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In this paper, we present an approach to cluster interaction forms in industrial 
human–robot co-work using spatiotemporal graph convolutional networks 
(STGCNs). Humans will increasingly work with robots in the future, whereas 
previously, humans worked side by side, hand in hand, or alone. The growing 
frequency of robotic and human–robot co-working applications and the 
requirement to increase flexibility affect the variety and variability of interactions 
between humans and robots, which can be observed at production workplaces. 
In this paper, we investigate the variety and variability of human–robot 
interactions in industrial co-work scenarios where full automation is impractical. 
To address the challenges of interaction modeling and clustering, we present 
an approach that utilizes STGCNs for interaction clustering. Data were 
collected from 12 realistic human–robot co-work scenarios using a high-
accuracy tracking system. The approach identified 10 distinct interaction forms, 
revealing more granular interaction patterns than established taxonomies. These 
results support continuous, data-driven analysis of human–robot behavior and 
contribute to the development of more flexible, human-centered systems that 
are aligned with Industry 5.0.
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 1 Introduction

Humans will increasingly work with robots as time progresses, whereas previously, 
humans worked side by side, hand in hand, or alone, particularly in handicraft and 
industrial productions with small batch sizes, which are heavily impacted by demographic 
change and the associated shortage of skilled workers (Heuermann et al., 2024). For years, 
apprenticeship positions have remained unfilled, and the number of apprentices has steadily 
declined. Meanwhile, the workforce is aging, and increasing numbers of skilled workers 
are leaving the workforce due to age (Glück, 2022; Statista, 2022a; Statista, 2022b; Statista, 
2022c). The shortage of qualified workers is also worsened because handcraft occupations
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are often not considered an adequate alternative to academic careers. 
Craft occupations are still underestimated with respect to the 
content, requirements, prospects, and technical progress at the 
corresponding workplaces (Mischler, 2017).

Automation offers a way out of the shortage of skilled 
workers, which is considered the most remarkable business risk by 
companies based on industry and handcraft, along with production 
costs. Ultimately, the lack of suitable skilled workers can lead 
to production stoppages (Statista, 2022d). However, in many 
workplaces currently facing a lack of skilled workers, full automation 
is impossible or only possible to a limited extent because they 
are too complex. Production workplaces are complex when the 
tasks to be performed are diverse, not entirely deterministic, 
uncertain, and time-varying (dynamic) (Krause and Gebhardt, 
2018). A large variety of products and variants, which goes hand-
in-hand with small batch sizes and order-specific production in 
handcraft, increases the complexity of production workplaces, 
especially regarding variety and variability. Thus, these jobs 
often require human cognitive and motor skills to cope with 
the complexity (TÜV AUSTRIA and Fraunhofer Austria Research, 
2016; Müller et al., 2019; Petzoldt et al., 2021). Whereas , dexterity is 
needed, for example, when wiring electronic products, where cable 
positions cannot always be determined, creativity, innovation, and 
adaptability are often required for manual modification work.

Against this background, human–robot co-work—more 
commonly called human–robot collaboration—is essential for 
dealing with the complexity in production workplaces, demographic 
change, and the reduction of the shortage of skilled workers in 
industry and handcraft (Glück, 2022). In this context, humans 
and robots work together in production processes, flexibly sharing 
tasks and contributing their respective skills (Müller et al., 2019). 
On the one hand, robots can relieve the aging workforce from 
ergonomically unfavorable work tasks, and their performance 
can be maintained for longer. On the other hand, robots can at 
least partially compensate for missing junior staff in the workforce 
(Glück, 2022). As a result, human–robot co-work has the potential 
to preserve jobs and maintain the production capacity in high-
wage countries such as Germany, where the skilled labor shortage 
is particularly acute (Glück, 2022). Moreover, robots can make 
production processes more humane and appealing by taking on 
repetitive or strenuous tasks. In this way, human–robot co-work 
supports greater human-centricity, which is a key element of the 
Industry 5.0 paradigm, alongside resilience and sustainability 
(European Commission, 2021). Industry 5.0 envisions a production 
process where technology augments human capabilities rather than 
replacing them. Therefore, an increasing number of people will 
come into contact and interact with robots at their workplaces. This 
assumption is reinforced by the continuously increasing sales figures 
of collaborative robots (IFR, 2021). The complexity also affects the 
variety and variability of interactions between humans and robots 
at the considered production workplaces.

Industrial human–robot co-work distinguishes among different 
interaction forms, particularly coexistence, sequential and parallel 
cooperation, and (responsive) collaboration (Behrens, 2019; IFR, 
2024). These interaction forms can be distinguished based on space, 
time, and physical contact characteristics (Spillner, 2014; Behrens, 
2019). Although distinctions of interaction forms, such as the ones 
above, are established in industry and handcraft, these taxonomies 

are essentially theoretically derived and not unified (Behrens et al., 
2015; Spillner, 2014; Bauer et al., 2016; Onnasch et al., 2016; 
Behrens, 2019; Petzoldt et al., 2021; Glück, 2022). A data-based 
investigation of the actual interaction behavior between humans 
and robots in production processes has not been conducted yet 
to validate the theoretical considerations. Instead, various studies 
and surveys attempt to assign real use cases exclusively to one of 
the forms (Bauer et al., 2016).

Human–robot co-work is useful where full automation 
is impossible or not profitable due to the required flexibility 
and capabilities (Müller et al., 2019). However, this means 
that production processes, task divisions, and, thus, the 
interactions between humans and robots change continuously or 
at least regularly during operation. Consequently, a continuous 
investigation of the interactions is required. Due to expected 
changes during operation, such as the changes due to wear and 
tear of the technical systems and different product variants or 
generations, regular (and occasion-related) reviews of the respective 
human–robot co-work must be carried out (Glück, 2022). However, 
these often require great manual effort and are different from 
continuous system monitoring, which would be needed in the 
context of continuously changing human–robot co-work at complex 
production workplaces.

For a long time, continuous observation and investigation of the 
interaction behavior of humans and robots in production processes 
was inconceivable because manual recording and evaluation 
required great effort. Advances in data acquisition and processing, 
the higher availability of data, and the methods or tools for data 
analysis are now making more automated approaches possible. 
Thus, computational ethology promises new insights and a better 
understanding of (human) behavior through automatic data 
collection and data-based investigations (Mobbs et al., 2021). In 
addition, data-based activity and context recognition are already 
being used to investigate and gain insights into manual industrial 
processes (Feldhorst, 2018). Similar approaches also promise 
insights into the co-work of humans and robots in industry and 
handcraft and into the actual interaction behavior in ongoing 
operations.

Therefore, in this paper, we aim to better understand the 
variety and variability of interactions between humans and robots 
in complex production workplaces by introducing an unsupervised 
approach for interaction clustering in human–robot co-work 
using spatiotemporal graph convolutional networks (STGCNs). 
Furthermore, the approach’s feasibility is investigated using a novel 
dataset collected in realistic human–robot co-work scenarios using 
a high-accuracy tracking system.

