
TYPE Original Research
PUBLISHED 10 June 2025
DOI 10.3389/frobt.2025.1540808

OPEN ACCESS

EDITED BY

Maria Guinaldo,
National University of Distance Education
(UNED), Spain

REVIEWED BY

Faouzi Bouani,
University of Tunis El Manar, Tunisia
Hong Xie,
Wuhan University, China

*CORRESPONDENCE

Kaoru Yamamoto,
yamamoto.kaoru.481@m.kyushu-u.ac.jp

RECEIVED 06 December 2024
ACCEPTED 01 May 2025
PUBLISHED 10 June 2025

CITATION

Gerdpratoom N and Yamamoto K (2025)
Decentralized nonlinear model predictive
control-based flock navigation with real-time
obstacle avoidance in unknown obstructed
environments.
Front. Robot. AI 12:1540808.
doi: 10.3389/frobt.2025.1540808

COPYRIGHT

© 2025 Gerdpratoom and Yamamoto. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Decentralized nonlinear model
predictive control-based flock
navigation with real-time
obstacle avoidance in unknown
obstructed environments

Nuthasith Gerdpratoom and Kaoru Yamamoto*

Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University,
Fukuoka, Japan

This work extends our prior work on the distributed nonlinear model predictive
control (NMPC) for navigating a robot fleet following a certain flocking behavior
in unknown obstructed environments with a more realistic local obstacle-
avoidance strategy. More specifically, we integrate the local obstacle-avoidance
constraint using point clouds into the NMPC framework. Here, each agent relies
on data from its local sensor to perceive and respond to nearby obstacles. A point
cloud processing technique is presented for both two-dimensional and three-
dimensional point clouds to minimize the computational burden during the
optimization. The process consists of directional filtering and down-sampling
that significantly reduce the number of data points. The algorithm’s performance
is validated through realistic 3D simulations in Gazebo, and its practical feasibility
is further explored via hardware-in-the-loop (HIL) simulations on embedded
platforms. The results demonstrate that the agents can safely navigate through
obstructed environments, and the HIL simulation confirms the feasibility of
deploying this scheme on an embedded computer. These results suggest that
the proposed NMPC scheme is suitable for real-world robotics deployment in
decentralized robotic systems operating in complex environments.

KEYWORDS

nonlinear MPC, flocking, local obstacle avoidance, hardware-in-the-loop, distributed
control

1 Introduction

In the past few decades, multi-agent systems have gained much attention in science
and engineering due to the advancement of digital computers and the advantages
of mimicking group behaviors to accomplish complex tasks. Our study focuses on
implementing flocking behavior for a robot fleet inspired by groups of birds and
fish in nature. Reynolds (1987) introduced the boid model to simulate bird flocking
with cohesion, separation, and alignment. Many researchers, including Cao et al.
(2010), Li et al. (2024), Tanner et al. (2003a), Tanner et al. (2003b), and Olfati-Saber
(2006), have utilized Reynolds’ boid model from a control perspective. Recently, more
advanced strategies have been proposed, employing optimization-based control, such
as model predictive control (MPC), for flocking. This control scheme involves agents
predicting future states and adjusting control actions based on minimizing the cost

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1540808
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1540808&domain=pdf&date_stamp=2025-06-06
mailto:yamamoto.kaoru.481@m.kyushu-u.ac.jp
mailto:yamamoto.kaoru.481@m.kyushu-u.ac.jp
https://doi.org/10.3389/frobt.2025.1540808
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1540808/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1540808/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1540808/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1540808/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1540808/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Gerdpratoom and Yamamoto 10.3389/frobt.2025.1540808

function, offering benefits in handling complex problems,
addressing state constraints, and enabling smoother control actions
over longer prediction horizons (see Yu et al., 2021). Nonlinear
model predictive control (NMPC) provides more flexibility than
linear MPC, accommodating complex system dynamics and
constraints without compromising nonlinearities.

Recent developments in optimization-based control have
addressed challenges in multi-robot systems. One is the work by
Xu et al. (2023). The authors proposed MPC problems for the
leader–follower structure of unmanned aerial vehicles (UAVs). The
leader UAV’s problem was cast to track the specified trajectory,
and a fully nonlinear UAV model was utilized to constrain the
optimization. Meanwhile, the followers’ problem was retaining
the formation among the group of UAVs with limited neighbor
information to ease inter-UAV communication.Themodel enforced
for the followers was a simplified two-layer uncoupled model,
including translational and rotational motion, to reduce the
computational burden. The authors implemented MPC for the
followers in the linear parameter varying (LPV) fashion (LPV-
MPC). Kong et al. (2023) proposed an NMPC strategy specifically
for fixed-wing UAV flocking. The authors presented a three-
dimensional flocking model based on the distributed NMPC,
encoding flocking rules as terms in the objective function. The
NMPC was then solved using a nonlinear programming solver in
the CasADi optimization framework (see Andersson et al., 2019).

Safe navigation has become a hot topic in robotics and
control in recent years. Mestres et al. (2024) have proposed
a distributed controller for multi-robot safe navigation. The
authors characterized obstacle and collision avoidance by leveraging
control barrier functions (CBFs) as optimization constraints.
While the presented control scheme did not explicitly consider
predicted future states and inputs like in predictive controls, the
forthcoming system’s behavior was captured with respect to the
specified safe set. Goarin et al. (2024) integrated exponential
CBFs (ECBFs) into a decentralized NMPC scheme for safely
controlling multi-quadcopters under thrust constraints and limited
detection range situations. This control strategy enhances the
reliability of CBF-based safety conditions by incorporating them
within a receding horizon framework. The authors derive both
conservative and practical bounds on the detection range required
to preserve ECBF-based safety guarantees. The optimization-based
control strategies for navigating groups of robots in obstructed
environments appear effective. However, most studies assumed that
obstacleswerewell-defined.This paper aims to close the gap between
these strategies and real-world robotics applications.

This work builds upon prior studies on NMPC-based flock
navigation, particularly those presented by Nag et al. (2022) and
Nag and Yamamoto (2024). The authors have introduced the
NMPC-based flock navigation strategy with modified flocking rules
consisting of a graph-distance hierarchy and a cohesion/alignment
dynamic trade-off to navigate the fleet smoothly through an
obstructed environment. The NMPC formulation allows one to
explicitly impose each rule in the optimal control formulation, and it
was successfully evaluated via numerical simulation and laboratory
experimentation. However, in these works, it was assumed that
an analytic expression of the obstacles (as a set of smooth
inequalities proposed by Sathya et al. (2018)) becomes available
to each agent as soon as they are in their detection range. In

other words, the obstacles were well-defined and did not reflect
the obstacle representation in the actual robotics implementation.
Therefore, this work further develops the theoretical foundations
by investigating such practical aspects, which were previously
neglected. In particular, we consider the situation in which the
obstacles are perceived by local onboard sensors such as LiDAR
and incorporate the whole process of obstacle detection, data
suppression, and obstacle avoidance. We focus specifically on
point cloud data, which represents the common information type
for mobile robots’ perception of the environment. The obstacle-
avoidance algorithm based on a point cloud has been well
studied. The most widely used algorithm, the artificial potential
field proposed by Song and Kumar (2002), has been utilized in
many mobile robot projects, such as the collision-free backup
controller for a micro aerial vehicle based on 2D point cloud (see
Lindqvist et al. (2020)) or the decentralized control of a robot
group formanipulation tasks (see Barraquand et al. (1991)). Another
reactive approach is vector field histogram (VFH), which maps
the radial point cloud information in a polar coordinate into a
histogram and selects the obstacle-free direction for the robot to
steer to (see Liang et al. (2023)).

