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Passive exoskeletons have been introduced to alleviate loading on the
lumbar spine while increasing the wearer’s productivity. However, few studies
have examined the neurocognitive effects of short-term human-exoskeleton
adaptation. The objective of the study was to develop a novel neural efficiency
metric to assess short-term human exoskeleton adaptation during repetitive
lifting. Twelve participants (gender-balanced) performed simulated asymmetric
lifting tasks for a short duration (phase: early, middle, late) with and without
a passive low back exoskeleton on two separate days. Phase, exoskeleton
condition, and their interaction effects on biomechanical parameters, neural
activation, and the novel neural efficiency metric were examined. Peak
L5/S1 superior lateral shear forces were found to be significantly lower in
the exoskeleton condition than in the control condition. However, other
biomechanical and neural activation measures were comparable between
conditions. The temporal change of the neural efficiency metric was found
to follow the motor adaptation process. Compared to the control condition,
participants exhibited lower efficiency during the exoskeleton-assisted lifting
condition over time. The neural efficiency metric was capable of tracking the
short-term task adaptation process during a highly ambulatory exoskeleton-
assisted manual handling task. The exoskeleton-assisted task was less efficient
and demanded a longer adaptation period than the control condition, which
may impact exoskeleton acceptance and/or intent to use.
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1 Introduction

Physical lifting, repetitive twisting, and bending motions during manual material
handling (MMH) tasks are the leading causes of low-back disorders (Waddell and
Burton, 2001). With the advent of Industry 3.0, a growing trend toward process
automation has employed robotic equipment to accelerate production efficiency and
replace hazardous MMH tasks (MacDougall, 2014). However, complete automation
of some tasks is difficult to achieve owing to their complexities (Lazzaroni et al.,
2018). Therefore, semi-automated approaches, such as employing exoskeletons
that can reduce biomechanical loads while retaining the flexibility of human
decision-making, have gained wide attention in the manufacturing and construction
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industries. An exoskeleton is defined as a wearable device that
augments, enables, assists, or enhances a wearer’s motion, posture,
or physical performance (ASTM) and can be categorized into
active (those that use actuators and motor power to move) or
passive (those that use springs and dampers to aid the wearer’s
movements (de Looze et al., 2016)).

The biomechanical impacts of industrial passive exoskeletons
have been investigated extensively on their ability to reduce
biomechanical loads on the wearers. Reductions in low back
muscle activation attributable to exoskeletons during lifting aremost
often quantified using electromyography (EMG (Lazzaroni et al.,
2018)). Alone, EMG measures low-back muscle activation but not
necessarily muscle forces, given that muscle forces are modulated by
force-length and force-velocity relationships (Hwang et al., 2016a).
Therefore, biomechanical modeling techniques, which predict
dynamic changes of biomechanical loads on the lumbar spine during
the exoskeleton-assisted tasks (Picchiotti et al., 2019; Weston et al.,
2018), hold promise to monitor the adaptation process over
time directly and have reported biomechanical loading trade-
offs.

The cognitive fit of the human-exoskeleton interaction, which
ensures the wearer is adapted to the task both physically and
cognitively, evolves slowly and has not been prioritized for
exoskeleton designs (Stirling et al., 2020). Physical movement
during initial exposure to passive exoskeletons demands the
wearers to adapt to the new motor demands (Cothros et al.,
2006; Gordon and Ferris, 2007). For example, previous
exoskeleton-based locomotor adaptation studies reported that
wearing an exoskeleton disrupts neuromuscular coordination,
as evidenced by increased muscle activation to fight the
rigid and resistive exoskeleton structure (Gordon and Ferris,
2007), thus requiring a longer locomotor adaptation period
(Gordon and Ferris, 2007; Galle et al., 2013). With the
development of advanced control algorithms, kinematic and
metabolic-based exoskeletons have demonstrated superior
adaptation capabilities over passive exoskeletons (Gordon et al.,
2013; Panizzolo et al., 2019). However, these traditional
locomotor control algorithms aim to optimize the wearers’
gait performance based on their body kinematics, EMG, and
metabolic measurements (Belda-Lois et al., 2011) and ignore
the neurocognitive requirements when wearers interact with
exoskeletons.