In summary, this paper’s contributions are as follows:

• An unsupervised approach for automatically clustering 
human–robot interactions using STGCNs combined with 
k-means clustering.

• A novel dataset covering 12 realistic human–robot co-work 
scenarios collected using a high-accuracy tracking system.

• A feasibility confirmation of the proposed approach on 
the collected dataset, providing qualitative evidence of 
its effectiveness in capturing and distinguishing various 
human–robot interaction forms.
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• Empirical evidence that the interaction behavior in 
human–robot co-work is more diverse than that suggested 
by established taxonomies (identifying 10 distinct interaction 
forms instead of four).

• Supporting human-centered robotics aligns with the 
Industry 5.0 vision, enabling more flexible and intuitive 
human–robot co-work.

2 Background and related work

2.1 Capturing interactions in human–robot 
co-work

Robots can only replace human interaction partners and become 
colleagues in the workplace if they possess interaction skills similar 
to those of humans (Müller et al., 2019). From a psychological 
and sociological perspective, interaction is characterized by mutual 
influence and interdependency between the agents (Becker-Beck, 
1997; Israel, 2003). A human actor influences the processes 
at the production workplace through his actions, just as his 
actions are influenced by the production workplace and the 
actions of the other actors, for example, robots (Israel, 2003). 
Human–robot interaction refers to “all actions and behavior 
between humans and robots” (Spillner, 2014) and consequently 
includes human–robot co-work.

Human–robot co-work refers to humans working or interacting 
with robots on the same object, often with varying physical 
proximity and temporal coordination. This work-sharing between 
humans and robots and the physical interaction between humans 
and robots in a work context is more commonly referred to 
as human–robot collaboration (Behrens, 2019). At the same 
time, collaboration refers to “hand-in-hand” co-work to achieve 
a common goal that requires physical contact between humans 
and robots (Behrens, 2019). Therefore, the term collaboration is used 
to describe the overarching area and refers to an interaction form 
that is subordinate to this area. To avoid confusion, we use the more 
neutral term human–robot co-work in this paper.

Interaction forms in industrial and handcraft contexts are 
commonly categorized into coexistence, sequential cooperation, 
parallel cooperation, and (responsive) collaboration, which are 
based on spatial, temporal, and physical contact characteristics 
(Behrens, 2019; IFR, 2024). These established taxonomies are 
predominantly theory-driven, not standardized, and lack empirical 
validation (Behrens et al., 2015; Spillner, 2014; Bauer et al., 2016; 
Onnasch et al., 2016; Behrens, 2019; Petzoldt et al., 2021; Glück, 
2022). A data-based investigation of the actual interaction behavior 
between humans and robots in production processes has not been 
conducted yet to validate the theoretical considerations. Instead, 
various studies and surveys attempt to assign real use cases 
exclusively to one of the forms (Bauer et al., 2016).

Due to the ongoing robotization, the variety of observable 
applications of collaborative robots in production workplaces is 
also growing. Now, there are applications for many manufacturing 
processes and assembly functions, including handling. However, 
most industry and handcraft applications have involved humans and 
robots working together less closely (El Zaatari et al., 2019; IFR, 
2024). This growing variability calls for data-driven approaches to 

model and classify interactions more systematically. Robot behavior 
can be described through internal data (e.g., joint angles and 
velocities), whereas human behavior must often be captured via 
motion tracking or indoor localization systems (Feldhorst, 2018).

Interactions between humans and robots can be studied by 
fusing these data and looking at them together. Although the 
recognition of human activities in industrial processes has already 
been considered many times (Feldhorst, 2018), more studies 
regarding the interaction behavior of humans and robots when 
working together in production processes are needed. Although 
data on humans and robots are collected together in some cases, 
these have been used particularly for distance calculation in the 
context of continuous speed, separation monitoring, and collision 
detection (Müller et al., 2019). Furthermore, in various works, data 
about humans and robots are fused to enable flexible hand-to-hand 
transfers but not to improve interactions across tasks (Maeda et al., 
2017; Tang et al., 2020). Other authors focus on building accurate 
digital human models using real-time motion-tracking systems, 
such as those for ergonomics or safety purposes (Tuli and Manns, 
2020). Tuli and Manns (2020) captured human behavior during a 
collaborative assembly process and derived tasks, which included 
human motion sequences, such as reach, join, apply force, and 
release. Heuermann et al. (2024) presented a sensor-data-based 
approach for automatic, continuous capturing of the variety in 
human–robot interactions and an interaction modeling approach 
based on spatiotemporal graphs (Heuermann et al., 2024). Vogt et al. 
(2017) introduced an imitation learning approach for human–robot 
interactions from human–human demonstrations.

In summary, although conceptual interaction models provide a 
valuable foundation, a more flexible and granular understanding of 
human–robot co-work is needed: one that is grounded in empirical 
data and can account for the variety and variability of interactions 
observed in industrial and handcraft production settings. 

2.2 Modeling human–robot interactions 
with graphs

Physical human–robot interaction is the interrelated 
spatiotemporal behavior of humans and robots, and can be 
characterized by space, time, and physical contact (Spillner, 2014; 
Behrens, 2019). Graphs are an option for abstract representation and 
investigation of spatial dependencies and interactions (Schmidt, 
2023). A graph consists of nodes and edges (Tittmann, 2019; 
Schmidt, 2023). Graphs are already widely used in modeling actions 
and interactions at production workplaces. Many applications can 
be assigned to human activity recognition (HAR) and ergonomics 
analysis. For this purpose, human posture is often determined using 
video or image data, and the skeleton is modeled as a graph. Whereas 
nodes in the graph represent the joints in the body, the edges 
correspond to the bones that connect the joints (Yan et al., 2018).

The actions of individual actors and the interactions of several 
actors can be modeled using graphs. One approach for describing 
spatial relationships between multiple actors are interaction meshes 
(Vogt et al., 2017). Interaction meshes were introduced in computer 
animation for realistic movements of characters during interactions 
with nearby body parts and objects (Ho et al., 2010; Vogt, 2018). 
However, robotics also uses interaction networks, especially for 
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human–robot interaction and path planning (Vogt et al., 2017; 
El Zaatari et al., 2019). As the computational complexity increases 
significantly with the number of nodes and edges, the number of 
nodes and edges considered should be minimized. To this end, 
Vogt et al. (2017) and Vogt (2018) presented a correlation-based 
approach, which uses the correlation between the movements of 
different nodes to eliminate and weigh edges, and a context-based 
approach, which includes additional context information in addition 
to the correlation between node movements. Both approaches result 
in less densely connected interaction networks, which reduce the 
computational effort and enable the short response times required 
in robotics. The approaches do not require deriving complete human 
models from video or image data or an extensive system of markers 
or trackers. The interaction networks can be created using only the 
nodes involved in the interaction. This means that the approaches 
can also be combined with indoor localization or motion-tracking 
systems that do not have many markers or trackers. Vogt et al. (2017) 
recognized that human–robot interactions can benefit significantly 
from representations using spatial graphs. A mere mapping of spatial 
relationships and dependencies is insufficient for investigating 
individual actors’ actions or the interactions of multiple actors. 
Therefore, sequences of these are considered rather than individual 
spatial graphs. For this purpose, a spatial graph is generated for each 
video frame, point in time in time-series data, or state in a process. 
Temporal dependencies can then be mapped through transition 
probabilities from one state to another or recurring patterns that 
represent the spatiotemporal behavior of the actors. 

