
TYPE Original Research
PUBLISHED 30 April 2025
DOI 10.3389/frobt.2025.1542692

OPEN ACCESS

EDITED BY

Jun Ma,
Hong Kong University of Science and
Technology, Hong Kong SAR, China

REVIEWED BY

Konstantinos Chatzilygeroudis,
University of Patras, Greece
Chunbiao Gan,
Zhejiang University, China

*CORRESPONDENCE

Peng Zhai,
pzhai@fudan.edu.cn

Lihua Zhang,
lihuazhang@fudan.edu.cn

RECEIVED 10 December 2024
ACCEPTED 21 April 2025
PUBLISHED 30 April 2025

CITATION

Tu J, Zhai P, Zhang Y, Wei X, Dong Z and
Zhang L (2025) Seamless multi-skill learning:
learning and transitioning non-similar skills in
quadruped robots with limited data.
Front. Robot. AI 12:1542692.
doi: 10.3389/frobt.2025.1542692

COPYRIGHT

© 2025 Tu, Zhai, Zhang, Wei, Dong and
Zhang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Seamless multi-skill learning:
learning and transitioning
non-similar skills in quadruped
robots with limited data

Jiaxin Tu, Peng Zhai*, Yueqi Zhang, Xiaoyi Wei, Zhiyan Dong
and Lihua Zhang*

Academy for Engineering and Technology, Fudan University, Shanghai, China

In multi-skill imitation learning for robots, expert datasets with complete motion
features are crucial for enabling robots to learn and transition between different
skills. However, such datasets are often difficult to obtain. As an alternative,
datasets constructed using only joint positions are more accessible, but they
are incomplete and lack details, making it challenging for existing methods
to effectively learn and model skill transitions. To address these challenges,
this study introduces the Seamless Multi-Skill Learning (SMSL) framework.
Integrated within the Adversarial Motion Priors framework and incorporating
self-trajectory augmentation techniques, SMSL effectively utilizes high-quality
historical experiences to guide agents in learning skills and generating smooth,
natural transitions between them, addressing the learning difficulties caused
by incomplete expert datasets. Additionally, the research incorporates an
adaptive command sampling mechanism to balance the training opportunities
for skills of various difficulties and prevent catastrophic forgetting. Our
experiments highlight potential issues with baseline methods when imitating
incomplete expert datasets and demonstrate the superior performance of
the SMSL framework. Sim-to-real experiments on real Solo8 robots further
validate the effectiveness of SMSL. Overall, this study confirms the SMSL
framework’s capability in real robotic applications and underscores its potential
for autonomous skill learning and generation from minimal data.

KEYWORDS

multi-skill learning, imitation learning, adaptive command sampling, self-trajectory
augmentation, quadrupedal robots

1 Introduction

1.1 Background

In the field of robotic control, Reinforcement Learning (RL) has been proven
to be an effective control method, particularly in legged robots (Lee et al., 2020;
Kumar et al., 2021; Miki et al., 2022; Hou et al., 2024). Despite these successes,
robots need to acquire complex skills and dynamically switch tasks to cope
with fluctuating environments, presenting significant challenges to RL methods
that rely on intricate reward designs. Imitation Learning (IL) enables robots to
learn from expert datasets without the necessity for complex reward functions,
thus allowing platforms such as quadruped robots to master a variety of motion
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skills (Li et al., 2023). However, IL is heavily dependent on the
quality and completeness of the expert datasets (Ran and Su,
2024). When the expert datasets are of high quality, the integration
of Generative Adversarial Networks (GAN) (Goodfellow et al.,
2020) with RL (Sutton and Barto, 2018) in the Adversarial
Motion Priors (AMP) (Peng et al., 2021) approach demonstrates
its superiority. By training discriminators to differentiate between
expert data and policy outputs, AMP encourages policy networks to
produce similar state transitions, performing well on high-quality
datasets. These datasets typically include physical information such
as joint positions, velocities, accelerations, and torques, which are
crucial for enhancing the effectiveness of IL.

Ideally, these datasets are obtained through high-precision
motion capture equipment, but such devices may fail to capture all
high-speed or complex movements. As an alternative, researchers
generate high-quality expert data using trajectory optimization
algorithms or deep RL methods in simulation environments. These
approaches undoubtedly increase the initial preparation costs for
IL methods. A simpler and less costly method involves acquiring
joint position information from video recordings or by manually
manipulating real robots.However, its effectiveness is reduced due to
the lack of rich motion feature information. Moreover, when expert
datasets contain skills of various complexities, the AMP method
struggles to train a policy that learns all the skills in the dataset;
it may learn some skills but also risk forgetting previously learned
ones over extended training periods. It is more likely to primarily
learn simple or mixed skills, which may not meet researchers’
expectations. To optimize the AMP approach, one potential method
is to manually segregate various strategies within the expert
dataset and employ separate networks to learn them, but this
method requires extensive manual annotation and computational
resources. When the skills to be imitated differ significantly in
terms of similarity, they are referred to as Non-similar skills in this
context. For example, in a quadruped robot, transitioning between
quadrupedal and bipedal states is considered a Non-similar skill
transition. If the expert dataset only contains these states without the
transitions between them, simple IL methods become less effective
in achieving the research objectives (Hussein et al., 2017). The
challenge is more pronounced in scenarios requiring transitions
between fundamentally different motion skills, making it difficult to
effectively learn and transition between skills.