In this study, we incorporate obstacle information in point cloud
data type into the optimal control formulation, adopting a strategy to
minimize the amount of data input required by the solver to reduce
the computational burden for both two and three-dimensional point
clouds.The problem is solved using the proximal averaged Newton-
type method for optimal control (PANOC), as introduced by
Stella et al. (2017) via Optimization Engine (OpEn) code generation
in Rust, developed by Sopasakis et al. (2020). The study is evaluated
through a close-to-real-world simulation, Gazebo (see Koenig and
Howard (2004)), where physical uncertainties are considered. The
algorithm is executed in a distributed manner asynchronously with
the robot operating system (ROS) framework, and the robot fleet
navigates safely in an obstructed environment.

Unlike the experimental setup of Nag and Yamamoto (2024), in
which theNMPC algorithmwas executed in a decentralizedmanner
on a station computer, providing optimal control actions to each
robot, we further study the feasibility of implementing the algorithm
in the embedded platforms, where computational resources are
limited, through hardware-in-the-loop (HIL) simulation (see
Brayanov and Stoynova (2019) and MihaliÄ et al. (2022)). We
connect Raspberry Pis, widely used in low-cost robotics-embedded
platforms, to a computer running a realistic simulation. The NMPC
algorithm is run in a more distributed fashion inside the target
hardware while simultaneously monitoring computational loads
and assessing trajectory quality.

1.1 Contributions

There are two main contributions in this work. First, we
introduce obstacle avoidance based on local environmental
information that fits our original NMPC formulation. We also
propose point cloud processing that can significantly reduce
the computational burden for both two-dimensional and three-
dimensional point clouds. Second, we conduct an HIL simulation
to investigate the feasibility of implementing NMPC-based flock
navigation on Raspberry Pi 4 in a fully distributed manner.

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2025.1540808
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Gerdpratoom and Yamamoto 10.3389/frobt.2025.1540808

1.2 Outline

Section 2 briefly outlines theNMPC-based flock navigationwith
modified flocking rules, serving as a self-contained context for
readers. Section 3 discusses the main results of this work, consisting
of point cloud data processing, obstacle-avoidance constraints,
and NMPC formulation featuring a local obstacle-avoidance
strategy. Section 4 presents the evaluation of the algorithm through
realistic simulation scenarios, as well as an HIL simulation
conducted on embedded platforms.

2 Preliminaries

In this section, we will briefly explain our prior work on
distributed NMPC-based flock navigation with modified flocking
rules. The optimal control problem formulation and modified
flocking rules will be discussed in the following subsections. A
detailed explanation can be found in the works done by Nag et al.
(2022) and Nag and Yamamoto (2024).

2.1 Setting

A system consisting of N agents in an np-dimensional space,
categorized into leaders and followers, is considered. Leaders are
given trajectories, while followers only react to their immediate
surroundings and lack knowledge of any predefined destination. At
time step t, let N t

i be the index set of neighbors, including itself
(Agent i), and let N t

i be the index set of neighbors without itself.
Let xti ∈ ℝ

n be the state vector of Agent i and let yti be the vector
that contains Agent i’s position pti ∈ ℝ

np and velocity vti ∈ ℝ
np in

the global frame defined as yti = [p
t⊤
i ,v

t⊤
i]
⊤. The variable sequences

defined along the prediction horizon T are bold-faced. For instance,
the sequence of the control input uti ∈ ℝ

nu , computed at time t, is
uti ≔ u

t|t
i … u

t+T−1|t
i . Similarly, the sequence of the predicted state

of Agent i is xti. The nonlinear discrete-time state equation for each
agent fi:ℝ

n ×ℝnu →ℝn can be described by Equation 1:

xt+k+1|ti = fi (x
t+k|t
i ,u

t+k|t
i) , k = 0,…,T− 1. (1)

The goal is for followers to find optimal actions ut|ti for
navigating through obstructed environments while minimizing
deviation from the proposed flocking rules, thus ensuring fleet
connectivity.

2.2 Objective function

To achieve our main objective, we introduced a quadratic
minimum-effort cost function given by

J(uti) = ‖u
t
i‖
2
Ri
+

T−1

∑
k=0

γk‖yt+k+1|ti − yt+k+1|ti ‖2Qt
i
, (2)

where Ri ∈ ℝnu×nu , and Qt
i ∈ ℝ

2np×2np are positive semi-definite
diagonalweightmatrices corresponding to the first and second term.
Let ytj|i be the output of Agent j ∈N

t
i, detected by Agent i at time

instant t, and let yt+k|ti = [p
t+k|t⊤
i ,v

t+k|t⊤
i]
⊤
be the weighted average of

yt+k|tj|i , where

pt+k|ti = ∑
j∈N t+k|t

i

wt+k|t
p,j|i p

t+k|t
j|i ,

vt+k|ti = ∑
j∈N t+k|t

i

wt+k|t
v,j|i v

t+k|t
j|i ,

(3)

for k = 0,…,T− 1. The weights wt+k|t
p,j|i and wt+k|t

v,j|i will be discussed in
the modified flocking rules section (Section 2.4). The errors of the
predicted states can be accumulated during the prediction. Hence,
a discount factor γ ∈ (0,1] is introduced by prioritizing the near-
future prediction.

2.3 Optimization constraints

2.3.1 State and input constraints
The input and state constraints, excluding separation and

obstacle avoidance, are assigned as

xt+k+1|ti ∈ Xi and ut+k|ti ∈ Ui, (4)

where Xi ⊂ ℝn and Ui ⊂ ℝnu are the feasible sets for the states and
inputs of Agent i, respectively.