2.3 Spatiotemporal graph convolutional 
networks

If there are no explicit rules or regulations for programming a 
machine to solve a task, machine learning from data and experience 
is an alternative (Paaß and Hecker, 2020). For instance, it can be 
utilized when previously unknown relationships, dependencies, or 
patterns in data need to be identified and investigated. Machine 
learning approaches, particularly deep learning, are increasingly 
used to examine temporal and spatial dependencies and correlations 
in spatiotemporal graphs. Zeghina et al. (2024) provided a more 
comprehensive overview of different approaches and applications 
of deep learning based on spatiotemporal graphs. In addition to 
STGCNs, other approaches for modeling human–robot interactions 
include recurrent architectures such as long short-term memory 
(LSTM) networks and temporal convolutional networks (TCNs), 
attention-based models such as transformers or graph attention 
networks (GAT), or their combinations, and classical methods such 
as hidden Markov models. Unlike sequential models such as LSTMs 
or TCNs, which primarily capture temporal patterns, STGCNs 
explicitly model spatial relationships by representing entities such 
as humans, robots, and objects as nodes in a graph. This allows the 
network to jointly model the spatial and temporal aspects of multi-
agent interactions in an interpretable, scalable structure. In contrast 
to other approaches, STGCNs inherently scale to multi-agent and 
multi-object scenarios, making them suitable for modeling the 
varied interactions found in human–robot co-work.

STGCNs are deep machine learning models designed to handle 
data with spatial and temporal dependencies by integrating graph 

convolutional layers and temporal convolutional layers through 
spatio-convolutional blocks (Yu et al., 2017). Whereas the spatial 
behaviors or relationships are modeled in STGCNs using graph 
convolutional networks (GCNs), temporal dynamics are modeled 
using approaches such as convolutions (Conv1D), gated recurrent 
units (GRU), or temporal attention.

STGCNs show promising results on graph-structured data 
in various applications, such as traffic forecasting (Yu et al., 
2017), human action recognition (HAR) (Yan et al., 2018), and 
social network analysis. Yan et al. (2018) performed human pose 
estimation on videos, constructed a spatiotemporal graph on 
the skeleton sequence, and classified human activities using an 
STGCN output (Yan et al., 2018). In addition, Liu et al. (2024) 
extracted skeleton sequences from videos and used them in a 
graph convolutional neural network with temporal attention to 
classify and predict human interaction behavior for human–robot 
co-work. However, only the human is represented as a graph, not the 
interaction scenario, including the robot and the object (Liu et al., 
2024). Xing and Burschka (2024) used an architecture combining 
graph and temporal convolutions to understand the spatiotemporal 
relations in human–object interaction better, using extracted graphs 
from video data (Xing and Burschka, 2024).

Several recent studies have applied STGCNs or related graph-
based models for human activity recognition, but they differ 
significantly from the approach presented in this work. For instance, 
Yan et al. (2018) and Liu et al. (2024) focused primarily on human 
skeleton-based action recognition and represented only the human 
as a graph, without modeling the robot or the objects involved 
in the interaction. Similarly, Xing and Burschka (2024) analyzed 
human–object interactions using video-derived graphs, but they do 
not extend this to full human–robot–object interaction scenarios. 
Moreover, these approaches typically rely on supervised learning 
with predefined activity labels and are often limited to specific tasks. 
In contrast, in this paper, we propose an unsupervised approach that 
models realistic human–robot–object interactions using tracking 
data collected from various human–robot co-work scenarios. This 
enables a more general and data-driven understanding of the 
interaction behavior, beyond the predefined activity classes or 
human-only modeling. 

3 Materials and methods

In this section, we introduce the proposed approach for 
unsupervised clustering of interactions in industrial human–robot 
co-work using STGCNs. The approach includes capturing the 
interaction data (section 3.2) in previously designed human–robot 
co-work scenarios (section 3.1), constructing a graph-based 
representation of the interactions (section 3.3), the STGCN 
for feature learning, and unsupervised interaction clustering 
(section 3.4). Figure 1 provides an overview of this approach and 
its main components.

3.1 Scenario design for data collection

The present investigation aims to consider and capture the 
broadest possible variety of human–robot interactions in industrial 
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FIGURE 1
Approach for unsupervised interaction clustering in human–robot 
co-work using spatiotemporal graph convolutional networks.

human–robot co-work. Therefore, the authors decided against 
data collection from industrial environments. Instead, data were 
collected from realistic yet simplified scenarios replicating key 
characteristics of industrial human–robot co-work without the 
full complexity of production environments. These scenarios were 
selected and designed to cover the broadest possible spectrum of 
human–robot interactions and applications observed in industrial 
human–robot co-work, encompassing physical and supervisory 
interactions. Therefore, the scenarios were selected to cover the 
various assembly functions according to Lotter (2012) and the 
functions of object handling. Furthermore, the selection criteria 
included the coverage of established interaction forms across key 
characteristics (spatial proximity, temporal coordination, physical 
contact, and task structure) in alignment with common industrial 
taxonomies such as coexistence, sequential cooperation, parallel 
cooperation, and collaboration. Figure 2 shows the 12 resulting 
scenarios, which is followed by their descriptions.

All scenarios are implemented using a Universal Robot UR10e, 
which is equipped with different end-effectors depending on the 
scenario and mounted on a movable workbench. In most scenarios, 
another (movable) workbench serves as a workplace for humans. 