An increasing number of studies have been conducted that
employ neuroergonomic (i.e., study of brain and behavior at work)
approaches to understand motor skill learning and adaptation
outcomes based on wearers’ brain responses (Ang et al., 2009;
Rea et al., 2014). In a dynamic locomotor adaptation task,
the bilateral left/right dorsolateral prefrontal cortex (L/RdlPFC),
known for its regulatory role in executive function, such as
decision-making (Ahlstrom et al., 2016) and working memory
(Ahn et al., 2016; Foy and Chapman, 2018), was constantly
engaged to adapt to the changing gait speed by maintaining
appropriate walking posture (Miyai et al., 2001; Suzuki et al., 2004).
Motor adaptation studies using functional magnetic resonance
imaging also revealed that motor planning regions, especially
the right premotor cortex (RPMC), are not only involved in
movement preparation but also engage with RdlPFC to support

visuospatial cognitive processes during the early phases of motor-
task adaptation (Eversheim and Bock, 2001; Seidler et al., 2006).
Functional connectivity between the right-lateralized prefrontal
and premotor cortexes was observed during lifting with passive
exoskeleton use, which implied the activation of the action
monitoring system (Zhu et al., 2021).

Advances in ambulatory neuroimaging technologies have
opened avenues for the development of objective metrics to
quantify the neurocognitive cost of preserving or maintaining
ambulatory motor performance (McKendrick et al., 2017; Mehta
and Parasuraman, 2013) and thus hold promise to capture motor-
task adaptation with exoskeletons over time directly. Dynamic
changes in neural activity have been employed to infer task
adaptation and expertise development (Curtin et al., 2019a). For
example, Curtin (Curtin et al., 2019b) reported increases in
cognitive task performance with training over time that were
associated with decreased neural activation in the dlPFC. They
attributed the observed brain-behavior dynamics over time to the
neural efficiency (NE) hypothesis, proposing that smart individuals
are more efficient by utilizing less neural effort to achieve greater
task performance (Haier et al., 1988). Several studies have utilized
various advanced neuroimaging techniques to test the neural
efficiency hypothesis and have reported that neural efficiency is
also a function of expertise level, which can be developed through
practice and task adaptation (Dunst et al., 2014; Sayala et al., 2006).
In the domain of human-exoskeleton interactions, neural efficiency
metrics have been previously applied to track the training progress of
an exoskeleton-assisted gait rehabilitation program for both stroke
and spinal cord injury patients (Zhu et al., 2020a).

It is essential that the design of industrial exoskeletons
as ergonomic interventions to reduce biomechanical loading
not only optimizes both the physical and cognitive fit
but also promotes efficient motor-task adaptation processes
(Stirling et al., 2020; Stirling et al., 2019). The objective of this
study was to monitor human-exoskeleton interaction using a
promising neural efficiency metric to better understand and
quantify short-term motor adaptation with an industrial passive
low-back exoskeleton during a repetitive asymmetric MMH task.
We hypothesized that a low-back exoskeleton-assisted asymmetric
lifting task is associated with poor (negative) neural efficiency at
the beginning of the task, indicating greater cognitive processing
and motor planning demands. Additionally, we hypothesize that the
metric will improve as the wearers adapt to the exoskeleton-assisted
asymmetric lifting task over time.

2 Methods

2.1 Participants

Twelve healthy young adults (6 males and 6 females) with
no self-reported history of low back injuries were recruited
to perform simulated asymmetric MMH tasks on separate
days. The demographic data (Mean ± SD) of participants is
summarized in Table 1. The experimental protocol was approved
by the Ohio State University Institutional Review Board [IRB #
2018H0569], and all participants provided written consent at the
start of the study.
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TABLE 1 Participant demographics (mean ± SD).