2.3.2 Separation constraint
To ensure separation between agents, both hard and soft

constraints are considered to address the accumulated error during
prediction. That is, in the early stages, separation is enforced by
a hard constraint, and after a predefined time Tsep ∈ (0,T], it
switches to a soft constraint. For a detailed justification, the reader is
referred to Nag and Yamamoto (2024). Hard separation constraints
are imposed as

di,sep − d
t+k+1|t
j|i ≤ 0, k = 0,…,Tsep − 1, (5)

where dt+k+1|tj|i ≔ ‖p
t+k+1|t
i − pt+k+1|tj|i ‖

2 for j ∈N t+k∣t
i , and di,sep is a

separation distance. To add the soft constraint to the cost function,
we define the penalty function as Equation 6:

P(dti) =
{
{
{

(di,sep − d
t
j|i)

2
if di,sep > d

t
j|i,

0 otherwise
, (6)

Then the objective function, Equation 2, will be modified
as shown by Equation 7:

̃J(uti) = J(u
t
i) + ρsep

T−1

∑
k=Tsep+1

γk ∑
j∈N t+k|t

i

P(dt+k|tj|i) , (7)

where ρsep ∈ ℝ+ acts as a penalty weight for a soft separation
constraint.

2.4 Modified flocking rules

This section will discuss the subjective neighbor weights and the
weighted matrix Qt

i. The effect of each rule was explained in the
prior work (see Nag and Yamamoto, 2024).

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2025.1540808
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Gerdpratoom and Yamamoto 10.3389/frobt.2025.1540808

2.4.1 Leader–follower graph-distance hierarchy
A hierarchy level subjected to each agent πti ∈ ℕwas introduced.

In the initialization process, each leader l is set a constant hierarchy
level πtl = 0. Each follower is assigned an upper-bound hierarchy
level π̄ ∈ ℕ≥1, which can be defined as a flock parameter set by the
designer. Then, the hierarchy level of each follower will be updated
in every sample by the following equation:

πti =min{π,1+min
j∈N t

i

πt−1j }, (8)

while the leaders’ hierarchy levels remain zero. In this way, each
agent can estimate its current hierarchy level in a completely
distributed manner. By communicating hierarchy levels between
neighbors, each agent can identify the more important agents (e.g.,
leaders or followers near a leader). This information is incorporated
into the position update rule by setting weight wt+k|t

p,j|i in Equation 3
according to Equation 9:

wt+k|t
p,j|i =

2−πj

∑
ℓ∈N t+k|t

i

2−πℓ
. (9)

2.4.2 Allocating weights by travel vector
The alignment weight should be prioritized for the agents in

the front with respect to travel direction. This can be assessed by
examining the inner product between its velocity and the relative
position vector. The alignment weight wt+k|t

v,j|i can be defined as

wt+k|t
v,j|i =
{
{
{

1 if ⟨vt|ti ,p
t−1|t−1
j|i − p

t|t
i ⟩ ≥ 0

βi otherwise
, (10)

where βi ∈ [0,1].

2.4.3 Cohesion/alignment dynamic trade-off
For each agent to have the ability to determine whether to

prioritize cohering or aligning with its neighbor, the cohesion
and alignment dynamic trade-off is implemented by dynamically
adjusting the weight matrix Qt

i ∈ ℝ
2np×2np according to Equation 11:

Qt
i ≔ diag(1− q

t
i,…,1− q

t
i,q

t
i,…,q

t
i) (11)

with

qti ≔
qi,st

1+ ci‖p
t|t
i − p

t|t
i ‖

2
, (12)

where ci ∈ ℝ+, and qi,st ∈ (0,1).

3 Obstacle avoidance based on local
sensor

Point cloud data from the depth camera or LiDAR sensor
represents an environment around it in a robot’s body frame,
including obstacles and neighboring agents. For two-dimensional
LiDAR, the number of data points can be large, depending on the
sensor specification, and the number is squared for 3D LiDAR.
In the optimization problem, it is not always possible to impose a
high number of constraints due to the limitation of computational

power. Hence, in this section, we present a point cloud processing
technique for reducing the number of data points to a feasible
range. Then, we define an obstacle-avoidance constraint tailored
to this processed data, aligning with our previously developed
NMPC-based algorithm.The NMPC problem formulation with the
proposed strategy is shown at the end of the section.

3.1 Processing of point cloud information

In point cloud processing, we utilize directional filtering and
down-sampling, which can significantly reduce the number of data
points while preserving vital features of the point cloud raw data.
Because we do not consider the detected neighboring agents to be
obstacles, the neighbor exclusion will be discussed in this section.
The details for each process will be described in the following
subsections.

We denote a set of processed point cloud’s index perceived by
Agent i at time t that will be fed into the NMPC solver as Ot

i .
The symbol Ot

raw,i refers to the index set of raw point cloud data
fromAgent i’s sensor before any processing. Furthermore, we define
Ot

f,i and Ot
s,i as the index sets of the processed point cloud after

directional filtering and down-sampling, respectively.
Because most of the sensors perceive the environment in their

body frame, the point data are analyzed in the agent’s body frame,
where they are defined as follows: the x-axis points forward in
the direction of its primary movement or orientation, representing
its heading. The z-axis points upward, perpendicular to the plane
of movement or operation. The y-axis completes the right-hand
coordinate system, pointing to the robot’s left side, orthogonal to
the x-axis (forward) and the z-axis (up). Consequently, the robot’s
orientation can be briefly defined using the Euler angle (ϕ, θ, ψ),
where ϕti denotes roll (rotation about the x-axis), θti signifies pitch
(rotation about the y-axis), and ψt

i represents yaw (rotation about
the z-axis) of the ith agent at time t. Furthermore, vectors observed
from the agents’ body frame are denoted with the subscript b.

3.1.1 Directional filtering
Directional filtering is a step in the proposed point cloud

processing to reduce the number of point cloud data points to
be processed, allowing each agent to selectively process only the
subset of environmental data relevant to its current motion intent.
This strategy improves computational efficiency and robustness in
dynamic and cluttered environments.

Each follower Agent i moves by minimizing a local objective
function (2) that encourages alignment with a desired direction
of travel, represented by the weighted average position pit|t of
its neighboring agents N it. Intuitively, Agent i should prioritize
environmental features that lie in the direction of this intended
movement and disregard those in the opposite direction.

To formalize this directional prioritization, we define a reference
plane in the body frame of Agent i. The normal vector of this plane
is given by Equation 13:

pt|tb,i =M(ϕ
t
i,θ

t
i,ψ

t
i) ⋅ (p

t|t
i − p

t
i) , (13)

where M(ϕti,θ
t
i,ψ

t
i) is a rotation matrix corresponding to the Euler

angles of the ith agent with respect to the global frame. This

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2025.1540808
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Gerdpratoom and Yamamoto 10.3389/frobt.2025.1540808

FIGURE 1
The illustration of the reference plane in the directional filtering process.

transforms global frame vectors into Agent i’s body frame. The
reference plane passes through the origin of the body frame (i.e., the
agent’s center) and is orthogonal to pt|tb,i. Data points in front of this
plane (in the general direction of motion) are considered relevant.