Non-similar skills refer to those with significant differences
in motion characteristics. We employed simulation, t-SNE, and
Dynamic Time Warping (DTW) techniques (Müller, 2007) to
visually depict the differences between motion skills. In Figure 1,
we selected three skills simulated using the Isaac Gym platform
to demonstrate the differences in motion characteristics between
Similar and Non-similar skills. ‘wave’ and ‘trot’, both based on a
quadrupedal stance, are categorized as similar skills. Conversely,
‘trot’ and ‘biped’, based on quadrupedal and bipedal stances
respectively, are considered Non-similar skills. Figure 2 presents t-
SNE plots that display the state trajectories of two skills (‘wave’, ‘trot’)
from the Cassie expert dataset, compared with the state trajectories
from our Non-similar expert dataset (‘biped’), where the trajectories
include joint position information. It can be observed that the
trajectories of Similar skills (‘wave’, ‘trot’) exhibit some overlap in the
state space, providing favorable conditions for designing strategies
capable of mastering multiple skills. However, the Non-similar skill

(‘biped’) does not overlap with the other skills, which increases the
training complexity of multi-skill strategies. We also used DTW
to quantify the distances between Similar and Non-similar skills,
as shown in Table 1. We calculated the distances between the state
trajectories of different skills, with smaller values indicating greater
similarity between skills. The gaps between Non-similar skills are
significantly larger than those between Similar skills.

Given these challenges, effectively learning distinct skills and
transitioning from an expert dataset containing only joint positions
has emerged as a critical research issue. This involves one of the core
issues in RL: Avoid catastrophic forgetting. To address this issue, we
focus on the following two key questions in this research: (1) How
to ensure that both complex and simple Non-similar skills receive
appropriate training opportunities within a unified policy network,
thus achieving comprehensive skill mastery? (2) How to compensate
for missing states between skills within the same policy network
to achieve more accurate and effective skill switching, thereby
improving policy performance and ensuring seamless transitions
between different actions?

1.2 Contributions

To address these problems above, this paper introduces Seamless
Multi-Skill Learning (SMSL), a method for learning multi-non-
similar skills with limited data. This approach incorporates an
adaptive skill selection mechanism to deal with expert datasets
with Non-similar skills expert datasets. This selection mechanism
ensures that skills of various difficulties can be sufficiently trained
and achieve comprehensive mastery of the skills. It also effectively
extracts skills and generates natural transitions betweenNon-similar
skills by leveraging historically successful states.The contributions of
this method can be summarized as follows:

• We introduce a novel adaptive skill selection method that
samples skill commands based on the learning progress of each
skill, balancing skill acquisition and preventing catastrophic
forgetting;
• We have integrated an experience replay module into the

AMP framework. This module dynamically utilizes historical
successful states from the training process as the foundation
for environmental initialization, compensating for the lack
of information in the expert dataset, and facilitating the
imitation learning of Non-similar skills and the generation of
transition actions;
• Our method has been validated on both a simulation

platform and the real-world Solo8 robot platform (Figure 3),
which outperforms baseline algorithms. Ablation studies
demonstrate the effectiveness of our proposed method.

2 Related work

Quadruped robots enhance the flexibility and efficiency of
task execution by mastering multiple skills to cope with the
complexity of task environments (Aziz et al., 2022). Due to the
complexity of controlling quadruped robots, traditional RLmethods
encounter challenges related to the complexity and potential
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FIGURE 1
Simulation description of Similar skills and Non-similar skills. Three motor skills of“ wave” (Top),“ trot” (Mid) and “biped” (Low) are selected to show the
characteristics of Similar skills and Non-similar skills.

FIGURE 2
State trajectory distribution diagrams for Similar and Non-similar skills:
Shows the state trajectory distribution of Similar and Non-similar skills,
including joint position information for “wave”, “trot”, and “biped”.

TABLE 1 Similarity of Joint Position States in Similar Skills and
Non-similar skills (DTW).

Skills Wave Biped

trot 16.14 38.22

imprecision of reward design in multi-skill tasks. As an efficient
alternative, IL enables quadruped robots to quickly master complex
skills by observing and replicating expert behaviors, making it
particularly suitable for complex tasks that require the rapid
integration of multiple skills (Billard et al., 2008; Torabi et al., 2019;
Gavenski et al., 2024; Oh et al., 2018).

Imitation learning has seen a series of innovative results in
recent research on quadruped robot motion skills. Generative

Adversarial Imitation Learning (GAIL) (Ho andErmon, 2016) offers
an effective framework for imitation learning in high-dimensional
environments by learning from expert data containing state-action
pairs without relying on explicit cost functions. AMP (Peng et al.,
2021) extends this by guiding robots to complete tasks using expert
data and the task environment, even with only state trajectory
data. Based on AMP, (Escontrela et al., 2022; Wu et al., 2023),
applied the AMP method for robust and agile quadruped walking
on complex terrains. (Vollenweider et al., 2023). developed a Multi-
AMP structure for multi-skill strategies, pairing each expert dataset
with its own generative adversarial network. However, generative
adversarial networks can experience mode collapse when handling
numerous, unlabeled datasets and skills. To address this, Cassi
(Li et al., 2023) introduced a more effective approach integrating
generative adversarial networks and unsupervised skill discovery
techniques, enabling policy to imitate skills from expert data
and maximizing mutual information between skills and a latent
variable z. While effective with unlabeled expert datasets, these
strategies’ efficacy depends on dataset quality and completeness.
As discussed in Section 1.1, the learning performance can be
adversely affected when the expert dataset is incomplete. To address
this, we introduce a method for reusing historical experiences to
reinforce skill learning within the strategy. Additionally, we have
designed an adaptive skill selection method that selects the next
skill by calculating the rewards generated for different skills during
training, thus providing more learning opportunities for poorly
performing skills.

