints using an extended Kalman filter Welch and Bishop
(1995). Finally, the quaternions were transformed into Euler angles,
which were used in the simulation.
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FIGURE 1
The anatomy of the tremor-suppression exoskeleton and the corresponding inertial measurement unit (IMU) reference movement acquisition system.
(A) The soft-robotic exoskeleton used in the tremor-suppression simulations. (B) The IMU reference movement acquisition system. (A) Actuator
positions. (B) IMU sensor positions.

Verbal informed consent was exchanged between the authors
and the subject when planning, preparing, and executing the IMU
measurements.

2.1.2 Generating tremors
Our generated involuntary movements can be described

by three attributes: their amplitude, frequency, and the time
duration during which the tremor effects are present. The third
attribute can be disregarded to ensure a more computationally

effective simulation and training of the control. Therefore,
tremorous movement parts are present at every simulation
time step.

In our simulations, we utilized Parkinson’s disease tremors due
to their well-documented and well-understood characteristics.
Tremors present in Parkinson’s disease can be described as
a second-order non-linear stochastic process Taheri et al.
(2013), which can be approximated by the superposition of
sine waves Riviere et al. (1997).
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FIGURE 2
The parts of the simulation. Voluntary movements represent the trajectory of the movement in which involuntary movement tremors are generated,
which the exoskeleton tries to suppress using its actuators.

In this paper, we approximated these tremors by two sine
waves with given parameters based on Taheri et al. (2013).
This way, the approximation contains 96.4± 1.39% of the
original energy of the tremor.

From the two main frequency ranges, we randomly sampled
values for both harmonics independent from each other and added
Gaussian noise to their sum, which was then consequentially
normalized. To ensure awide range of possible tremor cases, a vector
containing the given arm joint axis was used to specify which joint
axis was affected by tremors.

Finally, from this created vector, which contains the
tremor acceleration values for each joint axis in the arm,
we transformed these values into torque values based on the
measurements done by Ketteringham et al. (2014).

In tremor instances, where the effect of tremor impacts
multiple joint axes, the frequencies are kept the same for all
involved axes Davidson and Charles (2017).

2.1.3 Defining human–exoskeleton
interactions

Our simulation incorporates reference, tremorous, and
exoskeleton-induced movements using a position-controlled upper
torso model with one tremor-affected arm.

The exoskeleton uses an active control strategy that applies force
directly to the arm. The following equations describe the process in
which the force is converted into torque values that are used during
the training process.

First, we can denote an actuator’s state by knowing the positions
of their two ends. We denote these by naming the starting point of
the actuator with the number 1 and the endpoint with 2, where the
actuator will exert its force and pull towards the start point.

The actuator force is a 3D force whose components are
proportional to the angles of displacement that the two points create.
With the denoted displacement angles, force components that the
actuator creates on the arm at that given position can be calculated
using Equations 1–3.

Fx = cos(atan2(P2y − P1y,P2x − P1x)) ⋅ F (1)

Fy = cos(atan2(P2x − P1x,P2y − P1y)) ⋅ F (2)

Fz = cos(atan2(P2z − P1z,P2x − P1x)) ⋅ F (3)

To calculate the torque vectors these forces create, we first
calculate the position vectors. These can be calculated with a simple
vector subtraction of the point denoting the position of the specific
joint (shoulder or elbow) and the endpoint of the actuator.

Finally, the torque values are calculated by the vector product
of the force components and the position vectors and summed up
for each specific joint axis. The values are then used inside the
reinforcement learning environment.

2.1.4 The simulation system

For the control’s learning loop (Figure 3A), reference
movements and the joint axes are chosen in which tremors are
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FIGURE 3
The complete learning process of the control policy. As a deep reinforcement learning agent, we construct our controller as a multilayer perceptron
(MLP) neural network. The control policy and encoder networks are updated as described in the TD7 algorithm.

present. At the beginning of the episode, all actuator forces are set to
0. After summing up the actuator and tremor-generated torque
values, Equation 4, a second-order, seven-variable differential
equation, is solved (Davidson and Charles, 2017; Corie and
Charles, 2019):

I ⋅ q̈+D ⋅ q̇+K ⋅ q = τ, (4)

where q = [q1,q2,q3,q4,q5,q6,q7]
T is the angle of displacement

in each joint degree of freedom (DoF). The elements of q
represent the following angles: q1: shoulder flexion/extension
(SFE), q2: shoulder abduction/adduction (SAA), q3: shoulder
external/internal rotation (SEIR), q4: elbow flexion/extension
(EFE), q5: forearm pronation/supination (FPS), q6: wrist
flexion/extension (WFE), and q7: wrist radial-ulnar
deviation (WRUD).