Consider ptb,q|i ∈ ℝ
np as the position vector of a data point

detected by Agent i’s sensor in its body frame, for q ∈Ot
raw,i.

Subsequently, we define a new subset Ot
f,i ⊂O

t
raw,i, representing the

index set of point cloud data located on the positive side of a
reference plane with normal vector pt|tb,i. Accordingly, a data point
ptb,q|i belongs to Ot

f,i if and only if its inner product with pt|tb,i is
positive. A filtered set of indices is defined according to Equation 14:

Ot
f,i = {q ∈O

t
raw,i|⟨p

t|t
b,i,p

t
b,q|i⟩ ≥ 0} , (14)

which includes only the points located in front of the reference plane.
This dot-product condition ensures that only the data aligned with
or ahead of the movement direction are retained.

The illustration portraying the reference plane and normal
vector in the directional filtering process is displayed in Figure 1,
while a comparison of point cloud visualization in RViz between the
before and after situations is depicted in Figure 2.

3.1.2 Down-sampling
In this process, data points are uniformly neglected by grouping

nearby points and selecting the one closest to the robot from each
group. Then, the indices of the selected points are assigned to a
down-sampled point cloud index setOt

s,i ⊂O
t
f,i.

For two-dimensional point clouds, such as laser scan data, the
index q ∈Ot

f,i is organized based on spatial positioning. That is, the
grouping process can be done by partitioning the polar coordinated
laser scan data into sectors and selecting the point closest to Agent

i. A down-sampled index set can be represented as follows:

Ot
s,i = {arg min

q
{rq ∣ q ∈Ot

f,i [is:is + fs]} ∣ is ∈ {0, fs,2 fs,…,ns fs}},

(15)

where fs ∈ ℝ is the down-sample factor and ns = ⌊(|Ot
f,i| − 1)/ fs⌋.

The index set Ot
f,i[is:is + fs] denotes the segment for fs consecutive

index elements in Ot
f,i starting at index is and ending with is +

fs. The distance rq ranges from the center of Agent i to the qth

point data.
For three-dimensional point clouds, where the data points

can be gathered from a depth camera or 3D LiDAR, the
perceived data are unstructured, unlike in the two-dimensional
case. A widely used method for down-sampling such data is voxel
grid filtering, proposed by Shi and Luo (2024) and Xu et al.
(2021). In this work, a modified voxel grid filtering technique
will be utilized by prioritizing the closest point in each voxel.
The algorithm creates voxel volume grids over the point cloud
data, and the down-sampled point for each grid will be the
one closest to the ith agent. Let ptb,q|i = [x

t
b,q|i,y

t
b,q|i,z

t
b,q|i]
⊤

be
a position of the obstacle q ∈Ot

f,i in three-dimensional space
observed from Agent i’s body frame and let V:ℕ→ℤ3 be a
function that maps the obstacle’s index to its corresponding voxel
coordinates in a three-dimensional grid space defined according to
Equation 16:

V (q) = [

[

⌊

⌊

xtb,q|i
δx
⌋

⌋
,⌊

⌊

ytb,q|i
δy
⌋

⌋
,⌊

⌊

ztb,q|i
δz
⌋

⌋

]

]

⊤

, (16)

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2025.1540808
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Gerdpratoom and Yamamoto 10.3389/frobt.2025.1540808

FIGURE 2
Agent 2’s raw point cloud visualization (left). Agent 2’s point cloud visualization after employing directional filtering (right). A red circle represents the
weighted average among three robots, where the position of the leader agent (red triangle) is given more weight.

FIGURE 3
The Gazebo 3D simulation of three Husky UGVs from
Clearpath Robotics (2015) in an obstructed environment by
Mukherjee (2015).

where δx, δy, and δz denote voxel grid size.The set expression can be
represented as

Ot
s,i = {q ∈O

t
f,i |∄q
′ ∈Ot

f,i: (V (q) = V(q
′)) ∧ (q ≠ q′) ∧

(‖ptb,q′|i‖
2 < ‖ptb,q|i‖

2)} . (17)

According to the above equation, the setOt
s,i consists of the indices

q for which there is no other index q′ in the set Ot
f,i (after the

directional filtering process) such that the obstacle corresponding
to index q′ is in the same voxel as obstacle q, and is closer to Agent
i.

3.1.3 Neighbor exclusion
Thepoint cloud data perceived via a sensor contain obstacles and

neighboring agents. The neighbors could be considered dynamic

obstacles, as presented by Lindqvist et al. (2021). However, in
this work, the imposed separation rule was highlighted. Thus, the
detected neighbors in the point cloud index can be neglected to
reduce the number of data points.

This is the final stage of the point cloud processing, where the set
of processed data Ot

i will be obtained and then used in the optimal
control problem. The set expression of the processed point cloud is
expressed as Equation 18:

 Ot
i = {q ∈O

t
s,i|‖p

t
q|i − p

t|t
j|i‖ > rb, j ∈N

t|t
i } , (18)

where rb is the farthest distance within the agent’s body from
its center.

3.2 Obstacle-avoidance constraint

To ensure obstacle-free trajectories along the finite prediction
horizon for each agent, we impose an obstacle-avoidance constraint.
Because obstacles are defined as processed point clouds in np-
dimensional space, let ptm|i ∈ ℝ

np be anmth obstacle’s position sensed
by the ith agent, where m ∈Ot

i , and let rs ∈ ℝ+ be a safety distance
away from an obstacle. The obstacle can be expressed as

h(pti,p
t
m|i) = r

2
s − ‖p

t
i − p

t
m|i‖

2. (19)

The obstacle-avoidance condition is that the trajectory of Agent i
along the NMPC’s prediction horizon must be completely outside
the sphere or circle defined by Equation 19. Thus, the obstacle-
avoidance constraint can be defined as

h(pt+k+1|ti ,ptm|i) ≤ 0, k = 0,…,T− 1. (20)

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2025.1540808
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Gerdpratoom and Yamamoto 10.3389/frobt.2025.1540808

FIGURE 4
The visualization of laser scan point cloud data from UST10 simulated 2D LiDAR and the robots’ frames in RViz.

3.3 NMPC problem

From the objective function (Equation 7) and the constraints
Equations 4, 5, and 20 described earlier, the optimization problem
can be formulated as Equation 21:

Minimize
uti

̃J(uti) (21)

subject to Equation 22:

xt+k+1|ti = fi (x
t+k|t
i ,u

t+k|t
i)

ut+k|ti ∈ Ui

xt+k+1|ti ∈ Xi

h(pt+k+1|ti ,ptm|i) ≤ 0, m ∈O
t
i

}}}}}}
}}}}}}
}

fork = 0,…,T− 1

dt+k+1|tj|i ≥ di,sep, j ∈N
t+k+1|t
i  fork = 0,…,Tsep − 1.