A – Assembly: in this scenario, the human and robot work 
together to assemble a wooden box with drawers. At the 
beginning of the process, the human and the robot work 
independently beside each other. While the robot executes a 
simple pick and place task repeatedly, the human picks the 
drawers from a pallet and places them in his workplace. As 
soon as the human is ready for the next step in the process, the 
robot’s assistance is requested by pushing a button. The robot 
grips a wooden box from a predefined place with a vacuum 
area gripper and provides it to the human at an ergonomic 
working height. The human assembles the product by putting 
the drawers into the wooden box. After the assembly, the robot 
rotates the box before the human for a final visual quality 
control before placing it at a predefined place.
B – Co-manipulation: the human and the robot work hand-
in-hand in this scenario to handle long wooden planks. 
As soon as the human is ready, the human requests robot 
assistance by pressing a button. Then, the human and the robot 
simultaneously grasp a plank at opposite ends (the robot with 

a vacuum area gripper), lift it off the stack, move it, and place 
it on another stack.
C – Commissioning: during commissioning, the human packs 
products in an envelope at his workstation and places it at 
a predefined transfer position. While the robot picks the 
envelope from this position with a vacuum area gripper and 
puts it in a box, the human prepares the next envelope. The 
robot pauses when the box is filled, and the human closes it 
and replaces it.
D – Gluing: in this scenario, the robot is equipped with a 3D-
printed end-effector, which simulates a glue dispenser unit. 
The human places and fixes a part to be glued on the robot 
workbench and starts the robot gluing process by pushing 
a button. Then, the robot moves along the gluing trajectory, 
which the human had taught beforehand using the robot’s 
teach pendant combined with hand guidance. The human waits 
and exchanges the part when the robot has finished gluing. 
From the interaction perspective, this gluing application is also 
comparable to welding applications.
E – Machine tending: in the machine tending scenario, the 
robot operates, loads, and unloads another machine, such as 
the Formlabs Cure L for post-curing SLA 3D-printed parts. 
Therefore, the robot opens the machine door, picks a 3D-
printed part from a magazine, and places it inside the machine. 
Then, the robot closes the door and waits until the machine 
process is finished before replacing the 3D-printed part with 
another one. The robot uses a clamping gripper to handle 
the machine doors and the parts. The human is responsible 
for exchanging the part magazine and restarting the robot 
process after changing. The human works separately on an 
independent production process while the robot performs the 
machine tending.
F – Moving: robots are increasingly being used in varying 
workplaces. Therefore, humans must move the passive (turned 
off) robot to its next workplace. In this scenario, the operator 
pushes the robot on the movable workbench to a predefined 
position while it is turned off and not moving on its own.
G – Overhanding: in this scenario, the human places and fixes 
a magazine with 12 parts on the robot workbench, walks to the 
human workplace, and starts the robot by pushing a button. 
The robot iteratively picks a part from the magazine using a 
clamping gripper, moves it to a changing overhanding position 
close to the human workplace, and hands it over directly into 
the human hand. While the human proceeds with the part, the 
robot picks the next part from the magazine.
H – Palletizing: during palletizing, the human uses a pallet 
truck to provide a pallet for the robot and starts the robot’s 
palletizing process. The human then places packages at a 
predefined transfer position. From there, the robot picks the 
packages using a vacuum area gripper and stacks four packages 
in a layer on the pallet. When the palletizing is complete, the 
human exchanges the pallet with the pallet truck.
I – Pick and place: the pick and place scenario is mainly similar 
to the overhanding scenario (G). Instead of directly handing 
the part to the human, the robot safely places the part at a 
predefined place. The human takes the part from there when 
the robot has moved away.
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FIGURE 2
Human–robot co-work scenarios for data collection. (A) Assembly. (B) Co-Manipulation. (C) Commissioning. (D) Gluing. (E) Machine Tending. (F)
Moving. (G) Overhanding. (H) Palletizing. (I) Pick and Place. (J) Sanding. (K) Screwing. (L) Teaching.

J – Sanding: the sanding scenario includes teaching by 
demonstration. The human places and fixes a part to be sanded 
on the robot workbench, walks to the human workplace, and 
starts teaching the robot by demonstration. Therefore, the 
human uses a 3D-printed teaching tool, which is equipped with 
an object tracker, and moves it over an identical part to generate 
the sanding trajectory. The robot follows this trajectory on its 
part with a delay. A 3D-printed end-effector is used in this 
scenario instead of a sanding machine, but the robot’s behavior 
is comparable. Furthermore, this scenario is similar to painting 
applications with teaching by demonstration.
K – Screwing: in this scenario, the robot is equipped with 
a 3D-printed end-effector, which simulates a screw driver 
unit. At the beginning, the human places a wooden box at a 
predefined position on the robot’s workbench and starts the 
robot by pushing a button. While the robot approaches four 
screw positions on the back, the human attaches handles to 
the left and right sides of the box, each with two screws. The 
human then rotates the box first by 90° and then by 180° so 
that the robot can tighten the screws on the handles to a 
specified torque.
L – Teaching: teaching is not a separate scenario but involves 
real robot teaching and programming. While implementing 
the scenarios described above, data were collected during the 
robot’s programming via the teach pendant and hand guidance.

In summary, the 12 selected scenarios represent a 
comprehensive and exhaustive set of human–robot co-work 
situations that reflect real industrial applications (e.g., assembly, 
sanding, and screwing) while remaining feasible for controlled 
laboratory data collection. They cover a wide range of interaction 
forms, including physical collaboration (e.g., co-manipulation 

and overhanding), sequential and parallel cooperation (e.g., 
commissioning and palletizing), and supervisory interactions 
(e.g., teaching). The scenarios vary in spatial proximity, temporal 
coordination, and physical contact, and they include varying 
task complexities and human–robot involvement. Together, 
the scenarios provide a robust foundation for capturing the 
variety and variability of human–robot interactions in industrial 
human–robot co-work. 

3.2 Interaction data capturing

The interrelated spatiotemporal behavior can be captured 
using an accurate indoor localization system. Most available 
indoor localization systems based on Wi-Fi, Bluetooth, or RFID 
(meter accuracy), UWB (decimeter accuracy), or ultrasonic 
(centimeter accuracy) are too inaccurate to capture fine interaction 
sequences (Obeidat et al., 2021).

The VIVE Lighthouse tracking system, based on infrared (IR), 
showed a submillimeter or a few millimeter accuracy, reproducibility 
(Bauer et al., 2021; Heuermann et al., 2024), and low latency 
in various investigations. It has already been used for robotics 
several times in research (Tuli and Manns, 2020; Tuli et al., 
2022; Heuermann et al., 2024) and industry, such as Wandelbots 
or Nordbo Robotics. Wandelbots and Nordbo Robotics provide 
no-code programming and teach-by-demonstration solutions for 
robots based on the Lighthouse tracking system. This indoor 
localization system consists of at least one IR transmitter, a so-
called Lighthouse base station, and at least one tracker. The IR 
base stations send a dense grid of IR laser beams into the room at 
millisecond intervals. The IR beams strike sensors (photodiodes) 
placed on the trackers. Based on the measurement data, the 
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FIGURE 3
Setup and tracker placement for capturing human–robot interactions.

current position and movement of the trackers in space can be 
triangulated (Heuermann et al., 2024).