The 7 × 7 matrices present the coupled inertia I, damping D
and stiffness K of the mentioned DoF, respectively Davidson and
Charles (2017).

Therefore, this takes tremor propagation into account with
the inclusion of anatomically coupled properties of the joints.
Furthermore, upon closer inspection, we can break down the torque
values τ to the following components (Corie and Charles, 2019):
τI: torque required to perform an intentional task, τT: torque
generating the tremor, τL: task load torque, and τG: gravitational
torque, τO: torque generated by the orthosis (exoskeleton) on the
particular joint.

The mentioned components τI, τL, and τG are covered by
the reference movement, thus leaving the torque generated by
the tremor and the exoskeleton to find the unknown joint angle
displacement values in our calculation.

With the calculated joint angle values based on the reference
motion recording and tremor–exoskeleton interaction, we
simulate one step in our simulation and receive a new state
observation.

This new state observation is then propagated through an
encoder neural network to further extract hidden information or
unrealized correlations in the data, which are then given as the input
to the control policy alongside the original observation vector that
the encoder received.

For the anatomical properties of the simulation, the joint angle
ranges are based on Zwerus et al. (2019) and Gill et al. (2020).
The maximum joint torques for the voluntary motion are designed
according to Otis et al. (1990) and Günzkofer et al. (2012). The
upper and lower arm weight ratios are defined by Plagenhoef
et al. (1983).

2.1.5 Dynamics randomization
Although simulation-based training provides a safe and efficient

way to train our controller, there is a well-known discrepancy
called the sim-to-real gap between the physical and real-world
environments.

In order to overcome this obstacle and improve the robustness
of our control, we employ dynamics randomization (Sadeghi and
Levine, 2016; Tobin et al., 2017; Peng et al., 2018b).

This method randomly samples environmental characteristics
from a given uniform distribution (Table 1) at the beginning of
each episode. This forces our agent to be more robust against
perturbations present in the environmental characteristics and to
better adapt to the real-world environment, whose characteristics
are expected to be present in the given distribution ranges.
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2.2 Control algorithm training

In this section, we propose a deep reinforcement learning-based
training and testing framework that enables the learning of optimal
tremor-suppression strategy.

2.2.1 Reinforcement learning background
Reinforcement learning (RL) is a branch of machine learning

that deals with sequential decision-making problems (Sutton and
Barto, 2018). The objective is to learn an optimal policy π that
enables an agent to maximize its return through interactions
with a specified environment. The return, which is described
as the discounted cumulative rewards the agent collects, is
defined by Equation 5.

Rt =
T

∑
i=t

γi−t ⋅ r(si,ai) (5)

The agent at each discrete time step t, with a corresponding
state s ∈ S, selects an action a ∈ A with respect to its policy π:S→ A,
receiving reward r and a new state of the environment s′.

Deep reinforcement learning is the combination of deep neural
networks with RL, where the policy is represented by a neural
network πθ, where θ denotes the weights of the network.

2.2.2 TD7
Apopular family of RLmethods is actor-critic algorithms, where

a policy known as the actor is updated by the deterministic policy
gradient algorithm (Silver et al., 2014) Equation 6:

∇θJ (θ) = Es∼pπ [∇aQ
π (s,a) |a=π(s)∇θπθ (s)] (6)

In Equation 7, Qπ(s,a) is known as the critic or value function,
which is used to calculate the expected return when performing
action a in a given state s following the actor policy π.

Qπ (s,a) = Esi∼pπ,ai∼π [Rt|s,a] , (7)

which is commonly updated by temporal difference learning
utilizing a secondary target network as described by Mnih et al.
(2013) see Equation 8.

y = r+ γQθ′ (s′,a′) , a′ ∼ πθ′ (s′) , (8)

where Qθ′(s,a) is the target critic network, and πθ′ is the target
actor network.