(22)

This problem will be fed into the OpEn (see Sopasakis et al.,
2020) framework to generate Rust code that solves the constrained
optimization problem using PANOC (see Stella et al., 2017) with
augmented Lagrangian and penalty methods.

4 Simulation

4.1 Simulation setup

In this work, the proposed optimal control problem is
demonstrated through a close-to-real-world simulation in
Gazebo (see Koenig and Howard, 2004), which incorporates
physical quantities and three-dimensional dynamics, such as friction
and inertia. This simulation environment is well integrated with

FIGURE 5
The schematic diagram of Agent i’s distributed NMPC with point cloud
processing.

the ROS. The agent model in our study is the unicycle ground
vehicle model, chosen for its representation of most mobile
robots and its inherent nonlinear properties as a nonlinear input-
affine system.

The continuous-time state equation of the unicycle ground
vehicle model is given by Equation 23:

[[[

[

ṗi,x (t)
ṗi,y (t)

ψ̇i (t)

]]]

]

= [[

[

cosψi (t) 0
sinψi (t) 0

0 1

]]

]

[
vi (t)
ψ̇i (t)
] , (23)

where vi(t) and ψ̇i(t) are the system inputs. The discrete-time
state update equations can be derived through a forward Euler
discretization. Additionally, the extra states, which are translational

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2025.1540808
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Gerdpratoom and Yamamoto 10.3389/frobt.2025.1540808

FIGURE 6
The reference trajectory is shown in red, and the lines connecting
waypoints are shown in broken blue. wi for i = 1,…7 are waypoints.

FIGURE 7
The trajectories of three agents in an obstructed environment, where
the blue trajectory is the leader and the others are followers.

velocities with respect to the global frame, are added so that the
alignment with its neighbors will be explicitly determined. Hence,
the system’s state becomes xki = [p

k
i,x,p

k
i,y,ψ

k
i ,v

k
i,x,v

k
i,y]
⊤ ∈ ℝ5, and the

system’s input isuki = [v
k
i , ψ̇

k
i]
⊤ ∈ ℝ2.Thediscrete-time state equation

can be expressed as

[[[[[[[[

[

pk+1i,x

pk+1i,y

ψk+1
i

vk+1i,x

vk+1i,y

]]]]]]]]

]

=

[[[[[[[[

[

pki,x
pki,y
ψk
i

0
0

]]]]]]]]

]

+

[[[[[[[[

[

Δt cos ψk
i 0

Δt sin ψk
i 0

0 Δt
cos ψk

i 0
sin ψk

i 0

]]]]]]]]

]

[
vki
ψ̇k
i
], (24)

where Δt is the sampling time in seconds. This discretized state
equationwill be used inNMPC to update the agent’s trajectory along
the finite horizon period.

We utilized the Husky UGV from Clearpath Robotics (2015) as
agents in the 3D Gazebo simulation. Figure 3 displays the simulated
Husky UGVs and environment in our Gazebo 3D simulation. The
robots are equipped with a UST10 simulated 2D LiDAR at their
body center. The LiDAR has a default range of 5 m, a 360° angular
range starting from the robot heading, and rotates counterclockwise,
with 720 sampling points per round in the robot’s body frame polar
coordinate. The output information from the LiDAR contains a
time stamp, frames, sensor configurations, and ranges of detected
obstacles, packed in the laser scanner message type in the ROS
convention, which are two-dimensional point clouds. These raw
data will be fed into the point cloud processor to produce the
processed point data and then provided to the NMPC solver. The
demonstration of the point cloud data is shown through RViz (ROS
visualization) in Figure 4. The video of the 3D simulation with
visualized point cloud data can be accessed via the following link:
https://youtu.be/APg52Rw725M.

Note that the state Equation 24 represents the kinematic model
of a unicycle mobile robot, which omits physical characteristics
such as the relationship between motor voltage, current, torque,
and speed. In other words, this model serves as a simplified
representation of the proposed NMPC, where the controller
generates high-level commands in the form of translational and
angular velocities. In a real-world implementation, these commands
would typically be passed to a low-level controller, such as a
proportional–integral–derivative (PID) controller, which regulates
motor actuation by adjusting electrical inputs accordingly. In this
study, the high-level commands are sent to a virtual low-level
system that converts the unicycle model’s control inputs into
individual wheel speeds and torques. In the simulation, the wheels’
speeds are sensed and torques are regulated using well-tuned
low-level PID controllers. A complete model incorporating other
dynamic characteristics could be considered for more accurate state
prediction in an NMPC scheme. However, such a model requires
system identification techniques and is not within our scope.

In the simulation, we consider the system with three agents,
consisting of one leader and two followers. The leader will accept
the arbitrary input command and predict its translational position
and velocity trajectory within the horizon period T based on the
instantaneous inputs. The predicted trajectory will be shared with
the followers within the detection range, which is assumed to be
the same as the LiDAR default range. The followers also share their
predicted trajectories from the NMPC optimizer with one another.
The schematic diagram of follower Agent i is shown in Figure 5,
where Agent j is the neighbor within Agent i’s detection range
(j ∈N t+k|t

i).

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2025.1540808
https://youtu.be/APg52Rw725M
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Gerdpratoom and Yamamoto 10.3389/frobt.2025.1540808

FIGURE 8
Time-series control inputs with constraint boundary shown as broken red lines.

FIGURE 9
The plot of the deviation from the centroid of the two approaches.

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2025.1540808
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Gerdpratoom and Yamamoto 10.3389/frobt.2025.1540808

FIGURE 10
Schematic diagram of the HIL experimentation: The algorithm for the
two followers is executed in each Raspberry Pi, while the station
computer is responsible for the entire simulation. The information is
shared among them using TCP/IP-based client-server communication
protocol with ROS.

FIGURE 11
HIL simulated trajectories of three agents in an obstructed
environment, where the blue trajectory is the leader’s and the rest are
followers.

The MPC horizon for all agents is set to T = 10 steps. The
separation horizons are set as Tsep = 5 steps, and the prediction
of collision avoidance beyond Tsep is softly constrained with a
penalty parameter of ρsep = 20. The discount factor γ is set to
0.8. For the alignment weights of agents positioned behind, as
stated in Equation 10, a value of βi = 0.5 is adopted. In the trade-
off rule described in Equation 12, a default static coefficient of
qi,st = 0.5 is utilized alongside a dynamic weight of ci = 10. An
upper limit of π = 3 is set to be equal to the total number of
agents (including the leader) for the hierarchy levels according
to Equation 8. The sampling time for state equation discretization
Δt is 0.1 s. Because we employ a two-dimensional laser scanner
as a sensor in our simulation, the down-sampling processing is

utilized based on Equation 15, where the down-sampling factor fs
is set to 4.