Experience replay is an extremely efficient strategy guidance
technique in RL. It enables robots to learn under conditions
of limited samples, thereby enhancing policy learning efficiency
(Yang et al., 2024). This technique balances exploration and
exploitation, avoiding ineffective trial-and-error processes and
catastrophic forgetting (Lin, 1992; Mnih et al., 2015; Schaul et al.,
2015). Studies like (Peng et al., 2018; Li et al., 2023) introduce
expert datasets into the experience replay buffer to initialize
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FIGURE 3
Sim-to-real task is conducted on the Solo8 robot, involving moving forward (Top) and backward (Mid) in a quadrupedal walking state, and transitioning
from a quadrupedal state to a bipedal walking state (Low). Our approach uses a single policy to manage the transition between quadrupedal and
bipedal states.

robots. During initialization, the robots’ state may be sampled
from the expert dataset or generated randomly. However, these
methods depend on the expert datasets’ prior knowledge. Limited
or non-diverse datasets can hinder the strategies’ adaptability
to various states in complex environments (Rajaraman et al.,
2020). This dependency weakens the generalization of the policy
in new environments and may lead robots to replicate errors
or suboptimal behaviors, limiting the effectiveness of the policy
and the robot’s adaptability and robustness (Cao et al., 2024;
Lan et al., 2023) introduces the Self-Trajectory Augmentation
(STA) technique, which dynamically collects and integrates excellent
historical trajectories generated by the robot during training. This
addresses the aforementioned issues by expanding the diversity and
coverage of the dataset. (Messikommer et al., 2024). demonstrates
that strategically selecting and utilizing past experienced states to
initialize robots enhances performance in complex tasks. To our
knowledge, our method introduces the STA approach within the
AMP framework for the first time, reusing excellent historical states
to effectively avoid catastrophic forgetting in multi-skill learning,
thereby enhancing the agent’s learning process.

3 Preliminaries

In this work, the environment is modeled as an infinite-
horizon Markov decision process (MDP), defined by the tupleM =
(S ,O,A,p, rt,p0,γ).S represents the state space, which includes base
linear velocity v, base angular velocity ω, base quaternion (x,y,z,w),
base height h, joint positions p, joint velocities ṗ, as well as the action
a from the previous moment. O represents the observations from
the real world, serving as input for the policy network. It includes
all values in the state space S except the base linear velocity v, base
angular velocity ω, and footstep positions.A is the action space that
indicates the changes in joint positions. p = (s′|s,a) is the transition

dynamics, rt(s,a, s
′) is the reward function, p0 is the initial state

distribution, and γ ∈ [0,1) is the discount factor. The objective of
RL is to find the optimal parameters θ of a policy πθ:S ↦A that
maximize the expected discounted reward J(θ) = 𝔼πθ[∑tγ

trt].

3.1 Adversarial Motion Priors framework

Currently, frameworks that integrate GAN and RL methods are
widely used in the field of IL. We have opted to use the AMP
framework to emulate the general motion characteristics found
in these expert datasets. Similarly to Escontrela et al. (2022), the
imitation discriminator dψ is optimized using the least squares GAN
(LSGAN) method by estimating scores of +1 for state transitions
from the expert dataset and −1 for those of the policy. The
discriminator’s objective function (Equation 1) is represented as
follows:

𝔼dM [(dψ (o
I) − 1)2] +𝔼dπ [(dψ (sψ) + 1)

2] +wGP𝔼dM [‖∇oIdψ (oI)‖22] ,
(1)

where the last term represents the non-zero gradient penalty
for state transitions from the expert dataset, with wGP as the
weight parameter. The purpose of the imitation discriminator is
to distinguish between the state transition distribution dM from
the expert dataset and the state transition distribution dπ generated
by the policy. Random state transitions are sampled from the
expert dataset as oI = [(oI

t−1,o
I
t)|t=(1,2,3,…)]. It is important to note

that the dataset does not contain actions for transitioning between
motor skills, and any sudden changes between skills are considered
negligible. We use sψ = [(sψt−1, s

ψ
t )|t=(1,2,3,…)] as the output of state

transitions by the policy. In both oI
t and sψt , only the position

information of the robot’s joints is included. The discriminator aids
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in policy optimization through the following reward function:

rI =max[0,1− 0.25(dψ (sψ) − 1)
2] . (2)

4 Methods

4.1 Overview

Our goal is to learn various motion skills from an expert
data set that lacks complete information and to achieve transitions
between these skills at any moment. To achieve adaptive training
frequencies for skills of varying difficulty, we have designed a
command selector denoted as C, which includes both velocity
commands and motion skill commands, mathematically expressed
as C = [cv,cs]. Here, cv ∈ [−0.5,0.5] is the velocity command and
cs ∈ {{1,0}, {0,1}} are themotion skill commands, with time t omitted
for simplicity. Our research uses a quadruped robot capable of both
bipedal and quadrupedal walking to validate the performance of
our methods. Specifically, {1,0} indicates the command for bipedal
walking, while {0,1} indicates the command for quadrupedal
walking. Our reward function (Equations 3, 4) is structured as
follows:

rt = wIrIt +w
GrGt , (3)

rGt = r
Q
t + r

B
t , (4)