Typically, hands are directly involved in co-work at complex 
production workplaces. Human and robot arms use their hands, a 
gripper, or an end-effector to manipulate or handle objects. Thus, 
the human and robot hands and, if applicable, the manipulated or 
handled objects have to be considered when capturing human–robot 
interactions. Subsequently, trackers are required to capture the 
following positions. One tracker has to be fixed close to the robot 
tool-center-point to obtain the robot position PR. Two additional 
trackers are needed on the human’s wrists to capture the left-
hand position PHL and the right-hand position PHR. In production 
workplaces, humans and robots usually work on parts (Conti et al., 
2020), products, and tools—generally on or with objects. Tracking 
these objects can help understand whether humans and robots 
share a common goal. Attaching a tracker to an object can capture 
its position. However, it is not always possible to add trackers to 
objects, such as when they are too small, change too frequently, or 
a tracker would hinder the foreseen object manipulation. In such 
cases, static virtual objects can be set in advance. For this purpose, 
the object’s picking, placing, handover, or processing areas are 
marked with a tracker, and the positions are memorized. Whenever 
humans or robots approach these positions or areas later in the 
production process, it is equivalent to approaching the object. 
This concept can also mark work areas and teach pendants or 
human–machine interfaces (HMIs) to capture interactions between 
the robot and the operator. Figure 3 shows the setup, including the 
tracker placement for capturing human–robot interactions using the 
Lighthouse tracking system.

3.3 Spatiotemporal graph construction

To enable learning from the spatial and temporal dependencies 
or behaviors in human–robot interactions, each interaction 
instance is represented as a spatiotemporal graph. This section 
defines the graph structure used as input for the STGCN and 
explains the encoding of the spatial and temporal dependencies
in the data.

For every point in time t in the production process or each 
dataset, the current state of the interaction among humans, robots, 

and objects can be modeled as a three-dimensional spatial graph
Gt . Figure 4 illustrates human–robot interaction as a sequence of 
spatial graphs or a spatiotemporal graph.

A graph Gt  = (V, E, W) consists of the following:
Nodes (V): a set of nodes or vertices, which represent entities 

in the graph.

V = {v1,v2,…,vn},where vi ∈ V .

At a given moment, the robot holds a part while the human 
stands nearby waiting. The system tracks the entities, which are the 
robot, the human’s left and right hands, and the handled object. Each 
is represented as a node v in the graph. Subsequently, the nodes vR,
vHL, vHR, and vO exist in the graph. |V| denotes the number of nodes 
in the graph.

The nodes V are represented as a tensor with the shape [N, T, 
F], where N is the number of vertices or nodes, T is the number 
of time steps, and F is the number of input features. Each node is 
represented by a feature array F that encodes the node type and its 
spatial relationship to other nodes. The features isR, isHL, isHR, and 
isO are binary indicators denoting the node type. If the considered 
node represents the robot, the feature isR is set to 1, and the others 
are set to 0. The remaining features represent the Euclidean distances 
d from the current node to all other nodes in the graph at the 
same time step.

Ft = [isR, isHL, isHR, isO,dij,t ,dij+1,t ,dij+2,t].

For instance, if at the given moment the robot is 1,000 mm from 
the human’s left hand, 900 mm from the right hand, and 250 mm 
from the object, the robot node feature array is as follows:

FR,t = [1,0,0,0,1000,900,250].

Further features could be added as an extension to map further 
interactions, such as micro patterns or the proximity of the human 
hands to buttons.

Edges (E): A set of edges represent the connections or 
relationships between the nodes. Each edge e ∈ E is a pair of 
nodes. In the present application, the spatial graph represents the 
spatial dependencies of the nodes in the three-dimensional space 
as Euclidean distances in millimeters. Subsequently, the graph is an 
undirected graph, where the edges have no direction. Furthermore, 
it is a fully connected graph.

e = {u,v},u,v ∈ V .

The node connections can also be represented by an adjacency 
matrix A.

Weights (W): A weight function assigns a numerical value 
(weight) to each edge. As described, the spatial graph represents the 
spatial dependencies of the nodes in the three-dimensional space as 
Euclidean distances d in the present application.

w(u,v) = d(u,v) = √(ux − vx)
2 + (uy − vy)

2 + (uz − vz)
2 .

This graph-based representation is the input for the STGCN 
described below. It models spatial relationships in a structured, 
flexible way that adapts to varying interaction setups and is easily 
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FIGURE 4
Human–robot interaction modeled as a spatiotemporal graph.

FIGURE 5
Architecture of spatiotemporal graph convolutional network-based clustering.

generalizable across various human–robot co-work scenarios. By 
encoding each actor’s identity and spatial configuration, the graph 
enables the model to capture subtle variations in how humans, 
robots, and objects relate to one another even within similar tasks. 
This structured input enhances the model’s ability to distinguish 
nuanced interaction patterns and supports interpretable analysis of 
physical interactions. 

3.4 Spatiotemporal graph convolutional 
network-based clustering

The aim was to identify distinct interaction forms in 
human–robot co-work. Therefore, the STGCN is combined with a 
clustering algorithm. While the STGCN is a promising approach for 
modeling complex spatial and temporal dependencies or behaviors 
in multivariate time-series data, the model embeddings can be used 
as features in an unsupervised clustering algorithm, such as k-
means, to identify distinct interaction forms and label the collected 
data. This architecture is shown in Figure 5.

The proposed STGCN architecture consists mainly of two 
sequential spatiotemporal convolution blocks (ST conv. block) and 
is implemented using PyTorch. Each spatiotemporal convolution 
block consists of a spatial convolution layer followed by a temporal 
convolution layer.

The graph convolutional operator from the study by 
Kipf and Welling (2016) implemented in torch_geometric.nn 
as conv.GCNConv (PyTorch-geometric, o.J.) is used as a 

spatial convolutional layer. For a thorough description of the 
functioning and algorithms, see Kipf and Welling (2016) and 
the PyTorch-geometric documentation. A Conv1d is used 
as temporal convolution, which “applies a 1D convolution 
over an input signal composed of several input planes”
(PyTorch, o.J.).

The STGCN has seven input and output channels, 64 hidden 
channels, and a kernel size three for the temporal convolution. 
Consequently, the spatial convolutional layer in the initial 
spatiotemporal convolutional block applies a graph convolutional 
network (GCN) operation to the input graph with an input feature 
size of seven and an output feature size of 64. The following 
temporal 1D convolutional layer has 64 input and output channels, 
a kernel size of three (looking at three time steps at a time), a 
stride of one (moving step-by-step), and a padding of 1, which 
maintains the same output length as the input. In the second 
spatiotemporal convolutional block, another GCN operation is 
applied in the spatial convolutional layer, reducing the feature 
size from 64 to seven. Finally, another temporal 1D convolution 
is carried out with seven input and output channels. An overview 
of the used layer configuration is shown in Table 1. The ReLU 
(rectified linear unit) activation function is applied after each
convolutional layer.

For training, a maximum of 150 epochs is defined, and an early 
stopping mechanism is implemented to prevent overfitting and save 
computational resources when further improvement is unlikely. The 
early stopping is triggered after five consecutive epochs without 
improvement.
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TABLE 1  Layer configuration.