Male Female Total

n 6 6 12

Age (years) 28.8 ± 4.8 24.6 ± 4.4 26.9 ± 4.7

Height (m) 1.790 ± 0.045 1.722 ± 0.046 1.759 ± 0.053

Weight (kg) 74.7 ± 12.2 59.5 ± 13.0 67.8 ± 11.6

BMI 23.31 ± 2.64 20.06 ± 3.31 21.91 ± 2.43

2.2 Instrumentation

The tested passive low-back exoskeleton was the LaevoTM 2.5
(Figure 1; Laevo, the Netherlands), which consists of a chest pad and
two leg pads that are connected by multiple elastic beams. During
an MMH task, the device harvests the kinetic energy during the
lowering phase and restores the energy to aid lifting. Biomechanical
loads in the lower back were measured using an established EMG-
assisted dynamic spine model (Hwang et al., 2016a; Hwang et al.,
2016b). The model relies on dynamic inputs, including muscle
activity for the ten power-producing muscles of the trunk, full-body
kinematics, and ground reaction forces. These dynamic inputs are
also combined with more “static” inputs, such as anthropometry,
muscle geometry, and tissue material properties. According to
standardized placement procedures (Mirka and Marras, 1993),
ten wireless EMG sensors with a sampling rate of 1925.93 Hz
(TrignoTM, Delsys, MA, United States) were placed on bilateral
trunk muscles, namely, the erector spinae, latissimus dorsi, rectus
abdominis, internal oblique, and external oblique. Participants’ body
kinematics data were collected via an OptiTrack Motion Capture
System with a sampling frequency of 120 Hz (NaturalPoint, OR,
United States) and processed through a customized Matlab-based
laboratory software (Mathworks, MA, United States. Kinetic ground
reaction force andmomentswere recorded using anFP6090-15 force
plate at the frequency of 1,000 Hz (Bertec, OH, United States). The
EMGand kinematics data were synchronized using aUSB-6225 data
acquisition board (National Instruments, TX, United States).

In this study, neural activation of each participantwasmonitored
using a 20-channel portable continuous wave Functional Near
Infrared Spectroscopy (fNIRS) system,NIRSportTM (NIRxMedical
Technologies, NY, United States), which included 8 emitters
(marked in circles, Figure 1) and 7 detectors (marked in squares,
Figure 1). The light signals are emitted in two wavelengths (760
and 850 nm) and the probe design is represented according to the
international 10–20 system format. The inter-optode distance for
the 20 standard-length channels was set as 3 cm. An additional
eight short separation detectors, each with an inter-optode distance
of 8 mm, were placed next to each emitter. Signals from short
separation channels were used to correct for physiological noise
and motion artifacts during the data collection (Yücel et al.,
2015). The fNIRS probe, designed in NIRSITETM (NIRx Medical
Technology, NY, United States), covered 6 regions of interest
(ROIs), namely, the right and left dorsolateral prefrontal cortex
(RdlPFC and LdlPFC), medial prefrontal cortex (mPFC), left/right

premotor cortex (LPMC/RPMC), and supplementary motor area
(SMA) based on the clinically anatomy-based Brodmann areas and
their international 10–20 system locations (Figure 1; (Homan et al.,
1987)). Previous locomotor adaptation studies have demonstrated
that motor planning-related cortical regions, i.e., SMA and PMC,
are also associated with the motor learning process in able-
bodied participants (Miyai et al., 2001). During exoskeleton-
assisted dynamic motor tasks, increased motor control and working
memory levels are also required during the initial learning phase
by engaging bilateral dlPFC (Kao et al., 2010; Suzuki et al., 2004;
Suzuki et al., 2008; Tyagi et al., 2023). Thus, bilateral dlPFC,
mPFC, SMA, and bilateral PMC were monitored to quantify the
exoskeleton-associated sensorimotor adaptation process.

2.3 Experimental procedures

Participants completed a two-session experiment on separate
days. Before each asymmetric lifting session, anthropometric data
were collected from the participants, including subject height,
weight, and the width/depth/circumference of the torso at the
xiphoid process and umbilicus. 10 wireless EMG sensors were
fixed to the trunk muscles, and 41 reflective optical motion-
capturingmarkerswere placed on the entire body of each participant
according to a custommarker set prescribed by theOptiTackmotion
capture software. Three markers were also placed on the force
plate to track its relative location during the asymmetric lifting
task. Next, the fNIRS probe was strapped to each participant with
the center of the cap placed on the vertex (Cz) of the head. The
probe was fully covered by a black shower cap to eliminate the
signal contamination from both the ambient light and infrared light
emitted from the cameras of themotion capture system. After sensor
placement, the fNIRS system was first calibrated by having each
participant seated upright and fully relaxed without any movement
for 3 min (Zhu et al., 2020b).