where rQt is the goal reward for the quadrupedal state, and
rBt is the goal reward for the bipedal state, which will be
introduced in Section 4.4. Furthermore, we introduce the STA
method, maintaining an initialized STA buffer that stores
favorable states acquired during the training process. This buffer
allows for probability sampling p ∈ [0,1] when resetting the
environment, facilitating policy learning. Both wI and wG are
weight coefficients. Figure 4 provides an overview of the schematic
diagram of our method. In this study, the expert dataset comprises
only joint position variation data for locomotion skills and the
base’s quaternion, lacking data on transitions between different
skills. During training, at the start of each episode, the system
samples the initial pose from the expert dataset with a probability
of (1− p) and from the self-trajectory augmented buffer (BSTA)
with a probability of p. The green area in the figure delineates
the STA module, which is responsible for selecting high-quality
robot states from historical data and storing them in BSTA. The
buffer BSTA includes joint position information, quaternions, joint
velocities, and can be extended according to task requirements.
Subsequently, the agent interacts with the environment, obtaining
states sπt ∈ S and computing the goal reward rGt . By inputting the
joint position variations from the state transitions into the IL
discriminator, an imitation reward rIt is generated. Following this,
the ACSM module, highlighted in the purple area, calculates the
sampling probabilities for each skill based on their respective goal
rewards, thereby adaptively selecting the skill to be trained. Finally,
the policy network and the value network are updated using the PPO
algorithm.

4.2 Adaptive Command Selection
Mechanism (ACSM)

During the training process for quadruped robots, four-legged
walking postures often receive higher rewards, while bipedal
standing postures tend to result in frequent falls in the initial stages
of training due to the agent’s difficulty in maintaining balance,
leading to lower rewards.Without constraints, the agentmay tend to
learn those simpler, higher-reward skills. Therefore, in the training
process of multi-skill strategies, it is crucial to balance the training
among skills of different difficulty levels to ensure that each skill
reaches a satisfactory performance level. Thus, we aim to implement
a control mechanism that allocates training resources based on
the performance of each skill, ensuring a balanced development of
skill training.

In RL, the goal reward value at each timestep, rGt , is naturally
a crucial metric for assessing the agent’s performance. When a
robot performs actions that align with human expectations, it
receives higher rewards. In our method, for transitions between
bipedal and quadrupedal states, we use a one-hot encoding method
for differentiation. Therefore, using the encoding of commands to
distinguish the environments corresponding to different commands
is a natural choice when calculating the goal rewards. We
use the following Equation 5 to calculate the reward ratio for
each command:

̄rG,c
s

t =mean(∑
Nx

(rG,c
s

t ⋅ 𝕀 (c
s = x))), (5)

where ̄rG,c
s

t represents the average reward obtained in the
environment under command cs, and Nx represents the number of
commands. Furthermore, since the task reward function is designed
manually, we can estimate the reward values for the optimal states
rG,c

s∗
. Thus, an evaluation metric for assessing the quality of skill

training under each command can be obtained (Equation 6):

p (cs = x) =
̄rG,c

s

t

rG,c
s∗
. (6)

Consequently, the performance evaluation metric p under
different skill commands is used to determine which skill to train in
the next scenario. The greater p(cs = x) is, the smaller the probability
that the corresponding skill command cs will be sampled, thereby
achieving the objective of adaptive training across multiple skills.
In the experiment, we set the duration of each scenario to 1,000
timesteps to ensure smooth transitions between skills. Accordingly,
we have designed the duration for each skill to be 500 timesteps.

4.3 Self-trajectory Augmentation (STA)

When training for transitions between Non-similar skills, we
face a challenge: the lack of transitional actions between skills
in the datasets. To enable the agent to smoothly transition from
the current skill to the target skill upon receiving a skill-switch
command, we propose the addition of new states to guide the
agent toward the target skill transition. Drawing on the concept
of the STA method, a new buffer (BSTA) is created that utilizes
valuable historical trajectories to enhance learning efficiency. This is
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FIGURE 4
Method Overview. The system consists of two key components that work collaboratively to facilitate efficient skill learning: Adaptive Command
Selection Mechanism (Purple) and Self-Trajectory Augmentation module (Green). Adaptive Command Selection module intelligently selects the
optimal command by weighing the rewards of different skills, thereby balancing the opportunities for skill training. rG,Skill1 and rG,Skill2 represent the goal
rewards obtained for different skills, respectively. P1 and P2 represent the sampling probabilities of different skills, and before each sampling, the
probabilities are recalculated based on their corresponding goal reward values. Self-Trajectory Augmentation module selects optimal states from PBuffer

based on quality criteria, then adds them to BSTA, and samples from BSTA with probability p during initialization.

primarily aimed at allowing the robot to more frequently experience
states conducive to transitions between skills, rather than blindly
exploring new states or merely remaining in fixed states of the target
skill. This approach is expected to optimize the learning process
of the robot, making it more efficient and natural during skill
transitions.

A good state is one that allows for large rewards to be obtained
in subsequent states. Therefore, we not only value the immediate
rewards for the agent but also the long-term value of the state.
We use the weighted average value (μt+1) of the output from the
critic network (V(st+1)) and the goal reward from the previous
moment (rGt ) as the criterion for assessing the quality of the state
st at each environment at time t+ 1. This results in the following
formula (Equations 7, 8), which serves as the threshold for filtering
good states:

μnt+1 = r
G
t,n +w

STAγVn (st+1) , (7)

μi,mean
t+1 = k

∑N
n=1

μnt+1
N
, (8)

where N represents the total number of environments, and n
is one of them. From the historical state collections of each
environment, states where μt+1 exceeds the average μi,mean

t+1 are
selected to be added to BSTA, which includes the agent’s base

position, quaternion, and the positions and velocities of each
joint. Clearly, by employing the STA method, it is possible to
capture motion characteristics not present in suboptimal expert
datasets, such as velocity information, from good historical
experiences. wSTA is weight coefficient and k is the scaling factor,
respectively.