Block Layer Type Input 
channels

Output 
channels

Notes

1
1 GCNConv 7 64 Graph convolution

2 Conv1D 64 64 Kernel = 3, stride = 1, and padding = 1

2
3 GCNConv 64 7 Graph convolution

4 Conv1D 7 7 Kernel = 3, stride = 1, and padding = 1

An Adam optimizer is used for training the model with an 
initial learning rate of 0.001 and a weight decay of 1e-4 to prevent 
overfitting by penalizing large weights. It is used in combination 
with a learning rate scheduler (ReduceLROnPlateau), which halves 
(factor is set to 0.5) the learning rate after three (patience is set to 
three) consecutive epochs without loss improvement. The Huber 
loss is used as the loss function, which combines the strengths of 
the MAE loss (more robust to outliers) and the MSE loss (sensitive 
to minor deviations).

The STGCN outputs its embeddings as output features for each 
node and time step. These embeddings are the input features for 
the subsequent clustering to identify distinct interaction forms. 
K-means is used in the proposed architecture as the clustering 
algorithm.

K-means clustering is an unsupervised algorithm that groups 
unlabeled data into clusters. It is a centroid-based algorithm, which 
assigns each data point to the cluster with the closest centroid (Joshi, 
2023). The number of clusters k has to be defined before the 
model training. To determine the optimal number of clusters, 
k-means clustering is carried out for k = 2 to k = 20, and 
performance indicators, such as the sum of squared errors (SSEs), 
the Davies–Bouldin index (DBI), and the Calinski–Harabasz index 
(CHI), are calculated. The cluster assignments for all data points 
carried out during the final clustering with optimal k are added as 
labels to the data. 

4 Analysis and results

4.1 Dataset and data preparation

For generating the dataset, the 12 human–robot co-work 
scenarios were executed multiple times while collecting tracking 
data. A total of 1.32 million data points from up to four 
trackers were collected in a fixed interval of 10 milliseconds. 
Subsequently, 13,280 s or 3.69 h of data were collected while 
executing the scenarios. To accelerate the training and identify 
temporal relationships over a larger interval, every 10 data points 
were taken, so the interval was 100 milliseconds. All data were 
standardized using the standard scalar, and six subsets were built 
from the dataset. Each subset contained data from all the scenarios. 
Whereas five subsets were used for training the STGCN and 
clustering, one subset was reserved for testing.

A rolling window approach was used to generate batches from 
the time-series tracking data to prepare the data for training. Each 

batch consisted of 40 consecutive time steps (i.e., a sequence of 4 s 
sampled at 100 ms intervals), and the window was moved forward 
by 10 time steps (1 s) to generate the next batch. This resulted in 
a 75% overlap between successive batches. The use of overlapping 
windows allows the model to capture patterns across different parts 
of the sequence and ensures that relevant temporal dependencies 
are preserved throughout training. Sliding window approaches are 
widely used in pattern recognition and ensure patterns are learned 
and recognized without knowing their locations in the data. Each 
batch includes four nodes (human left hand, human right hand, 
robot, and object) and is used as one training example. A total of 
11,257 batches were generated from the dataset, and they were used 
for training in each epoch. 

4.2 Spatiotemporal graph convolutional 
network

The STGCN was implemented with the presented architecture in 
Python using the PyTorch library and supported GPU acceleration 
via CUDA for efficient computation. The training took between 
927.76 s and 956.49 s per epoch. On average, the time taken was 
934.42 s or 15.57 min. Figure 6 shows the progression of the Huber 
loss over the training epochs. The loss decreased significantly from 
495.77 at epoch 1 to 96.75 at epoch 6. After epoch 6, improvements 
became smaller, with the loss decreasing gradually to 72.89 by epoch 
13. Subsequent epochs show a slight increase or stagnation in loss, 
indicating that the model may be nearing convergence. Therefore, 
early stopping was triggered after epoch 17, and the training ended.

After training, all batches were re-entered into the model, 
and the resulting embeddings were saved for clustering. Due to 
the overlapping batches, 445,468 embeddings were generated from 
112,342 data points for 4 x 7 or 28 output features. Therefore, 
embeddings that could be assigned to the same data points were 
aggregated using the mean method, resulting in 112,342 data 
points again. 

4.3 Clustering

A k-means clustering was applied on the embeddings to identify 
distinct interaction forms. To determine the optimal number of 
clusters, we evaluated k-means clustering results across values of k 
from 2 to 20 using standard validation metrics, namely, the elbow 
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FIGURE 6
Huber loss progression over the training epochs.

FIGURE 7
Sum of squared errors depending on the number of clusters.

method (based on the SSEs), DBI, and CHI. Figure 7 shows the SSEs 
depending on the number of clusters.

According to the elbow method (knee locator) and the 
mentioned performance indicators, 10 is the optimal number of 
clusters. A total of 10 interaction forms can be distinguished in the 
considered human–robot co-work scenarios. This is supported by 
DBI (1.04) and CHI (50,766.61) values. The SSEs is 230,013.85. The 
final clustering was carried out for 10 clusters (k = 10). The cluster 
assignments for all data points carried out during the final clustering 
were added as labels to the data.

Principal component analysis (PCA) is widely used in data 
science and machine learning for reducing high-dimensional data 
to two or three dimensions, such as for visualization. Whereas the 
PCA with two components explains 78.06% of the variance, 88.81% 
is explained with three components. The clusters are visualized using 
two-component and three-component PCAs, as shown in Figure 8.

As the proposed approach is unsupervised and applied to 
a novel dataset of unlabeled human–robot interactions, direct 
comparison with (supervised) established models is not feasible. No 
benchmark dataset offers the same structure, agent configuration 
(human, robot, and object), or labeling scheme used in this paper. 

Additionally, ground truth labels for interaction forms do not exist, 
which limits the applicability of accuracy-based metrics. Instead, 
we compare our approach to a feature-engineered baseline using 
standard clustering metrics (SSEs, DBI, and CHI) to estimate 
its relative performance, expressiveness, and clustering quality. 
Therefore, a k-means clustering was performed on the same dataset 
with engineered and calculated features. K-means is selected for 
comparison due to its compatibility with the continuous, high-
dimensional feature space. K-means is widely used in machine 
learning contexts for clustering embeddings, as it assumes Euclidian 
distance between points and supports controlled selection of 
the number of clusters (k), which enables a consistent and 
interpretable comparison. In contrast, DBSCAN is a density-based 
clustering algorithm that relies on parameters such as neighborhood 
radius and minimum points, which are difficult to tune in high-
dimensional spaces. K-means offered a more stable, interpretable, 
and computationally efficient baseline for evaluating the relative 
clustering performance of our proposed approach.

The Euclidean distances among the robot, the human’s left and 
right hands, and the object were calculated as features to cover 
the spatial dependencies. Time-series features, namely, lag, rolling 
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FIGURE 8
Cluster visualization using two-component (left) and three-component (right) PCAs.

TABLE 2  Clustering performance comparison.