These methods are prone to overestimation errors, whereby,
through the function approximation error of the critic, some state-
value pairs are overestimated, leading to a sub-optimal policy.
The twin delayed deep deterministic policy algorithm (TD3)
(Fujimoto et al., 2018) solves function approximation errors by the
use of a second critic network and clipped doubled Q-learning
(Van Hasselt et al., 2016), as shown in Equation 9.

y = r+ γmin
i=1,2

Qθ′i
(s′,πθ1
(s′)) (9)

In our proposed reinforcement learning-based controller,
a state-of-the-art reinforcement learning algorithm
called TD7 (Fujimoto et al., 2023), which incorporates the following
additions to the TD3 algorithm, is used.

A loss-adjusted prioritized (LAP) (Fujimoto et al., 2020) replay
buffer improves the sample efficiency of the algorithm and speeds up
training by sampling transition tuples i≔ (s,a, r, s′) from which the
agent can learn more. The probability of sampling transition i from
the replay buffer B sampling is

p (i) =
max (|δ (i) |α,1)
∑j∈Bmax (|δ (i) |α,1)

, where δ (i) = Q (s,a) − (r+ γQ(s′,a′))

(10)

In Equation 10, the level of prioritization is governed by the
hyperparameter α.

Behavioral cloning term allows the use of the algorithm in
an offline-RL setting Fujimoto and Gu (2021). However, because
our task relies on online training, we do not go into depth for
this addition.

Policy checkpoints add additional stability toward the training
of the agent by selectively employing the best-performing networks,
therefore providing stability.

State-action learned embeddings aim to improve the inputs to
the actor and critic networks by capturing the relevant underlying
structure of the observation space and the transition dynamics
present in the environment. Therefore, our network equations can
be described by Equation 11 as follows:

Q (s,a) → Q (zsa,zs, s,a) , π (s) → π (zs, s) , (11)

where zs is the state embedding, and zsa refers to the state-action
embedding.

The choice of TD7 (Fujimoto et al., 2023) over other
widely used reinforcement learning algorithms such as PPO
(Schulman et al., 2017), TD3 (Fujimoto et al., 2018), or SAC
(Haarnoja et al., 2018) is motivated by several key factors.
First, TD7 exhibits significantly improved sample efficiency,
often achieving comparable performance to prior methods
with only one-tenth of the training time steps. Second, it
demonstrates substantially higher performance across standard
gym benchmark tasks (Brockman et al., 2016). Finally, TD7
incorporates embeddings that enable the use of larger neural
network architectures. A detailed list of hyperparameters with their
justifications is provided in the supplementary material.

2.2.3 Observations, actions, and rewards
At each time step t, an observation vector of ot ∈ ℝ80. The

observation/state vector is defined by o = {Ft−2:t,τt−2:t,p
a
t−1:t,p

j
t−1:t},

in which F contains the force values of the actuator, τ refers
to the tremor torque, pa contain the end position coordinates
of the actuators, and pj denotes the coordinate positions
of the joints. In this observation vector, all the values are
normalized.

For each observation vector, the actor network outputs an
action at ∈ ℝ7 in the form of the output force of each actuator.
These actions are then converted into the ranges of the actuator
forces F.

To achieve the complex tremor-suppression behavior of our
agent, a densely constructed reward function is utilized. The aim
of the control is to suppress tremors to the maximum extent while
interfering the least with the voluntary movement of the patient and
also utilizing the minimum force required.
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TABLE 1 Dynamic randomization parameter ranges used throughout training and validation. Anatomical matrices represent values in the inertia,
damping, and stiffness matrices. Actuator precision accounts for the discrepancy between the commanded and actual force generated by the actuator.
Actuator end-point shift refers to actuator sliding due to soft-robotic Velcro changes. Tremor frequencies and amplitude reflect different Parkinson’s
patients’ tremor characteristics.