4.4 Goal reward function

Although imitation reward in Equation 2 offers advantages
in simplifying the policy learning process, the GAN (LSGAN)
method is not sensitive to expert trajectories and their surrounding
state space areas Li et al. (2022). Therefore, relying solely on it
as the only reward for skill learning does not accurately learn
skills. For example, when training robots to perform quadrupedal
and bipedal walking, relying on imitation rewards, especially
excessive imitation rewards, may lead the agents to learn an
unintended mix of actions. This indicates that when training with
incomplete expert datasets, to avoid falling into local optima and
to enable more targeted exploration, it is necessary to incorporate
additional reward mechanisms to guide the learning of the policy,
ensuring that agents can learn more accurate and natural behavior
patterns.
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4.4.1 Quadrupedal motion state
4.4.1.1 Quadruped gait reward function

When a quadruped robot learns tomove forward or backward, it
can easily fall into a suboptimal pattern of hopping, which is not the
desiredmethod ofmovement.Wewant the robot’s gait tomimic that
of real quadruped animals, using an alternating gait for progression.
Naturally, this leads to the consideration of imposing constraints
on the robot’s gait. The design of the quadrupedal movement’s gait
is as follows:

Gaitone:[True,False,True,False],

Gait two:[False,True,True,False],

where True and False indicate whether the robot’s feet are touching
the ground, determined by the presence of contact forces with the
ground. In the gait sequence, the order of the feet [FL,FR,HL,HR]
corresponds to the left front, right front, left hind, and right hind
foot, respectively. We record the duration of each gait tg, and when
transitioning to a different gait, we calculate the duration as the
reward value for the gait. The maximum set duration for each gait
is tg
∗
. Note that the reward is calculated only when experiencing

transition to a different gait. This method ensures the switching
between different gaits, encouraging the robot to actively use its gait.
However, it can also lead to a suboptimal situation where there is a
significant disparity in the duration of two gaits. For this purpose,
within the same environment, we record the duration of each gait at
every timestep.Thedifference between the current gait’s time and the
previous gait’s time is used as a penalty for gait asymmetry te.The gait
reward for the robot’s quadrupedal motion state is calculated using
the following Equation 9:

rQ_gait = ωQ_gaittQ_gait − te, (9)

where ωQ_gait is weight coefficient.

4.4.1.2 Quadruped leg-lifting reward function
To encourage the agent to lift its feet, the Isaac Gym

simulation environment provides the foot elevation hfoot at each
time step. A desired foot elevation hfoot

∗ = 0.03cm is defined and the
following Equation 10 is used as a reward function to promote foot
lifting in the quadrupedal state:

rfh = ωfh exp−
|hfoot−h

∗
foot|

σfh , (10)

where ωfh is hyperparameter and σfh is the scaling factor.

4.4.1.3 Quadruped velocity tracking reward function
To encourage the agent to track velocity, the following

reward function (Equation 11) is used:

rQ_v = ωv exp−
|cvt −vt|
σv , (11)

where vt represents the velocity of the agent’s base along the x-axis
at time t. cvt denotes the desired speed sampled from the command.
ωv is hyperparameter and σv is the scaling factor.

Based on the above, the total goal reward for the quadrupedal
state can be summarized as follows (Equation 12):

rQ = rQ_gait + rfh + rQ_v, (12)

4.4.2 Bipedal motion state
Due to the absence of expert datasets for the transition from

quadrupedal to bipedal motion states, it is necessary to incorporate
a reward function that facilitates the transition to a bipedal state,
compensating for the sparsity of the rewards during the skill switch.

4.4.2.1 Bipedal gait reward function
The reward function for gait transition in the bipedal state is

identical to that of the quadrupedal state, so the expression will be
omitted. Gait design is as follows:

Gaitone:[False,False,True,False],

Gait two:[False,False,False,True].

The sequence of foot placement in the gait is the same as in the
quadrupedal state. Unlike the quadrupedal state, the bipedal gait
transition is effective only when the robot is capable of maintaining
a stable bipedal stance. To adjust the reward value and encourage
the robot to maintain a standing posture and gait, we assess the
robot’s base pitch angle and monitor the foot contact states and
heights during simulations. The formula is designed as follows
(Equations 13, 14):

rffh = 0.1 ⋅ 𝕀 (h ≥ 0.02) + 0.3 ⋅ 𝕀 (h ≥ 0.08)

+ 0.6 ⋅ 𝕀 (h ≥ 0.16) + 1.0 ⋅ 𝕀 (h ≥ 0.25) ⋅ λpitch, (13)

λpitch = exp−
√(θpitch−4.71)

2

σpitch , (14)

where λpitch is a threshold calculated from the current pitch angle
and the target pitch angle. h represents the lifting height of the two
front feet, and the indicator function 𝕀(⋅) is one only if both feetmeet
the threshold height, otherwise it is 0. The current pitch angle θpitch,
expressed in radians, can be obtained from the IsaacGym simulation
environment.The target pitch angle for the standing posture is set to
4.71 radians. The maximum lifting threshold reward is multiplied
by λpitch to guide the robot towards achieving the target pitch angle.
σpitch is the scaling factor.