After sensor calibration, the hip center of rotation and strap
circumferences were fitted to participants. Participants then went
through another calibration process for the dynamic spine model
by conducting a series of lowering and lifting motions while
holding a 20-pound medicine ball. During this step, gain ratios
are reverse-engineered for each of the 10 power-producing muscles
of the lumbar spine. EMG activations are then combined with
this gain ratio, muscle cross-section area, length, and contraction
velocity information to predict dynamic outputs of muscle force.
Separate calibrations were conducted for each participant and
experimental session. For familiarization, all participants were asked
to practice the task for at least 5 minutes before the actual physical
experiment began. The exoskeleton was adjusted, based on the
manufacturer’s guidelines, to allow participants to comfortably
operate the physical task.

For the experimental task, participants were instructed to
lift a 16-pound medicine ball back and forth between a lift
origin/destination at knee height at 45° asymmetry relative to
the sagittal plane and a lift origin/destination at waist height
in front of the body. Lifts were performed at a frequency of
6 lifting-and-lowering trials per minute for 30 min, paced by a
programmed metronome. All participants performed the tasks
with and without wearing the exoskeleton on two separate days
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FIGURE 1
Biomechanical and neuroergonomic feature extraction process during MMH tasks. A 20-channel fNIRS system monitored the task-related
physiological changes simultaneously with the aforementioned EMG-assisted spine model. Neural activation of 6 regions of interest (ROIs), namely,
right and left dorsolateral prefrontal cortex (RdlPFC and LdlPFC), medial prefrontal cortex (mPFC), left/right premotor cortex (LPMC/RPMC), and
supplementary motor area (SMA), were monitored. The neural efficiency metric was developed based on the output features from both systems.

with counterbalancing, and the two sessions were separated by a
minimum of 24 h to allow for adequate rest and recovery.

2.4 Experimental design

A 2 × 3 repeated measures design was employed in this
study to evaluate the effects of exoskeleton condition (exoskeleton
vs. control), phase (early: averaged the fifth and 10th minutes;
vs. middle: averaged 15th and 20th minutes; vs. late: averaged
the 20th and 30th minutes), and their interaction effects on
biomechanical, neural activation and neural efficiency measures.
Raw biomechanical modeling and neural activation signals were
first synchronized within each 1-min window with respect to
the metronome pacing signal. Dependent variables, discussed
in the following section, were then calculated per lifting-and-
lowering trial and averaged into early, middle, and late phases for
statistical analysis.

2.5 Measurements

EMG signals obtained from ten trunk muscles were pre-
processed by notch filtering at 60 Hz and band-pass filtering
between 30 and 450 Hz. Following the standards for reporting

EMG results (Merletti and Di Torino, 1999), the filtered signals
were rectified, smoothed, and low-pass filtered using a 2nd
order Butterworth filter with a cut-off frequency of 1.59 Hz.
Similarly, kinematic data were low-pass filtered using a 4th-order
Butterworth filter at a cut-off frequency of 10 Hz. After passing
dynamic inputs (EMG, kinematics, kinetics) and “static” inputs
(subject anthropometry, Magnetic Resonance Imaging (MRI)-
derived muscle sizes and locations, tissue material properties)
into the multi-body dynamic solver (Adams, MSC Software, Santa
Ana, CA, United States), dynamic, three-dimensional spinal loads
(compression, anterior/posterior or A/P shear, lateral shear) on
the superior and inferior endplates extending from the T12/L1
to L5/S1 were derived as model outputs (Hwang et al., 2016b).
Peak compression, anterior/posterior (A/P) shear, lateral shear, and
resultant spinal loads were extracted for the vertebral endplate, for
which the highest magnitudes of loading were observed along each
spinal loading dimension during every lifting-and-lowering trial for
further analysis (Picchiotti et al., 2019). These peak loads occurred
at L3/L4 (for compression and resultant spinal loading) and L5/S1
(for A/P and lateral shear loading).