Dynamics parameters Training range Testing range

Anatomical matrices [0.9, 1.1] ⋅ original value [0.875, 1.125] ⋅ original value

Actuator precision [0.97, 1.03] ⋅ original value [0.96, 1.04] ⋅ original value

Actuator end-point shift (in one axis) [0, 2] cm [0, 2.5] cm

Tremor first harmonic frequency [4, 6] Hz [3.75, 6.25] Hz

Tremor second harmonic frequency [8, 12] Hz [7.5, 12.5] Hz

Tremor amplitude [0.1, 1] ⋅max value [0.05, 1.05] ⋅max value

FIGURE 4
Tremor amplitude suppression values throughout the tremor pairs. Tremor suppression was evaluated for each case over 100 episodes across all
reference movements, averaging tremor amplitude suppression and occurrence values. Tremor occurrence indicates the percentage of time steps
where the tremor was reduced without disrupting the person’s original trajectory.

Therefore, the reward function consists of five parts: a
part accounting for mitigating the tremor torque, a sub-reward
accounting for the distortion of the original movement trajectory,
a term encouraging tremor reduction across all the affected axes,
an actuator smoothness reward, and a reward encouraging the use
of minimal actuator force in order to control this tremor torque.
This reward is based on the reinforcement learning heuristics of
reward shaping (Peng et al., 2018a). The full reward function is
written as Equation 12:

rt = wa ⋅ r
a
t +wτ ⋅ r

τ
t +wF ⋅ rFt +was ⋅ r

as
t +wu ⋅ r

u
t (12)

where wa, wτ, wF, and was are the respective weights of the sub-
rewards. The values of the weights are wa = 0.5, wτ = 0.9, wF = 0.05,
was = 0.05, and wu = 0.5. Fs and Fe denote the maximum actuator
forces possible at the shoulder and elbow actuators.

The tremor axis reward ra aims to encourage control strategies
that suppress tremors across all the involved joint axes, as
defined in Equation 13:

rat = wa ⋅ na (13)

where na is the number of axes where generated tremor torques
are present.

The torque reward rτt enforces the agent to mitigate tremors in
all the affected joint axes:

rτt = exp[

[

−∑n
i=1
((|τie| − |τ

i
t|)/|τ

i
t| + 1)

n
]

]
(14)

Equation 14 contains the unmitigated original tremor-generated
torque values τt and the torque values after the exoskeleton has
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FIGURE 5
Tremor amplitude suppression values throughout the movements. We display the tremor amplitude suppression values achieved by the exoskeleton
throughout the recorded dynamic movement over the time steps of a single episode. The reported statistics are computed over 100 episodes with
out-of-training distribution domain randomization.

applied its forces τe. The equation calculates the tremor suppression
on a given joint axis, which is then averaged to be capable of handling
tremors affecting multiple joint axes.

The actuator force reward encourages the agent to applyminimal
forces with the exoskeleton actuators, reducing energy expenditure,
improving efficiency, and preventing damage to the exoskeleton and
the patient.

rFt = exp[

[

−∑
i
Fi

Fe + Fs
]

]
(15)

In Equation 15, wa is an actuator weight aimed to magnify the
learning signal, whose value is dependent on the highest maximum
force output and the number of actuators present in the exoskeleton.

The action smoothness reward Equation 16 promotes the use of
smooth actuator forces by penalizing the second-order derivatives
of the actuator forces:

rast =
1

N ⋅ Fe+Fs
2

N

∑
i=1
(Fi − 2 ⋅ Fi−1 + Fi−2)

2 (16)

Because exoskeletons can disrupt natural movements, the
“unwanted movement” reward Equation 17 is added to ensure
smoother, more natural motion, minimizing discomfort and
improving efficiency. The reward discourages the control from
interfering with the voluntary movement trajectory by penalizing
the amount of torque created on non-tremor-affected axes.

rut = exp[

[

−∑
i
τui

Fe+Fs
2

]

]
(17)

2.2.4 Modifications to handle tremor suppression
Given the diverse nature and precision demands inherent in

the tremor-suppression task, the training algorithm has undergone
specific modifications to accommodate these challenges.

First, a modification is made to the replay buffer to handle
the variance in movement trajectories present in the reference
movement. This way, the replay buffer is divided into as many
sub-parts as there are reference movements, and then from
these sub-buffers, we sample a batch size number of transitions
according to prioritized experience replay (Fujimoto et al., 2020).
This modification improves robustness because oversampling is
avoided even though the different length reference movements
create an uneven data distribution in the buffer overall. The
sub-buffer also has an increased size to leverage a wider range
of possible transitions present to improve the performance
of training (Fedus et al., 2020).