From this, we can derive the following Equation 15:

rB_gait = ωB_gait (rB_gait + rffh) , (15)

where ωB_gait is hyperparameter.

4.4.2.2 Bipedal velocity tracking reward function
This reward function (Equation 16) is similar to the quadrupedal

state’s velocity tracking, but differs in that the bipedal state only
tracks forward direction velocity:

rB_v = ωv exp−
|−|cvt |−vt|

σv . (16)

4.4.2.3 Bipedal base reward function
The purpose of this reward function is to make the base height

of the bipedal robot as close to the set target height as possible.
This reward function (Equation 17) is similar to the quadrupedal
state’s velocity tracking, but differs in that the bipedal state only
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TABLE 2 Configuration.

Name Value Name Value Name Value Name Value

ωI 0.02 ωG 1.0 ωSTA 0.01 ωQ_gait/ωB_gait 5.0/4.0

ωB_base 1.0 ωfh 1.0 ωv 1.0 σfh 0.025

σv 0.25 σpitch 1.0 σbase 0.1 p 0.3

tracks forward direction velocity:

rB_base = ωB_base exp−
√(hB_base−0.45)

2

σB_base . (17)

The current base height hB_base can be obtained from the simulation
environment, where 0.45 is the expected base height for the agent in
a bipedal standing posture.

Based on the above, the total goal reward (Equation 18) for the
bipedal state can be summarized as follows:

rB = rB_gait + rB_v + rbase. (18)

5 Experiments and results

We primarily address two questions: 1) To verify whether using
the STA method can enhance learning efficiency and improve
policy performance when the motion feature information in the
expert dataset is incomplete. 2) To validate whether the adaptive
skill command module can effectively balance the training of
different skills.

Weutilize the IsaacGym simulation platformMakoviychuk et al.
(2021) to parallelize 4,096 environments and employ the Proximal
Policy Optimization (PPO) algorithm Schulman et al. (2017) for
RL. Our experiments are conducted in two phases. Firstly, we use
the Cassi method as a baseline to validate the effectiveness of STA.
Subsequently, we evaluate our method, SMSL, in both simulation
and on the real-world Solo8 robot Grimminger et al. (2020). As
shown in Figure 3, ourmethodwas successfully deployed on the real
robot. With a single policy, it not only learns non-similar skills but
also autonomously generates transitionmotions. In the experiments,
the robot demonstrated forward and backward movements in a
quadrupedal stance, bipedal locomotion, and smooth transitions
between quadrupedal and bipedal states. The configurations of the
SMSL algorithm are shown in Table 2.

5.1 Versatility of STA modules

In the experiments, we used the vanilla Cassi method as a
benchmark, excluding base velocity and joint velocity information
from the imitation learning dataset because these velocity data
are not directly observable. However, we retain the information of
the quaternion and joint position, which can be obtained through
simple measurement methods in the real world. We compare its
performance before and after the incorporation of the STA method.

The STA buffer is designed to store favorable features such as joint
position, joint velocity, and base velocity from historical trajectories.
This information will be used during the initialization phase of the
environment. We design a series of agents that switch skills in the
“trimesh” terrain within the Isaac Gym environment, and assess the
performance of the policy by monitoring the survival rate of the
agents.The experimental setup includes 500 agents starting from the
same point, with each pair of skills forming a combination. Agents
automatically switch skills after 500 timesteps, with a total timestep
length of 1,000. If an agent resets during the experiment, we consider
this as the agent ‘dying’.

During the initialization phase of the Cassi algorithm, 85% of
the samples are selected from the expert dataset, while 15% are
randomly generated. Figure 5a displays the survival rates of agents
in “trimesh” terrains using the Cassi method via a heatmap, where
the expert dataset includes complete motion characteristics of the
skills. Figure 5b (Cassi (pos)) and (c) (Cassi (STA)) both show
scenarios after removing velocity information, with (c) specifically
illustrating the application of the STA method in the with random
initialization. Despite the removal of velocity information, the STA
method still improves the survival rates of agents on untrained
“trimesh” terrains, thereby enhancing the generalization of the
strategy. Comparing the three methods, the survival rate for ‘wave’
is consistently low, mainly due to the skill’s intrinsic properties.
The wave-like nature of its base motion trajectory increases the
likelihood of contact with the ground in “trimesh” terrains, resulting
in a lower survival rate. Despite some skill pairs showing slightly
higher survival rates in Figure 5b, this may be due to the lack of
a strict one-to-one correspondence between commands and skills,
leading to additional training opportunities for some skills. Detailed
analysis and data will be presented later in the text.

We extract state trajectories of six skills from the initial strategy
of the Cassi algorithm and constructed a baseline dataset for
comparative analysis. Using DTW technology, we calculate the
distances between each skill trained by the Cassi (pos) method
and the Cassi (STA) method and their corresponding skills in the
baseline dataset. Ideally, each command should form a one-to-
one correspondence with a specific skill. As shown in Figure 6a,
when imitating the expert dataset, the mapping between skills
and commands has errors due to the absence of some motion
feature information. Specifically, in Figure 6a, command “0″ maps
to two skills, “trot” and “leap,” while skill “stilt” corresponds to two
different commands, “1″ and “2″Theoretically, this could result in
skill “stilt” receiving more training opportunities, and the data in
the figure supports this view, showing it has the highest survival
rate. Furthermore, Figure 6b displays the strategy trained by the
Cassi (STA) method in the context of incomplete information from
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FIGURE 5
Agent Survival Rate Heatmap. The darker the shade of blue, the higher the survival rate for that pair of skills. Rand. Init. Stands for Random Initialization.
(a) represents the original Cassi method. (b) represents the original Cassi method where the reference dataset retains only the robot’s joint position
information, and the random initialization sampling probability is set to 15%. (c) represents the original Cassi method, where the reference dataset
retains only the robot’s joint position information, and the STA method is introduced with a sampling probability set to 15%.