Acquired fNIRS raw data were pre-processed using the NIRS
Brain AnalyzIR toolbox (Figure 2; (Santosa et al., 2018)). The
collected light intensity signals were first converted to optical
densities by taking logarithms. To reduce the effect of physiological
noises such as cardiovascular pulsations and Mayer Waves (Julien,
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FIGURE 2
Experimental fNIRS signal processing flow chart to generate neural activation map.

2006), the converted optical density signals were first band-pass
filtered between 0.01 and 0.4 Hz and then subjected to principal
component analysis (PCA) among all regular length channel
signals (Cao et al., 2015; Zhang et al., 2005). A combination
of spline interpolation function with parameter p = 0.99 and
a Kurtosis-based wavelet transformation function with kurtosis
= 3.3 was applied to minimize the effect of motion artifacts
(Chiarelli et al., 2015; Scholkmann et al., 2010).

The hemodynamic response functions (HRF) of oxyhemoglobin
(ΔHbO) concentration were obtained using the modified Beer-
Lambert law (Delpy et al., 1988). HRF of ΔHbO was selected for
neural activation analysis due to its strong correlation with motor
task-related brain activation compared to HRF of deoxyhemoglobin
(ΔHbR) signal (Malonek and Grinvald, 1996). To further reduce

the effect of physiological noise and task-related motional artifacts
during the highly ambulatory MMH tasks, the obtained HRFs
were fed into a General Linear Model (GLM) using the Iteratively
Reweight Least-Square Autoregressive pre-whitening approach
(AR-IRLS; (Santosa et al., 2018)), where the HRF of each short-
separation channel served as a regressor for its closest standard-
length channels. After exporting the estimated HRF of each regular-
length channel, the task-related neural activation was obtained by
extracting the averaged channel-wise HRF within each ROI in every
lifting-and-lowering trial (von Lühmann et al., 2020).

To compute the neural efficiency (NE) of each lifting-and-
lowering trial, the biomechanical performance parameters and
neural activations within each ROI were first normalized by
converting to z scores across both experimental sessions (Figure 1).
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We investigated the neural efficiency changes for the biomechanical
parameters over each ROI using Equation 1 below:

NEij =
z(pi) − z(ej)

√2
(1)

Where i ∈ {L3/L4 Inferior Compression, L5/S1 Inferior A/P
Shear, and L5/S1 Superior Lateral Shear, and L3/L4 Resultant}; j
= {RdlPFC, and RPMC}, pi is the ith biomechanical performance
parameter and ej is the oxygenated hemoglobin level in the jth
ROI. During the passive low back exoskeleton-assisted asymmetric
lifting task, wearers were expected to achieve higher biomechanical
performance (i.e., lower spinal loading) with decreased neural
activation of the monitored ROIs, from the low-efficiency quadrant
(the fourth quadrant of the Neural Efficiency Metric graph in
Figure 1) to the high-efficiency quadrant (the second quadrant
of the Neural Efficiency Metric graph in Figure 1), over time.
Low neural efficiency (NE < 0) was expected at the beginning
of each asymmetric lifting session, which characterizes increased
neural activation with decreased biomechanical performance (i.e.,
increased spinal loading). To achieve high neural efficiency (NE >
0) and adaptation to the asymmetric lifting task over time, wearers
needed to not only enhance the biomechanical performance (i.e.,
decreased spinal loading) but also exhibit reduced neural activation
in the motor adaptation-related regions of the brain, namely,
RdlPFC, and RPMC, by adapting to the asymmetric lifting task.

2.6 Statistical analysis

The dependent variables, namely, the biomechanical
performance parameters (namely, L3/L4 Inferior Compression,
L5/S1 Inferior A/P Shear, and L5/S1 Superior Lateral Shear, and
L3/L4 Resultant), neural activation of all ROIs, and RdlPFC and
RPMC related neural efficiency metrics, were calculated per lifting-
and-lowering trial and averaged into early, middle, and late phases
for statistical analysis. Separate two-way repeated measure analyses
of variance (ANOVAs) were conducted to test the main effect of
phase (early vs. middle vs. late), condition (exoskeleton vs. control),
and their interaction on the biomechanical performance parameters
(namely, L3/L4 Inferior Compression, L5/S1 Inferior A/P Shear,
and L5/S1 Superior Lateral Shear, and L3/L4 Resultant), neural
activation of all ROIs, and RdlPFC and RPMC related neural
efficiency metrics separately. Yeo-Johnson transformation was
applied if the dataset violated the assumption of normality using
the PowerTransformer data preprocessing toolbox of the scikit-
learn package (Yeo and Johnson, 2000). Statistical significance was
tested with alpha = 0.05, and False Discovery Rate (FDR) correction
(with a desired significance level of q = 0.050) was applied to account
for multiple comparisons.