Approach Number of clusters (k) SSE DBI CHI

Clustering STGCN 10 230,013.85 1.04 50,766.61

Clustering FE 10 1,030,779.74 1.33 16,555.66

statistics, and Fourier transforms, were built to cover the temporal 
dependencies in the features. The 10th previous value for each spatial 
feature was used as a lag feature. However, the lag features were 
removed due to significant correlations with the spatial features. The 
rolling mean and standard deviation features were calculated over a 
window of size 10 for all spatial features. Fourier transformations 
decompose the time-series data into an amplitude feature and a 
frequency feature for all spatial features. In this clustering, the elbow 
method (knee locator) suggested 11 clusters, but on comparing the 
SSE, DBI, and CHI, it was found that 11 clusters lead to a slightly 
lower SSE but to worse DBI and CHI values (SSE: 993,311.39, 
DBI: 1.34, and CHI: 16,101.37) than 10 clusters (SSE: 1,030,779.74, 
DBI: 1.33, and CHI: 16,555.66). Therefore, the final clustering was 
performed with k = 10 to improve the comparison with the STGCN-
based clustering with the same number of clusters. Table 2 compares 
the metrics of the STGCN-based clustering (Clustering STGCN) 
and the clustering based on the engineered features (Clustering FE).

For a qualitative evaluation, Figure 9 contrasts the results of the 
STGCN-based clustering (Clustering STGCN) and the clustering 
based on the engineered features (Clustering FE) for all data points 
or frames. Additionally, the distances (Distances) among the robot, 
the human left and right hands, and the object are contrasted 
with the embeddings or STGCN output features (Embeddings). 
Notably, blue colors denote different clusters, but other blue colors 
are used for possibly similar clusters per clustering approach. 
Overall, STGCN-based clustering results in subtler distinctions 
in interactions with the same number of clusters compared to 
clustering with engineered features. The figure also shows that the 
embeddings resemble the distance features. This is obvious as the 

distances were incorporated into the STGCN as node features and 
edge weights, and the similarity of input features and output features 
was optimized during model training.

Considering all scenarios and their executions would go beyond 
the scope of this paper. Thus, the performance of STGCN-based 
clustering and its differences from the comparison clustering will be 
discussed in more detail based on the following examples.

Figure 10 visualizes the data, modeling, and clustering results 
collected during one run of the pick and place scenario (scenario I). 
Whereas the 12 picks can be recognized based on the peak patterns 
from distances and embeddings, as well as the darker blue areas 
resulting from the STGCN-based clustering, the approaching and 
indirect overhanding between the human and robot is represented 
by the valleys and the lighter blue areas from STGCN-based 
clustering. The results indicate that the STGCN-based clustering 
can reliably and reproducibly identify different interactions, such as 
the predominantly coexisting behavior during part retrieval and the 
more synchronized sequential behavior during indirect handover. In 
addition, comparison clustering detected most but not all pick and 
place interactions correctly. Both the peaks and valleys were assigned 
to two different colors or clusters based on the engineered features. 
This suggests that the concerned clusters may not differ significantly 
in terms of the mapped interaction behavior but rather in terms of 
marginal differences in distances. Furthermore, the three thin, very 
light blue lines indicate that STGCN-based clustering can reliably 
detect even subtle behavioral differences, such as when the human 
is fetching the next frame.

The results from data collected during one run of the co-
manipulation scenario (scenario B) are shown in Figure 11. 
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FIGURE 9
Comparing embeddings and STGCN-based clustering with distance features and clustering based on feature engineered (FE) data.

FIGURE 10
Clustering comparison for scenario I: “pick and place.”

Here, the human and robot simultaneously grasp a plank at 
opposite ends, lift it off a stack, move it, and place it on 
another stack. As labeled in the figure, STGCN-based clustering 
reliably recognized the simultaneous pick, move, and place actions 
from humans and robots. Small fluctuations and differences 
from the other marked patterns can only be seen in the 
left-hand marked “pick-move-place” pattern. This indicates that 

STGCN-based clustering could be further improved in terms of
robustness.

In contrast to STGCN-based clustering, no recurring patterns 
can be recognized in comparison clustering. Only cluster 
changes in the corresponding segments indicate that interaction 
changes are perceived. However, these cannot be assigned to any
clear clusters. 

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2025.1545712
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Heuermann et al. 10.3389/frobt.2025.1545712

FIGURE 11
Clustering comparison for scenario B: “co-manipulation.”

5 Discussion

Both examples showed that the STGCN-based clustering can 
find meaningful, distinct clusters or interaction forms. A detailed 
examination, characterization, and description of the identified 
clusters would exceed the scope of this paper. However, this is 
planned and can be supported by the statistical analysis of the 
engineered features from all data points assigned to a cluster 
and identifying the most important features, such as by using 
methods from the explainable machine learning field (feature 
importance, SHAP, etc.). A preliminary statistical characterization of 
the identified clusters was performed using the engineered distance 
features. Figure 12 visualizes the characteristics of some clusters 
using the mean values of the distances between the human left and 
right hands, robot, and object. The results revealed distinct spatial 
patterns across clusters, supporting their behavioral relevance.

The results indicate that approaches combining spatial and 
temporal convolutions to learn both spatial and temporal behavior 
can outperform more classical clustering approaches, and this also 
applies to industrial human–robot interaction analysis based on 
tracking data. In addition to others, this supports the findings of 
Yan et al. (2018), Liu et al. (2024) and Xing and Burschka (2024), who 
derived graph data from videos and successfully detected human 
actions with spatiotemporal convolutional network architectures. 
However, slight variations and mismatches in the STGCN-based 
clustering results indicate that the approach and model could be 
further improved in terms of robustness and reliability. These 
inconsistencies may stem from multiple factors. Minor tracking 
inaccuracies or latency in the tracking system could introduce small 
deviations in the recorded trajectories, especially during fast or 
subtle human movements. As human and robot movements take 
place in continuous space and the interactions blend into another, 

FIGURE 12
Characterization of some clusters using engineered distance feature 
mean values.

sequences may lie near boundaries between interaction forms, such 
as transitions from passive observation to active collaboration, 
making them inherently ambiguous. Furthermore, limitations in 
the current model architecture, such as the fixed temporal window 
size and the shallow network depth, may constrain the ability to 
capture long-range dependencies or contextual shifts. Addressing 
these issues in future work may involve refining the model 
architecture (e.g., the number of layers, number of channels, and 
other hyperparameters), incorporating noise-robust preprocessing 
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FIGURE 13
Interaction description for a process section from scenario I “pick and place.”

techniques, or enriching the input features with additional semantic 
or contextual information.