The other main modification is regarding the decrease of
action and policy noise in the algorithm. This helps by reducing
the random space around the agent’s chosen action/policy values,
therefore allowing it to learn more fine-tuned control policies. This
is crucial because a small change in actuator force can lead to vast
differences in the torque created on the human skeleton due to
anatomical reasons.

Tremor suppression via exoskeleton requires sophisticated
actuation of different motors, where we found that typical
white noise exploration added to the chosen actions is not
sufficient. Therefore, we replace this common method by adding
pink noise (Eberhard et al., 2023) to the actions, improving the
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FIGURE 6
The trajectories of the simulation. (A) The trajectories in the 3D simulation environment. Trajectories were recorded during an external rotation
movement of the shoulder. Tremors were observed in the flexion/extension axis of the elbow joint. The blue represents the original trajectory, the
green represents the trajectory affected by the tremor, and the red represents the exoskeleton-suppressed trajectory. (B -E) The suppressed and
unsuppressed torque values present at each joint.

agent’s exploration ability and improving action smoothness by
incorporating a more correlated noise to the actions.

2.2.5 Training details
The training of the agent is performed in one set of parallel

environments, where each represents a reference movement
trajectory and a distinctly generated tremor, with the axes defined
where tremors are present.The axes in which the tremors are present
are constant throughout all the dynamic movements. The agent
does not use random state initialization or early termination, but it
ensures that the simulated trajectory remains close to the original
trajectory by initializing each simulation step from the original
value of the reference movement and not the previous simulation
step positions. This ensures robustness and boosts performance.

The specifics of the networks and hyperparameter details of the
training are found in the supplementary materials.

3 Results

To analyze our control algorithm’s performance, a number of
numerical tests were conducted to answer the following questions:

1) Can the trained agent suppress the generated tremors across
various joints and reference movement? 2) How accurately can
it mitigate the effects of tremors, and at what percentage? 3) To
what extent are the generated tremor torque values suppressed?
4) How is the original movement trajectory affected by the
exoskeleton?

3.1 Evaluation of the control policy

The control policy was evaluated through 100 episodes,
each of which consisted of an environment with each of the
reference movements. The environment characteristics were
sampled from a larger dynamics randomization testing range
(Table 1) to display the learned controller’s ability to generalize
to out-of-distribution cases. The frequency components for the
tremors were randomly generated in the specified range in
each episode and environment. The control has been trained
and evaluated for each possible tremor combination involving
the shoulder axes and the elbow extension/flexion axis. The
tremor amplitude suppression percentages and the occurrences
of tremor suppression without interfering with the original
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movement trajectory can be seen in Figure 4. The controller
effectively suppresses tremors in all but one of the generated
tremor pairs, demonstrating a high level of generalizability
of the method. In-depth performance data for each of the
combinations of the tremor joint axes are presented in the
supplementary material.

To further investigate the reference motion-wise performance
of the controller, we evaluate a tremor case involving the elbow
flexion/extension axis of the arm. The performance of the control
can be seen in Figure 5.

These results demonstrate that a single RL-based trained
controller can adapt to mitigate tremors regardless of the reference
movement. The control also displays high performance, with the
maximum tremor amplitude suppression values exceeding 99%.The
control also displays a consistent ability to suppress tremors, evident
from the median and mean values of Figure 5.

The qualitative performance of the controller can
be seen in Figure 6A. The figure shows how the original movement
trajectory is affected by the exoskeleton. This figure presents
additional evidence, as the suppressed movement trajectory
consistently maintains a shorter distance from the reference
movement’s trajectory when compared to the trajectory affected
by tremors.

The torque plots in Figures 6B–D display the controller-created
torque present on the joints unaffected by the simulated tremor. The
controller’s ideal behavior, which is derived from the torque values
achieving the optimal zero generated torque at given time steps, can
be seen in the figures. Furthermore, when the torque values are not
0, we can see a tendency in the time steps to minimize this torque
and correct the control behavior.

The torque plot in Figure 6E shows the torque created by
the controllers present in the joint affected by the simulated
tremor. The trained controller effectively suppresses tremors in
the involved axis in which tremors are present, although it is
prone to producing different torque suppression percentages.
The concrete torque suppression values for each tremor
pair averaged across the movements are provided in the
supplementary material.