3 Results

3.1 Biomechanical performance

Peak biomechanical loads on the L3/L4 and L5/S1 levels of the
lumbar spine are illustrated in Figure 3 across phases and conditions.

In general, no significant condition, phase, or condition × phase
interaction effects were observed for L3/L4 Inferior Compression,
L5/S1 Inferior Anterior Posterior Shear, or L3/L4 Resultant loading,
with all the p-values >0.05. However, peak L5/S1 Superior Lateral
Shear was found to be significantly lower in the exoskeleton
condition than the control condition [F (1,11) = 5.328, p = 0.044,
ηp

2 = 0.348].
Neural activation Figure 4 (left) illustrates the contrast maps

of neural activation in each condition. No significant condition or
condition × phase interaction effects were observed in the neural
activation across all ROIs, with all the FDR-adjusted p-values >0.24.
However, significant phase main effects were identified for the
neural activation in the RdlPFC [F (1,11) = 9.454, p = 0.015, ηp

2

= 0.654; Figure 4 (right)] and RPMC [F (1,11) = 8.337, p = 0.006,
ηp

2 = 0.625; Figure 4 (right)] regions. Post hoc analysis revealed that
for both ROIs, neural activation in the late (p values ≤0.015) and
middle (p values ≤0.016) phases was significantly greater than that
in the early phase.

3.2 Neural efficiency

The neural efficiency metric of the L3L4 Inferior Compression
[F (1,11) = 5.253, p = 0.059, ηp

2 = 0.323; Figure 5(top)] in the
RdlPFC region, while not statistically significant, was lower in
the exoskeleton condition compared to the control condition.
Additionally, significant phase main effects were identified for the
L5/S1 Superior Lateral Shear-related neural efficiency metric in the
RdlPFC [F (1,11) = 8.367, p = 0.048, ηp

2 = 0.432; Figure 5 (bottom)]
and the RPMC [F (1,11) = 8.319, p = 0.024, ηp

2 = 0.431; Figure 5
(bottom)]. In both cases, neural efficiency in the early phases was
found to be significantly greater than in the middle and late phases
(p values ≤0.009). No other condition, phase, or interaction effects
were observed for the neural efficiency metrics (all p’s > 0.067).

Figure 6 illustrates the changes in the neural efficiency patterns
over time (averaged across participants) at each data collected time
point, namely, the L3/L4 Inferior Compression in RdlPFC. Note that
the neural efficiency was lower in the exoskeleton than in the control
condition when averaged across the 30 min (see Figure 5). However,
when tracking the neural efficiency metric every 5 minutes, we
observe different patterns in the control and the exoskeleton
conditions over time.

4 Discussion

Here, a novel neural efficiency metric, which links the
wearer’s biomechanical performance and associated neurocognitive
effort, was utilized to track human-exoskeleton interaction
over time.

Exoskeleton-assisted locomotor training literature has
emphasized that wearing an exoskeleton hinders neuromuscular
coordination and leads to poor gait performance, especially during
the early phase of the training session; however, underlying
neural mechanisms were not studied (Gordon and Ferris, 2007;
Gordon et al., 2013; Panizzolo et al., 2019). In the present
study, neural efficiency, which combines wearers’ biomechanical
performance and the neurocognitive effort to maintain the
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FIGURE 3
Peak spinal compressive and shear forces across phase and condition effects, averaged across participants (Mean ± SD). No significant phase (top) and
condition (bottom) main effects were observed for both compression (left) and shear (right) forces on the lumbar spine, except L5/S1 Superior Lateral
Shear, which showed significantly greater shear force in the control condition than exoskeleton condition (∗p = 0.044).