Usually, the interaction forms’ coexistence, sequential 
and parallel cooperation, and (responsive) collaboration 
are distinguished in industrial human–robot co-work 
(Behrens, 2019; IFR, 2024). For all the tried clustering approaches 
on the collected interaction data, the metrics consistently suggested 
a range between eight and 11 clusters, with k = 10 yielding the 
balance across all indicators (low DBI, high CHI, and a noticeable 
elbow in the SSE curve). This multi-metric evaluation supports the 
selection of k = 10 and suggests that human–robot interactions are 
more diverse than the conventional taxonomy with four interaction 
forms that are captured. A more granular clustering enables a 
better reflection of subtle differences in spatial, temporal, and 
object-centered behavior.

The presented approach, adapted for classification, if 
necessary, enables a more automatic, continuous investigation of 
continuously changing human–robot interactions and more flexible 
human–robot co-work by reducing the manual adaptation effort. At 
the top of Figure 13, several video frames show the process sequence 
carried out during the data collection in scenario I “pick and place.” 
The collected tracking data can be used to generate a spatial graph 
for each point in time and calculate the distances among all nodes in 
a graph. As the picked parts are too small, a tracker would hinder the 
foreseen object manipulation and change too frequently, so no object 
tracker was used in this scenario. Consequently, each graph consists 
of a node representing the robot (black) and nodes representing 
the human’s left and right hands (grays). In other scenarios, graphs 
comprised four nodes. The graphs not only help to visualize the 
spatial interaction behavior in a simplified and structured form but, 
together with the distance information, also serve as an input for the 
STGCN model and the subsequent clustering process.

Figure 10 shows that STGCN-based clustering can reliably 
and reproducibly identify different interactions, such as the 
predominantly coexisting behavior during part retrieval and the 
more synchronized sequential behavior during indirect handover. 
In this case, the various interactions behind the shades of blue were 
described manually using contextual knowledge. However, it can be 
partially automated using descriptive statistics and methods from 
interpretable machine learning.

Whereas the figures above visualize cluster assignments over 
time along the process and allow the detection of recurring temporal 
patterns, chord diagrams (or heatmaps) enhance the interpretability 
of the clustering results and provide a complementary perspective 
by illustrating the interactions and relationships between clusters.

Figure 14 presents, on the left side, the interaction transitions 
among all 10 clusters, where the width of each ribbon indicates 
the transition frequency. This reveals both dominant connections 
and subtler interdependencies in the data. The right side highlights 
the interactions of cluster 3, illustrating its strong relationship with 
clusters 4 and 7.

6 Conclusion

In this paper, we present an unsupervised approach 
for clustering human–robot interaction forms in industrial 
human–robot co-work scenarios using STGCNs and k-means 
clustering. The approach is grounded in a novel dataset collected 
from 12 realistic human–robot co-work scenarios covering various 
industrial human–robot interactions. A dataset with 1.32 million 
data points, covering 3.69 h of human–robot interactions, was 
collected using the capturing approach with the Lighthouse tracking 
system presented by Heuermann et al. (2024). By modeling the 
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FIGURE 14
Interaction among all clusters (left) and highlighted interactions of cluster 3 (right).

interactions as spatiotemporal graphs and applying a machine 
learning pipeline, the method enables the automatic detection of 
nuanced interaction patterns beyond conventional taxonomies.

The results demonstrate that the proposed approach can 
distinguish 10 clusters—representing 10 interaction forms—in the 
collected and considered dataset, offering empirical evidence that 
the spectrum of human–robot interactions is more varied than 
the typical classification into coexistence, sequential, and parallel 
cooperation, and collaboration suggests. On the one hand, not all 
interaction forms are guaranteed to be represented in the scenarios. 
On the other hand, only those interaction forms that the tracking 
system can capture are represented in the dataset. The tracking 
system that was utilized captures high-resolution spatial and motion 
data but does not record other interaction modalities such as 
verbal commands, gaze, or cognitive intent. As a result, the dataset 
may be biased toward physical and spatially measurable behaviors, 
potentially underrepresenting more abstract forms of human–robot 
interaction such as verbal supervision, intention signaling, or passive 
monitoring. Therefore, this list of 10 interaction forms cannot 
be considered complete. The results suggest that the conventional 
distinction among four forms is insufficient to describe the 
interaction behavior at complex production workplaces fully. Future 
work may mitigate this bias by integrating multimodal sensors or 
by combining the tracking data with contextual information from 
task logs, user input devices, or manual behavior annotation. These 
extensions could provide a more holistic understanding of the full 
spectrum of human–robot interaction.

Whereas the STGCN model used is based on existing 
architectures, the contribution of this work lies in integrating 
established techniques into a structured, data-driven approach for 
unsupervised interaction clustering in human–robot co-work. This 
approach enables continuous, data-driven monitoring of interaction 
behavior and is a basis for more adaptive and intuitive human–robot 
systems that are aligned with the Industry 5.0 vision. In industrial 

settings, the proposed approach could be deployed to track how 
humans and robots interact across workstations in real time. For 
instance, in assembly lines, it could detect deviations from standard 
procedures, such as skipped steps or prolonged idle phases, which 
may indicate fatigue, process bottlenecks, or safety risks. Based 
on this continuous monitoring, process descriptions and risk 
assessments could be automatically updated, even as production 
conditions change dynamically. Additionally, the system could 
detect evolving interaction patterns over time, enabling robots 
to adapt their behavior accordingly and support more flexible, 
context-aware co-work. While the presented approach demonstrates 
the feasibility and effectiveness of STGCN-based clustering for 
human–robot interactions, several limitations remain. The results 
are based on a controlled dataset from 12 predefined scenarios, 
which cover a wide range but not the entire variability of industrial 
human–robot co-work. Additionally, only interactions that can 
be represented by spatial proximity and movement of the tracked 
entities (human hands, robot, and object) are modeled; more 
complex behavioral cues are not included. The model currently 
operates offline, using prerecorded data and batch processing. 
Real-time online monitoring or prediction deployment would 
require additional adaptation, including latency optimization and 
robustness to tracking noise. Finally, the lack of ground truth 
labels for interaction forms limits quantitative validation. Although 
unsupervised clustering provides valuable insights, a future step 
is to annotate parts of the dataset and train semi-supervised or 
supervised models for benchmarking.

Future work will focus on expanding the dataset to more 
realistic and varied environments, investigating and improving 
model robustness (e.g., by conducting a systematic sensitivity 
analysis), and adapting the approach for online classification and 
interaction prediction. To achieve this, the current batch-processing 
architecture would need to be modified for real-time streaming 
inference, potentially using a sliding temporal window to enable
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low-latency classification. For online classification, the STGCN 
architecture would require modification to produce classification 
outputs, and the model must be trained using labels derived from the 
unsupervised clustering results. For interaction prediction, a model 
would need to be trained on the sequences of interaction classes, 
or alternatively, the STGCN architecture could be adapted for 
time-series forecasting to predict future interaction states based on 
past spatiotemporal patterns. Furthermore, integrating explainable 
and interpretable machine learning techniques can enhance the 
interpretability of clustering results and support human-centered 
system design.
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