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TED-culture: culturally inclusive
co-speech gesture generation
for embodied social agents

Yixin Shen* and Wafa Johal

School of Computer Science and IT, FEIT, University of Melbourne, Melbourne, VIC, Australia

Generating natural and expressive co-speech gestures for conversational
virtual agents and social robots is crucial for enhancing their acceptability
and usability in real-world contexts. However, this task is complicated by
strong cultural and linguistic influences on gesture patterns, exacerbated
by the limited availability of cross-cultural co-speech gesture datasets. To
address this gap, we introduce the TED-Culture Dataset, a novel dataset
derived from TED talks, designed to enable cross-cultural gesture generation
based on linguistic cues. We propose a generative model based on
the Stable Diffusion architecture, which we evaluate on both the TED-
Expressive Dataset and the TED-Culture Dataset. The model is further
implemented on the NAO robot to assess real-time performance. Our model
surpasses state-of-the-art baselines in gesture naturalness and exhibits rapid
convergence across languages, specifically Indonesian, Japanese, and Italian.
Objective and subjective evaluations confirm improvements in communicative
effectiveness. Notably, results reveal that individuals are more critical of
gestures in their native language, expecting higher generative performance
in familiar linguistic contexts. By releasing the TED-Culture Dataset, we
facilitate future research on multilingual gesture generation for embodied
agents. The study underscores the importance of cultural and linguistic
adaptation in co-speech gesture synthesis, with implications for human-robot
interaction design.

KEYWORDS

co-speech gesture generation, human-robot interaction, social agents, virtual avatar,
humanoid robot

1 Introduction

As virtual agents and robots are becoming more popular, optimizing the interaction
between humans and these technologies is becoming increasingly important. According
to a human evaluation instrument, the ESI (Evaluation of Social Interaction) (Fisher
and Griswold, 2010), some essential social skills are identified, such as approaching,
speaking, turn-taking, gazing, and gesturing. These social interaction skills are equally
applicable to the interaction between humans with virtual agents or robots. A significant
portion of human interaction occurs through non-verbal means, frequently involving
gestures made alongside spoken language (Knapp et al., 2013). Since the gestures
contain rich non-verbal information, these movements play an important role in human
communication (Studdert-Kennedy, 1994). The rise of telepresence in virtual/augmented
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reality, 3D animation, and social games highlights the
importance of real-time gesture generation in dialogues and
conversations (Lee et al., 2019a). Therefore, accompanying
the natural co-speech gestures to virtual agents and robots is
extremely desired.

Two main approaches to gesture generation are rule-
based and data-driven methodologies (Liu et al., 2021). In
addition, combining both approaches, hybrid systems have
been introduced in some recent studies to generate natural
and semantically meaningful gestures (Zhou et al., 2022). Rule-
based systems can be repetitive and monotonous, while data-
driven approaches leverage deep neural networks, from CNN
(Habibie et al., 2021) to GANs (Goodfellow et al., 2014); (Liu et al.,
2023). Despite GANs’ state-of-the-art performance, they face
challenges like mode collapse and unstable training. Inspired
by the success of the Stable Diffusion (Ho et al., 2020) in
image creation, exploring its application in gesture generation is
promising.

Gesture generation research is limited by data scarcity.
Capturing finger motion accurately remains challenging. Studies
have demonstrated a close relationship between speech and
gestures across various cultures (Kita, 2009). However, existing
models and datasets have not adequately addressed cultural or
linguistic impacts on gesture generation. The BEAT Dataset
(Liu H. et al., 2022) includes four languages and diverse cultural
backgrounds but has limited speaker diversity and high data
collection costs. Similarly, Gjaci et al. (2022) introduced a
dataset featuring Indian and English speakers, however, both
groups speak only in English, limiting its utility for investigating
cultural factors. To address these gaps, a multimodal dataset
that captures cultural differences, ensures speaker diversity,
and includes detailed finger motion data would significantly
advance the field.

Gesturing predominantly involves upper body and finger
movements, with precise finger motion being particularly
challenging. Improving finger motion quality could significantly
enhance the authenticity and appropriateness of distal finger
movements in social agents such as robots. Only two social robots,
BERTI Bremner et al. (2009) and Erica Ishi et al. (2018), can
render complete finger motions. Research on gesture generation
for these robots is limited. Yoon et al. converted 2D poses to
3D poses and retargeted them to the NAO robot but did not
address finger movements due to the absence of individual
actuators of NAO’s fingers (Yoon et al., 2019). Therefore, the
challenge of rendering finger motions on robots such as NAO
using a dataset containing finger motion remains an unaddressed
gap in the field.