4 Discussion and limitations

The control of soft-robotic exoskeletons requires real-time
decision making on a wide range of stochastic predictors and
changing sensory readings in dynamic everyday movements.
Furthermore, validation of these control algorithms requires
extensive testing to ensure the safety and performance of
the control.

This work contains an easily adaptable testing environment
for all sorts of neurodegenerative diseases displaying symptoms of
tremors, allowing for rapid and cheap testing for new learning-based
control methods.

The controller also displays good performance in mitigating
tremor torques and amplitudes. However, this performance
fluctuates over time steps. The controller’s performance varies
between movements and tremor cases. This is due to the
exoskeleton structure and also the simulation tremor torque
values used. In future studies, exploration of tremor torque

ranges is warranted. Furthermore, addressing performance
optimization requires a more nuanced understanding of the
involved joint axes and their associated characteristics in a given
dynamic movement.

From the tremor torque plots, it is evident that further reduction
in the tremor amplitude is dependent on how effectively the
exoskeleton only exerts forces onto the axes where tremors are
present. This could involve revisiting the actuator positions or
perhaps using amixedmethod of FES and robotic exoskeletons.This
approach could minimize tremors in the shoulder flexion/extension
axis, a case that, along with its variants, achieved the lowest tremor
suppression torque/amplitude values.

This control uses state-of-the-art approaches introduced
by encoder networks to extract information from changing
observations induced by tremors to achieve high-performance
tremor suppression. The achieved performances also highlight the
need for improved neural network architectures in these algorithms
to improve the safety and stability of these control methods, which
cannot be bypassed by hybrid traditional learning-based control
approaches because the neural network actor’s densely connected
architecture can generate values vastly different in concurrent time
steps. These generated values cannot be mitigated meaningfully by
a traditional proportional-integrative-derivative (PID) controller.
This is a future challenge to be addressed due to the limitations of
the frequency of control actuation usually present (30–40 Hz) in the
actuators.

The results show promise, but the current research is limited
to simulation. We mitigate this limitation through domain
randomization methods as much as possible. Furthermore, as
our training algorithm relies on Markov decision process (MDP)
formulation, additional considerations must be made to maintain
accurate sensor readings by either state estimation techniques such
as Kalman filters (Kalman, 1960) or by incorporating an algorithm
that can handle partially observable states. Movements that differ
significantly from the reference trajectories used in training may
limit the controller’s accuracy. Consequently, future work should
include experimental validation on patients and testing with out-
of-distribution simulation movements to fully understand how this
impacts the controller’s performance. For safety reasons, built-in
safety checks, torque limits, and acceleration thresholds should
be incorporated into the deployed exoskeleton to further mitigate
this problem.

Current applications of the exoskeleton control system extend
to real-life rehabilitation exercises, similar to the trajectories present
during training.

5 Conclusion

This paper proposes a physical simulation-based tremor-
suppressing exoskeleton physical simulation framework. The
framework is flexible and adaptable to different diseases
and characteristics of patients with tremor symptoms.
It can also be incorporated with various other dynamic
movements. This simulation also proposes an inexpensive and
rapid method of validating control algorithm performances.
The simulation hyperparameters are included in the
supplementary material.
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The paper also details the training of a reinforcement learning-
based encoder-actor controller. The controller can adapt to
personalized interventions in the management of movement
disorders. Additionally, the controller can adjust to varying ranges
of actuator forces, thereby proposing a viable strategy for tremor
suppression.

Experimental results show that the proposed framework can
mitigate tremor torques present at the joint axes, and the entire
tremor amplitude with tremor propagation is taken into account.
The results indicate a substantial decrease in both median and
maximum tremor amplitudes.

The control aims to mitigate tremors without interfering with
the original movement, not allowing patients to rely too heavily on
the exoskeleton during naturalmotor abilities, thereby not hindering
rehabilitation efforts while also minimizing the potential side effects
that might arise from prolonged use.

In the future, we intend to deploy the trained exoskeleton
control on physical hardware, incorporating sim-to-real techniques
into the physical simulation. Furthermore, we aim to validate
the performance of this control in a clinical trial setting with
patients involved.
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