performance, was captured for the first time during an exoskeleton-
assisted ambulatory lifting task. In general, we found that the
passive low-back exoskeleton-assisted asymmetric lifting task
was associated with poorer compressive loads-right dorsolateral
prefrontal cortex (RdlPFC) related efficiency than the control
condition (Figure 5). While not statistically significant, this
effect was accompanied with a large effect size (ηp

2 = 0.323).
The observed inefficiency was likely a result of the increase in
neurocognitive demand (Figure 3) in the RdlPFC to maintain
the biomechanical performance, i.e., the compressive load, which
were found to be comparable between two conditions (Figure 3
Bottom left). Bilateral dlPFC is known for its regulation of
executive functions (Banich, 2009; Sibi et al., 2016). In particular,
engagement of the RdlPFC, a key cortical region that is responsible
for sensorimotor adaptation associated with working memory
(Anguera et al., 2011; Ruitenberg et al., 2018), indicated that
short-term exoskeleton interaction required a sensorimotor
adaptation process for the lifting task in our study. In a recent
study, Seidler, Gluskin, and Greeley (Seidler et al., 2017) applied
anodal transcranial Direct-Current stimulation to boost the left
or right prefrontal or motor cortex activities during a multi-
session dart-throwing task. The authors reported an accelerated

motor-task adaptation process with increased engagement of the
right dorsolateral prefrontal cortex (RdlPFC), which validates the
critical role RdlPFC plays in the motor-task adaptation process.
These studies highlighted the importance of RdlPFC in motor
task adaptation processes. We found that the tested passive low-
back exoskeleton-assisted asymmetric lifting task is associated
with lower RdlPFC neural efficiency as the exoskeleton demands
greater adaptation-associated cognitive processing effort from
the wearers.

Sensorimotor adaptation is an error-driven movement
calibration process (Ruitenberg et al., 2018; Bastian, 2008;
Seidler et al., 2012). Functional neuroimaging studies have revealed
that the bilateral premotor cortices play a crucial role in the motor
adaptation process, which involves movement selection, planning,
calibration, and execution (Lee and van Donkelaar, 2006; Peck et al.,
2009). During complex motor tasks, the prefrontal cortex is known
to co-activate with premotor cortices and supplementary motor
areas and functions as the central executive system to support motor
planning and execution (Nee and D’Esposito, 2016). Specifically, the
dorsolateral premotor-prefrontal cortical complex (PMC-dlPFC) is
in charge of forming and selecting motor tasks that drive movement
(Soltani and Koechlin, 2022). In this study, we observed decreased
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FIGURE 4
Left: Neural activation across each condition, averaged across participants. No significant condition main effect was observed (p-values ≥0.24); Right:
Neural activation across each phase, averaged across participants.∗Indicates higher neural activation in the RdlPFC and RPMC regions in the Middle (p
values ≤0.006) and Late Phases (p values ≤0.015) compared to the Early phase.

FIGURE 5
Neural efficiency metrics (averaged across participants) associated with L3/L4 Inferior Compression and RdlPFC (p = 0.059; ηp2 = 0.323) between
exoskeleton and control conditions (top), and L5/S1 Superior Lateral Shear with RdlPFC (∗represent p = 0.048) and RPMC (∗represent p = 0.024) regions
over phases (bottom). Error bars are ± standard errors.
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FIGURE 6
Dynamic neural efficiency maps of the L3/L4 Inferior Compression in RdlPFC. The data represents averaged values across participants. The lower the
compressive loads on the spine, the greater the biomechanical performance. Note that low-efficiency quadrants are represented by lower
biomechanical performance, but higher neural activation and high-efficiency quadrants are represented by higher biomechanical performance and
lower neural activation.

neural efficiencies of both RdlPFC and RPMC in the lumbar shear
loads from early to the middle and late phases of the MMH task,
suggesting that the asymmetrical lifting task efficiency declined
over time irrespective of the exoskeleton condition (Figure 5).
Our findings are consistent with prior literature that report that
right-lateralized activation in prefrontal and premotor regions is
associated with one’s spatial cognitive processing effort during
the process of kinematic motor adaptation (Seidler et al., 2006).
When adapting to a new motor task, increased spatial cognitive
processing effort is required in an attempt to minimize the sensory
prediction error, i.e., the difference between the brain’s predicted
body movement and the observed body movement, by calibrating
body dynamics continuously through repetitive physical practice. As
such, our results suggest that the asymmetrical lifting task demands
greater cognitive control and movement calibration efforts.