We employed rectangular sets for the inputs and state
constraints. The input boundaries for translational velocity
are [−0.1,1.0] m/s and [−8,8] rad/s for rotational velocity.
The state constraint can be interpreted as a square workspace
in a two-dimensional plane originating at (0,0), in which
the robots can move regardless of obstacles. We define the
spatial limit as px = py = ± 10 meters. For obstacle-avoidance
constraint, the inequality in Equation 20 is reformulated to
min {0,h(pt+k+1|ti ,ptm|i)} = 0 for k = 0,…,T− 1 and m ∈Ot

i . The
obstacle-avoidance constraint is implemented through OpEn’s
penalty method, while the state and separation (for k < Tsep)
constraints are handled using the augmented Lagrangian method.
The solver parameters are configured as follows: the solution
tolerance ϵ and δ are set to 1× 10−5 and 1× 10−4, respectively. The
initial penalty λ0 is set to 1× 10−2. The penalty update coefficient ρ,
which is different from the separation soft constraint coefficient, is
selected to be 5.

4.2 Navigate in the obstructed
environment

We tested the proposed optimal control formulation and
algorithm by letting the leader agent track a reference trajectory
in an obstructed environment created by Mukherjee (2015) and
evaluating the followers’ trajectories resulting from the NMPC
problem formulated in Section 3.3. The environment contains
various obstacles, such as barriers, fire hydrants, dumpsters, and
construction cones. The reference trajectory can be obtained by
first specifying waypoints. Then, create points between the two
immediate waypoints, where the distances between points are
constant except for the remaining segments. Suppose that Tp is the
total number of points, and P̂ = {p̂0,…, p̂Tp} is a set of points from
the given process.The reference trajectory for the leader agent refP =
{p0,…,pTp} is defined as

 refP = arg min
pk,uk

Tp−1

∑
k=0
(qp‖p

k − p̂k‖2 + qu‖u
k‖2) + qT‖p

Tp − p̂Tp‖2,

k = 0,…,Tp, (25)

subjected to the state Equation 24, where qp ∈ ℝ, qT ∈ ℝ, and qu ∈
ℝ are weighted constants. The optimized trajectory, a so-called
admissible path for unicycle mobile robots, is depicted in Figure 6.
The leader agent will track this reference trajectory in Equation 25
employing a simple reactive controller, and the followers will
preserve the fleet connectivity using the proposed NMPC scheme.
Let us say the agent index for the leader is 0. Its control law is
defined below.

vk0 = Kv‖p̂k − p
k
0‖

2

ψ̇k
0 = Kψ ⋅wrap(ψ̂

k
0 −ψ

k
0) , k = 0,…,Tp,

(26)

whereKv ∈ ℝ andKψ ∈ ℝ are the proportional gains for each control
channel. ψ̂k is defined by Equation 27:

ψ̂k
0 = arctan[

[

(p̂k − pk0)y
(p̂k − pk0)x

]

]
. (27)

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2025.1540808
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Gerdpratoom and Yamamoto 10.3389/frobt.2025.1540808

FIGURE 12
HIL simulation’s time-series of the control inputs with boundary, depicted in broken red.

FIGURE 13
NMPC’s solver solving time on Raspberry Pi 4B: Agent 1 averages
17.19 ms and peaks at 95 ms, while Agent 2 averages 24.6 ms and also
peaks at 95 ms.

FIGURE 14
The Raspberry Pi’s NMPC solver node’s CPU usage percentages for
Agents 1 and 2 are as follows: peak percentages of 116.2% and 117.3%
and average percentages of 98.2% and 97.82%, respectively.

A function wrap:ℝ→ℝ is a function that wraps the angle to be
within the range of [0,π), defined by Equation 28:

wrap (θ) = θ− 2π ⋅ ⌊ θ
2π
⌋. (28)

The initial poses of the robots are: Agent 0 at (5.86, −5.13)
with 0 radians (the same pose as the initial waypoint in Figure 6),
Agent 1 at (6.85, −6.25) with 1.5 radians, and Agent 2 at (7.87,
−7.35) with 0 radians, where Agent 0 is the leader, and the others
are followers. The resulting trajectories are shown in Figure 7, and
the reference trajectory is illustrated as a broken black path. The
control inputs throughout the experimentation are displayed in
Figure 8 with the control inputs’ boundary shown as broken red
lines. The simulation video can be accessed through the following
link https://youtu.be/u8TcpLy7NKI. In the simulation, the leader
is given a control input (Equation 26) to track the optimized
path, and the two followers can maintain fleet connectivity and
separation while avoiding obstacles using local information. In
the demo, each follower recognized up to two neighbors if
they were in the sensor’s range, regardless of the point cloud
processing, which only simplifies the obstacle-avoidance constraint.
The algorithm is scalable, but we only showed three robots for
visualization purposes.

A comparison experiment is conducted to benchmark the
proposed NMPC algorithm. For this purpose, the vector field
histogram (VFH) algorithm, tailored for flock navigation, is
employed. VFH is a simple reactive obstacle-avoidance strategy
well-suited for a two-dimensional LiDAR sensor, where obstacle
information is stored in polar coordinate form. The algorithm
converts obstacle data into a one-dimensional histogram and
selects a sector that is both obstacle-free and closest to the
target, allowing the robot to navigate accordingly. See Liang et al.
(2023) for more details on this algorithm. The simulation is
performed in a similar manner, where the leader agent tracks
the reference path (Equation 25), and the followers execute the

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2025.1540808
https://youtu.be/u8TcpLy7NKI
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Gerdpratoom and Yamamoto 10.3389/frobt.2025.1540808

tailored VFH algorithm to maintain fleet connectivity. The fleet
connectivity is quantified by the deviation from the average
position of all agents, that is, the deviation from the centroid.
The plot comparing the deviation from the centroid for both the
proposed method and the VFH algorithm is shown in Figure 9.
The results indicate that the proposed algorithm navigates the robot
fleet through an obstructed environment with better connectivity
preservation.

4.3 Hardware-in-the-loop simulation

In the previous subsection, the optimal control problem
was solved successfully in a distributed manner on a station
computer. However, the embedded processor might not have
enough computational power to solve such a problem smoothly.
Thus, in this section, we examine the feasibility of implementing
the proposed NMPC on Raspberry Pi by connecting it to a
station computer and performing a hardware-in-the-loop (HIL)
simulation. In this setting, we use two Raspberry Pis to represent
the two followers, Agents 1 and 2. The board model we use is
Raspberry Pi 4 B, with a 1.5 GHz 64-bit quad-core ARM Cortex-
A72 processor (ARM architecture), 1500 MHz clock speed, and
4 GB of RAM. The HIL simulation is conducted through a
master–slave communication scheme, where the station computer
is assigned to be a master in an ROS fashion. We connect
the two Raspberry Pis to the same network as the simulation
computer and create the communication bridge. Then, ROS topics
published by either the master or the slaves can be subscribed
to by every machine within this network. The NMPC solvers
operate independently on each target board while exchanging
information. The time required for the optimizer to attain the
solution is crucial. The longer it takes, the more the performance
degrades. To ensure that the solution for each optimizer is
available within the discretization sampling period, set at 100 ms,
we set the solve time cut-off to 95 ms, meaning that the
solver will stop the operation once the solving time reaches
the specified cut-off, and the lowest cost value in the last
iteration will be the result. The leader is given a reference
trajectory to track, akin to the simulation in the preceding
section, utilizing the robots’ initial poses from the previous section.
The schematic diagram of the experimentation is depicted in
Figure 10.