FIGURE 6
Skills-Commands Correspondence Diagram. The y-axis lists six commands, while the x-axis represents the skills in the expert dataset. The depth of the
color indicates the level of similarity between the skills and commands; the darker the color, the lower the similarity. Ideally, each command should
correspond to the lightest color block, indicating an exact match between the skill and the command. Similarly, each skill should also have only one
light color block, ensuring a one-to-one correspondence between skills and commands. (a) represents the original Cassi method where the reference
dataset retains only the robot’s joint position information, and the random initialization sampling probability is set to 15%. (b) represents the original
Cassi method, where the reference dataset retains only the robot’s joint position information, and the STA method is introduced with a sampling
probability set to 15%.

the expert dataset. Even under conditions of missing information,
this method still manages to achieve a one-to-one correspondence
between skills and commands. Additionally, the data in the figure
indicates that the strategy trained by the Cassi (STA) method
exhibits a relatively uniform distribution in terms of survival rates,
meaning that each skill received balanced training opportunities.

In the final test, we assess the resilience of the Cassi (STA)
method relative to the original Cassi method in the face of
observational disturbances. In the simulation environment, we
introduce random additive noise to the observations of joint
positions and joint velocities, with ranges of [−0.3,0.3] and
[−0.5,+0.5], respectively. We then collect the joint state trajectories
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TABLE 3 The DTW values for the Cassi with observational noise.

Noise
Skills

Trot Crawl Leap Walk Stilt Wave

[−0.3,+0.3] 14.03 13.04 15.31 12.24 13.37 16.61

[−0.5,+0.5] 21.74 20.58 22.77 19.38 20.94 25.38

TABLE 4 The DTW values for the Cassi (STA) with observational noise.

Noise
Skills

Trot Crawl Leap Walk Stilt Wave

[−0.3,+0.3] 12.44 14.15 16.10 12.02 12.21 14.55

[−0.5,+0.5] 19.51 20.61 21.69 18.90 19.54 23.83

of the policies trained by both methods under six different skills,
recording 500 timesteps for each skill. These trajectories are
subsequently analyzed using DTW against the expert dataset. As
shown in Tables 3, 4, even under varying levels of noise interference,
the strategies trained using the Cassi (STA) method are closer to
the expert dataset across most skills compared to those trained
with the original Cassi method. This finding confirms the enhanced
robustness of the Cassi (STA) approach.

5.2 Versatility of ACSM modules

This experiment is designed to validate the effectiveness
of the skill-adaptive module proposed in Section 4.2. Through
meticulously designed experiments, we are able to observe
and analyze the actual performance of the module during
training, thereby evaluating its contribution to multi-skill learning.
As shown in Figure 7, the experiment presents the variation in
skill sampling probabilities over 5,000 iterations of training using
the SMSL method. It is evident that at the outset of training, both
skills are sampled with relatively high probabilities due to their
low initial reward values. As the number of iterations increases,
the quadrupedal trotting skill—owing to its inherent stability
and relatively simple control requirements—becomes easier for
the agent to learn and master, leading its sampling probability to
quickly drop to approximately 50%. In contrast, the bipedal skill,
characterized by greater control complexity and higher balance
demands, is more challenging to learn; thus, in the early stages
of training, its sampling probability is set relatively higher than
that of the quadrupedal skill to ensure sufficient exploration
and learning. Notably, to prevent the policy from exclusively
focusing on the more difficult skill and suffering from catastrophic
forgetting of the simpler one, a minimum sampling probability
of 50% is maintained for each skill. This design guarantees
that all skills receive adequate attention during the training
process, thereby achieving comprehensive and balanced skill
acquisition.

5.3 Ablation studies

We conduct a detailed analysis of the roles of STA and ASCM
within the SMSL framework (Figure 8a). By individually removing
these methods from SMSL, using different seeds, and conducting
training through over 10,000 iterations, we observe their impact
on the effectiveness of agent learning. When the STA method
is removed from the SMSL framework (represented by the blue
curve), the agent struggles to effectively learn the strategy for
transitioning between skills during the imitation learning process,
due to the absence of transition actions between Non-similar skills
in the expert dataset. This results in the agent tending towards
blind exploration when faced with commands that require skill
transitions, potentially leading to suboptimal local solutions. When
the ASCM is removed (represented by the green curve), the agent,
lacking a mechanism to balance training opportunities across skills,
fails to adequately train more challenging skills such as bipedal
walking. As a result, when the agent receives commands to perform
bipedal walking, it may fail to execute them properly, exhibiting a
collapse in strategy. The SMSL (Simultaneous Multi-Skill Learning)
method effectively learns skills from a Non-similar expert dataset
(represented by the red curve). Within this approach, the STA
method extracts transitional actions between skills from historical
states, facilitating effective exploration by the agent. Meanwhile, the
ASCM balances the training opportunities across different skills,
ensuring that the agent can comprehensively master all skills.