The dynamic increase in neural efficiency of the bilateral
prefrontal cortex has been identified as a strong indicator of
cognitive (Curtin et al., 2019b) and motor (Karim et al., 2017)
task learning and adaptation process. In this study, dynamic
changes in key neural efficiency metrics implicated exoskeleton-
related differences in task adaptation processes. First, declines in
efficiency from the early to the middle phases were observed in
both exoskeleton and control conditions (Figure 6). The results
suggested the participants struggledwith their initial exposure to the
asymmetric lifting task, evidenced by the decreased biomechanical
performance and increased neurocognitive effort. Over time, neural
efficiencies returned to the high-efficiency quadrant in the control
condition, indicating that the participants were able to adapt to the
lifting task by the end of the session (Figure 6 left). However, further
declines in neural efficiencies during the exoskeleton condition
suggest that the tested passive low-back exoskeleton did not promote
an efficient lifting task adaptation process, as observed in the control
condition, and that potentially longer adaptation periods are needed
(Figure 6 right). These findings do not necessarily place exoskeleton
use in a poor light but instead implicate the importance of worker

training strategies that are needed for effective and fluent human-
exoskeleton interactions. Indeed, a recent study reported different
adaptation strategies between shoulder exoskeleton and control
groups when performing dual tasks over days (Tyagi et al., 2023).

In this study, only short-term adaptation (∼30 min) with
the exoskeleton was explored; however, repetitive long-term
motor-task adaptation is important to fully master motor skills
(Ruitenberg et al., 2018), (Bastian, 2008). As such, future studies
that examine long-term adaptation and/or re-adaptation processes
on subsequent days are warranted to provide a comprehensive
understanding of human-exoskeleton interactions and to facilitate
the development of adaptive training programs (Mehta et al.,
2022). Additionally, because the user experience with MMH tasks,
with or without exoskeleton use, may also impact the motor
adaptation process, future work should assess how expertise impacts
the neural efficiency metric outcomes. It is also possible that
different individuals prescribe different movement strategies, and
thus, individual variability may impact the group-averaged results
reported here. Future work that adopts individual-specific analyses
with larger sample sizes to assess the utility of the neural efficiency
metric is warranted. The neural efficiency metric has the potential
to evaluate efficiency profiles in a variety of users for immediate or
short-term experiences with various exoskeleton designs/models.
Therefore, a systematic combination of exoskeleton designs and
motor task scenarios should be tested using the neural efficiency
metric. Such an investigation will enable themetric’s generalizability
and utility towards 1) comprehensive evaluation of exoskeleton
designs during the design life cycle; 2) determination of exoskeleton
usage on a variety of tasks; and 3) development of training programs
that promote efficient human-exoskeleton adaptation. Surprisingly,
spinal loads were not associated with the motor adaptation process
in this study, likely due to the tested low-intensity MMH task
condition (compared to the established lumbar biomechanical load
limits: >3400 N compressive load, >700 N shear force (Gallagher and
Marras, 2012; American Conference of Governmental Industrial
 Hygienists, 2001)). Thus, future studies should also investigate

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2025.1541963
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Mehta et al. 10.3389/frobt.2025.1541963

human-exoskeleton interactions associated with the motor
adaptation process for more physically demanding tasks (e.g., high
load, long duration tasks) that the passive low-back exoskeletons are
designed for.

5 Conclusion

In the present study, traditional physical ergonomic and
neuroimaging metrics failed to identify significant differences in
human exoskeleton adaptations independently.Theneural efficiency
metric, which incorporates these traditional metrics, indicated that
the exoskeleton-assisted task was less efficient and demanded a
longer adaptation period than the control condition. The proposed
neuroergonomic evaluationmetric may be applied during formative
user testing, which may inform hardware technologists of the
impact of different exoskeleton design parameters on the wearers’
neuromotor task adaptation under various task scenarios.This study
also lays the groundwork for future research that can facilitate the
development of technical standards and guidelines on exoskeleton
use and training needs based on exoskeleton-assisted task efficiency.
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