The resulting trajectories of the HIL simulation are shown in
Figure 11, and the time-series data of control inputs are depicted
in Figure 12. Figure 13 displays the solving time in milliseconds
(ms). The average and peak solving times are 17.19 ms and 95 ms
for Agent 1 and 24.6 ms and 95 ms for Agent 2, respectively.
The results show that the solver occasionally reached the cut-
off time limit, particularly for Agent 2. However, this does not
indicate a failure in controlling the robots. Rather, it means that
the optimizer did not fully converge to the optimal solution
within the allotted time. Nevertheless, the suboptimal solutions
returned at the cut-off were sufficiently effective, as demonstrated
in Figure 11. Figure 14 shows the CPU usage percentage for the
NMPC solver node in each Raspberry Pi. Because it is a quad-
core processor, the percentage can be up to 400%. For Agents 1
and 2, the peak percentages are 116.2% and 117.3%, respectively,

while the average percentages are 98.2% and 97.82%, respectively.
This means that the NMPC solver utilized approximately one core
on average.

5 Conclusion

In this study, we introduced a local obstacle-avoidance strategy
tailored to our distributed NMPC-based flock navigation with
modified flocking rules. We proposed a point cloud processing
technique, including directional filtering and down-sampling, that
significantly reduces the computational burden. This technique
is applicable to both two-dimensional and three-dimensional
point cloud data commonly utilized in modern robotic sensors
to store obstacle information, such as LiDAR and depth cameras.
Then, we introduced a local obstacle-avoidance constraint and
integrated it into our framework. The real-time solving of the
NMPC problem was achieved using PANOC via the OpEn
code generator. Simulation results demonstrated the successful
navigation of the robot fleet through unknown obstructed
environments. Furthermore, an HIL simulation using Raspberry
Pi 4 was conducted to assess feasibility. The solving time for the
NMPC optimizer was analyzed, revealing peak values reaching
the maximum solving time for a few samples, with an average of
less than 25 m. We acknowledge that if the sampling time gets
smaller, the chance of hitting the solve time cut-off would increase,
which could lead to performance degradation.Thus, further studies
can be considered. For example, instead of treating each point
in the point cloud separately, we can group nearby points into a
single object. This would reduce the number of obstacle constraints
from approximately 100 to less than 10, which would significantly
accelerate the solver and improve real-time performance. On
average, the optimizer occupied one core during theHIL simulation.
The trajectories in the HIL simulation showed that the robot
fleet could navigate through an unknown obstructed environment
successfully. However, if the number of detected agents increases,
the solving time will also increase, leading to a situation where
the optimizer cannot reach the cost value tolerance and therefore
generates undesirable trajectories. Therefore, future research might
also explore algorithms that limit the number of agents andprioritize
them accordingly.

Data availability statement

Publicly available datasets were analyzed in this study.These data
can be found here: https://github.com/husky/husky/blob/noetic-
devel/husky_gazebo/worlds/clearpath_playpen.world.

Author contributions

NG: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Software, Writing – original draft,
and Writing – review and editing. KY: Conceptualization, Formal
analysis, Funding acquisition, Project administration, Resources,
Supervision, Validation, Writing – original draft, and Writing –
review and editing.

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2025.1540808
https://github.com/husky/husky/blob/noetic-devel/husky_gazebo/worlds/clearpath_playpen.world
https://github.com/husky/husky/blob/noetic-devel/husky_gazebo/worlds/clearpath_playpen.world
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Gerdpratoom and Yamamoto 10.3389/frobt.2025.1540808

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work was supported
by the Nakajima Foundation and JSPS KAKENHI Grant Number
JP24K07546.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., and Diehl, M. (2019). CasADi:
a software framework for nonlinear optimization and optimal control.Math. Program.
Comput. 11, 1–36. doi:10.1007/s12532-018-0139-4

Barraquand, J., Langlois, B., and Latombe, J.-C. (1991). Numerical potential field
techniques for robot path planning. Fifth Int. Conf. Adv. Robotics ’Robots Unstructured
Environ. 2, 1012–1017 vol.2. doi:10.1109/icar.1991.240539

Brayanov, N., and Stoynova, A. (2019). Review of hardware-in-the-loop – a hundred
years progress in the pseudo-real testing. Electrotech. and Electron. 54, 70–84.

Cao, H., Chen, J., Mao, Y., Fang, H., and Liu, H. (2010). “Formation control based
on flocking algorithm in multi-agent system,” in 2010 8th world congress on intelligent
control and automation, 2289–2294.

Clearpath Robotics, (2015). Husky UGV tutorials 1.0.0. Available online at: https://
clearpathrobotics.com.

Goarin, M., Li, G., Saviolo, A., and Loianno, G. (2024). “Decentralized nonlinear
model predictive control for safe collision avoidance in quadrotor teams with limited
detection range,” in IEEE international conference on robotics and automation (ICRA)
2025. arXiv preprint arXiv:2409.17379.

Koenig, N., and Howard, A. (2004). Design and use paradigms for Gazebo,
an open-source multi-robot simulator. 2004 IEEE/RSJ Int. Conf. Intelligent Robots
Syst. (IROS) (IEEE Cat. No.04CH37566) Vol. 3, 2149–2154. doi:10.1109/IROS.
2004.1389727

Kong, F., Chen, H., Li, H., Yan, J., Wang, X., and Fang, J. (2023). “Flocking with
obstacle avoidance for fixed-wing unmanned aerial vehicles via nonlinear model
predictive control,” in 2023 42nd Chinese control conference (CCC), 5957–5962.
doi:10.23919/CCC58697.2023.10240689

Li, C., Yang, Y., Jiang, G., and Chen, X. (2024). A flocking control algorithm of multi-
agent systems based on cohesion of the potential function. Complex and Intelligent Syst.
10, 2585–2604. doi:10.1007/s40747-023-01282-2

Liang, Q., Wang, Z., Yin, Y., Xiong, W., Zhang, J., and Yang, Z. (2023).
Autonomous aerial obstacle avoidance using lidar sensor fusion. Plos one 18, e0287177.
doi:10.1371/journal.pone.0287177

Lindqvist, B., Mansouri, S. S., Kanellakis, C., and Nikolakopoulos, G. (2020).
“Collision free path planning based on local 2d point-clouds for mav navigation,” in
2020 28th mediterranean conference on control and automation (MED), 538–543.