Figure 8b provides a T-SNE visualization that offers an
intuitive representation, showcasing the joint trajectories for
quadrupedal walking (trot, represented in blue) and bipedal walking
(biped, represented in orange), as well as the transitions between
them (represented in red and green). The joint trajectories for
quadrupedal and bipedal walking are distinctly separated on the
T-SNE plot, highlighted in blue and orange, respectively. This
demonstrates that the SMSL method can effectively learn different
motor skills from a Non-similar expert dataset. The red and green
trajectories illustrate the transition actions between the two walking
states, connecting the quadrupedal and bipedal trajectories. This
indicates that the SMSL method not only learns individual motor
skills but also generates seamless transitions between skills. In
summary, the T-SNE plot in Figure 8b provides compelling visual
evidence of the SMSL method’s powerful capability in multi-skill
learning, particularly in handling Non-similar skills and their
transitions.

6 Conclusion

We propose Seamless Multi-Skill Learning (SMSL) method,
designed to enable a quadruped robot to learn Non-similar
skills and their natural transitions from an incomplete, unlabeled
expert dataset. This approach effectively simplifies the preparation
phase of the expert dataset in multi-skill learning, reducing the
complexity of the preparatory work. SMSL is based on the analysis
of joint position information of robotic motion skills, utilizing
this data for effective IL. A key advantage of this approach is its
independence from the similarity between skills, it can achieve
effective IL even when there is a significant difference between
skills. This flexibility allows the agent to learn and adapt more
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FIGURE 7
Variation in Skill Sampling Probabilities. The blue curve illustrates the sampling probability dynamics for the quadrupedal locomotion skill “Trot,” while
the red curve corresponds to the bipedal locomotion skill “Biped.”

FIGURE 8
Performance display of the SMSL method. (a) Red represents the reward changes corresponding to each iteration of the SMSL method. Blue represents
the reward changes with the STA method removed. Green represents the reward changes with the ASCM method removed. (b) Orange represents
bipedal walking, blue represents quadrupedal walking, green represents transitions from quadrupedal to bipedal states, and red represents transitions
from bipedal to quadrupedal states.

comfortably when faced with a diverse set of skills. Additionally,
SMSL places a strong emphasis on balancing the opportunities
for skill training. Through this approach, we prevent the agent
from falling into the trap of local optima during the learning
process, ensuring global optimization. This balanced strategy
helps the agent to master a comprehensive range of skills when
faced with complex tasks, rather than being limited to a specific
skill.

Experimental validation has demonstrated that our method
significantly enhances the robustness of IL approaches. SMSL
outperforms existing baseline methods in terms of the agent’s
survival rate and the stability of skill-to-command mapping. These
results indicate that SMSL has high practicality and effectiveness in
real-world applications, especially in complex environments where
an agent needs to flexibly switch between multiple skills.

SMSL significantly enhances the performance of quadruped
robots in IL by simplifying the preparation process of expert

datasets, enhancing the flexibility of skill learning, and balancing
opportunities for skill training. These improvements not only
increase the adaptability of agents in complex tasks but also bolster
their robustness when facing new challenges.

Although our proposed method demonstrated significant
potential in both simulated environments and experiments, we
observed some challenges during the transition from simulation
to real-world application. Specifically, the robot exhibited strong
robustness in the quadrupedal state, while the bipedal state showed
less stable movement. We conducted a detailed analysis of this
phenomenon and identified several possible causes.

• Structural Limitations: The robot model we used, Solo8,
has a foot structure designed as a curved surface. In the
bipedal motion state, this design results in degrees of freedom
exceeding the number of actuators, thereby creating an
underactuated motion.This underactuationmakes controlling
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the robot in a bipedal state more complex and challenging to
achieve precise motion controlLéziart (2022).
• Simulation and Reality Differences: Bipedal movement is

more sensitive to discrepancies between simulated and real-
world environments compared to quadrupedal movement.
These differences may include sensor accuracy, environmental
complexity, and the ways in which the robot interacts
with its environment. These factors might be simplified or
overlooked in simulations, but can significantly impact the
robot’s movement in real-world applications. We refer to
these as “compounding errors,” which accumulate between
simulation and reality, leading to performance that may not
meet expectations in actual environments.

Here are several main directions for our future work:

• Enhancing the robustness of control policy: Methods to
enhance the robustness of robots in the real world can
be divided into mechanical innovation and algorithmic
innovation. Since mechanical methods are not the main focus
of this thesis, we consider updates on the algorithmic side.
To bridge the gap between real and simulated environments,
a robust adversarial reinforcement learning method can be
introduced. This method involves adversarial training with
multiple agents, reinforcing the learning of the agents to
compensate for the discrepancies between real and simulated
environments Zhai et al. (2022).
• Algorithm Generality: Our aim is to explore a universal

algorithmic framework that can be applied to various robotic
platforms. The next step involves fine-tuning and training the
algorithm for different robots.
• More skills, greater dissimilarit: The SMSL Method focuses

on using a single policy to simulate and learn multiple skills,
with the flexibility to switch between these skills seamlessly.
This approach effectively addresses the potential decrease
in robustness that may arise from multi-policy transitions.
Moreover, the design of a single policy also somewhat reduces
the burden on robotic systems in terms of storage and
computation of strategy parameters. We will continue to
leverage the advantages of this method to further optimize the
algorithm, aiming to facilitate the learning and mastery of an
even broader array of skills, including those with significant
differences.
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