Lindqvist, B., Sopasakis, P., and Nikolakopoulos, G. (2021). “A scalable distributed
collision avoidance scheme for multi-agent UAV systems,” in 2021 IEEE/RSJ
international conference on intelligent robots and systems (IROS), 9212–9218.

Mestres, P., Nieto-Granda, C., and CortÃ©s, J. (2024). Distributed safe
navigation of multi-agent systems using control barrier function-based
controllers. IEEE Robotics Automation Lett. 9, 6760–6767. doi:10.1109/LRA.2024.
3414268

Mihalič, F., Truntič, M., and Hren, A. (2022). Hardware-in-the-loop
simulations: a historical overview of engineering challenges. Electronics 11,
2462. doi:10.3390/electronics11152462

Mukherjee,P. (2015). “clearpath_playpen.world,” in (Kitchener,ON,Canada:Clearpath
Robotics Inc). Available online at: https://github.com/husky/husky/blob/noetic-
devel/husky_gazebo/worlds/clearpath_playpen.world.

Nag, A., Huang, S., Themelis, A., and Yamamoto, K. (2022). “Flock navigation
with dynamic hierarchy and subjective weights using nonlinear MPC,” in 2022 IEEE
conference on control technology and applications (CCTA), 1135–1140.

Nag, A., and Yamamoto, K. (2024). Distributed control for flock navigation
using nonlinear model predictive control. Adv. Robot. 38, 619–631.
doi:10.1080/01691864.2023.2299859

Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: algorithms and
theory. IEEE Trans. Automatic Control 51, 401–420. doi:10.1109/TAC.2005.864190

Reynolds, C. W. (1987). Flocks, herds and schools: a distributed behavioral model.
SIGGRAPH Comput. Graph. 21, 25–34. doi:10.1145/37402.37406

Sathya, A., Sopasakis, P., Van Parys, R., Themelis, A., Pipeleers, G., and
Patrinos, P. (2018). “Embedded nonlinear model predictive control for obstacle
avoidance using PANOC,” in 2018 European control conference (ECC), 1523–1528.
doi:10.23919/ECC.2018.8550253

Shi, L., and Luo, J. (2024). A framework of point cloud simplification based on voxel
grid and its applications. IEEE Sensors J. 24, 6349–6357. doi:10.1109/jsen.2023.3320671

Song, P., and Kumar, V. (2002). A potential field based approach to multi-robot
manipulation. Proc. 2002 IEEE Int. Conf. Robotics Automation (Cat. No.02CH37292)
2, 1217–1222. doi:10.1109/ROBOT.2002.1014709

Sopasakis, P., Fresk, E., and Patrinos, P. (2020). OpEn: code generation
for embedded nonconvex optimization. IFAC-PapersOnLine 53, 6548–6554.
doi:10.1016/j.ifacol.2020.12.071

Stella, L., Themelis, A., Sopasakis, P., and Patrinos, P. (2017). “A simple and efficient
algorithm for nonlinear model predictive control,” in IEEE conference on decision and
control (CDC), 1939–1944.

Tanner, H., Jadbabaie, A., and Pappas, G. (2003a). Stable flocking of mobile agents,
part I: fixed topology. 42nd IEEE Int. Conf. Decis. Control (IEEE Cat. No.03CH37475) 2,
2010–2015. doi:10.1109/CDC.2003.1272910

Tanner, H., Jadbabaie, A., and Pappas, G. (2003b). Stable flocking of mobile
agents part II: dynamic topology. 42nd IEEE Int. Conf. Decis. Control (IEEE Cat.
No.03CH37475) 2, 2016–2021. doi:10.1109/CDC.2003.1272911

Xu, T., Liu, J., Zhang, Z., Chen, G., Cui, D., and Li, H. (2023). Distributed mpc for
trajectory tracking and formation control of multi-uavs with leader-follower structure.
IEEE Access 11, 128762–128773. doi:10.1109/ACCESS.2023.3329232

Xu, Y., Tong, X., and Stilla, U. (2021). Voxel-based representation of 3d point clouds:
methods, applications, and its potential use in the construction industry. Automation
Constr., 126. doi:10.1016/j.autcon.2021.103675

Yu, S., Hirche, M., Huang, Y., Chen, H., and AllgÃ¶wer, F. (2021). Model
predictive control for autonomous ground vehicles: a review. Aut. Intell. Syst. 1, 4–17.
doi:10.1007/s43684-021-00005-z

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2025.1540808
https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1109/icar.1991.240539
https://clearpathrobotics.com
https://clearpathrobotics.com
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.23919/CCC58697.2023.10240689
https://doi.org/10.1007/s40747-023-01282-2
https://doi.org/10.1371/journal.pone.0287177
https://doi.org/10.1109/LRA.2024.3414268
https://doi.org/10.1109/LRA.2024.3414268
https://doi.org/10.3390/electronics11152462
https://github.com/husky/husky/blob/noetic-devel/husky_gazebo/worlds/clearpath_playpen.world
https://github.com/husky/husky/blob/noetic-devel/husky_gazebo/worlds/clearpath_playpen.world
https://doi.org/10.1080/01691864.2023.2299859
https://doi.org/10.1109/TAC.2005.864190
https://doi.org/10.1145/37402.37406
https://doi.org/10.23919/ECC.2018.8550253
https://doi.org/10.1109/jsen.2023.3320671
https://doi.org/10.1109/ROBOT.2002.1014709
https://doi.org/10.1016/j.ifacol.2020.12.071
https://doi.org/10.1109/CDC.2003.1272910
https://doi.org/10.1109/CDC.2003.1272911
https://doi.org/10.1109/ACCESS.2023.3329232
https://doi.org/10.1016/j.autcon.2021.103675
https://doi.org/10.1007/s43684-021-00005-z
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Preliminaries
	2.1 Setting
	2.2 Objective function
	2.3 Optimization constraints
	2.3.1 State and input constraints
	2.3.2 Separation constraint

	2.4 Modified flocking rules
	2.4.1 Leader–follower graph-distance hierarchy
	2.4.2 Allocating weights by travel vector
	2.4.3 Cohesion/alignment dynamic trade-off

	3 Obstacle avoidance based on local sensor
	3.1 Processing of point cloud information
	3.1.1 Directional filtering
	3.1.2 Down-sampling
	3.1.3 Neighbor exclusion

	3.2 Obstacle-avoidance constraint
	3.3 NMPC problem

	4 Simulation
	4.1 Simulation setup
	4.2 Navigate in the obstructed environment
	4.3 Hardware-in-the-loop simulation

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