To address the aforementioned challenges, our main
contributions are as follows: (1) Introducing the TED-
Culture Dataset for cross-cultural gesture generation based
on linguistic cues; (2) Developing a novel generative model
based on the DiffGesture framework (Zhu et al., 2023),
achieving state-of-the-art performance on the TED-Expressive
Dataset and rapid convergence across several languages in
the TED-Culture Dataset; (3) Analyzing cultural factors using
the TED-Culture Dataset, showing that people are more
critical of outputs in familiar languages; and (4) Developing
a robot prototype that maps our model’s gestures onto

an NAO robot, enabling it to speak six languages with
corresponding gestures.

2 Related works

2.1 Co-speech gesture generation

Data-driven approaches have gained popularity due to their
ability to reduce manual efforts in designing rules, unlike rule-
based methods. Nyatsanga et al. (2023) provide a comprehensive
survey of these methods. Data-driven approaches are categorized
into statistical and learning-based methods. Statistical approaches
use models to derive rules from data, mapping input to gesture units
for generation, as seen in Levine et al. (2010). With advancements
in deep neural networks and increased human gesture data, end-
to-end gesture generation systems have emerged. These systems
include deterministic models like MLP (Kucherenko et al., 2020),
CNN (Habibie et al., 2021), and RNN (Yoon et al., 2019); Yoon et al.,
2020); (Liu X. et al., 2022), as well as non-deterministic models
like VAEs (Ghorbani et al., 2023) and GANs (Yoon et al., 2020).
Recent hybrid systems (Zhou et al., 2022) combine rule-based
and data-driven methods to address issues like regression to
the mean, showing superior performance. GAN-based systems
have achieved cutting-edge results but face challenges like mode
collapse and training instability. Inspired by Stable Diffusion
(Ho et al., 2020) in image creation, new studies (Zhu et al., 2023)
have adapted this framework for gesture generation, achieving
state-of-the-art performance, though cross-cultural testing is
still needed.

2.2 Human motion capture datasets

Creating a dataset for human gesture motion involves two
primary methods: optical motion capture (Takeuchi et al., 2017);
(Lee et al., 2019b) and pose estimation from monocular videos
(Yoon et al., 2019; Habibie et al., 2021). While the quality of
optical motion capture is relatively higher than monocular video,
it tends to yield smaller datasets due to its higher cost and
the labor-intensive nature of the data collection. In contrast,
pose estimation from monocular videos offers the advantage of
generating larger datasets since a plethora of online videos are
available for analysis. Despite the growing availability and sizes
of multi-modal datasets, those encompassing high-quality finger
motion remain scarce. Figure 1 provides an overview of datasets
used for co-speech gesture generation. Five speech-gesture datasets
incorporate high-quality finger motion, (namely (Takeuchi et al.,
2017), (Lee et al., 2019b), (Yoon et al., 2022), (Ghorbani et al.,
2023), and (Liu H. et al., 2022)), and they are all collected using
optical motion capture devices. Among these, the Gesture-Speech
Dataset (Takeuchi et al., 2017) and ZEGGS Dataset (Ghorbani et al.,
2023) are presented in a monologue context, where only one person
conducts an interview or talks and is then recorded. The Talking
WithHandsDataset (Lee et al., 2019b), on the other hand, comprises
multi-modal recordings of face-to-face spontaneous conversations
involving two individuals, making it the largest motion capture
and audio dataset for natural conversations to date. Other publicly

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2025.1546765
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Shen and Johal 10.3389/frobt.2025.1546765

FIGURE 1
Summary of Datasets for Co-Speech Gesture Generation. Finger icons indicate datasets with high-quality finger motion, and motion capture icons
denote those generated via optical motion capture. All datasets, except BEAT, are either monologues or conversations. Language icons represent
dataset languages: EN (English), ES (Spanish), JA (Japanese), ZH (Chinese), DE (German), ID (Indonesian), TR (Turkish), FR (French), and IT (Italian).

available datasets lack high-quality finger motion, such as the
TED Dataset (Yoon et al., 2019), which relies on pose estimation
frommonocular videos but is limited to 2D motion format, making
it unsuitable for mapping onto social robots or 3D virtual agents and
lacking finger motion data.

Fortunately, recent work fromHabibie et al. (2021) has extended
2D skeletons into the three-dimensional realm. Yoon et al. (2020)
expanded the TEDDataset from Yoon et al. (2019) by incorporating
more TED videos into it, then converted all human poses into
a 3D format using the 3D pose estimator (Pavllo et al., 2019).
Additionally, Liu et al. introduced the TED-Expressive Dataset
(Liu X. et al., 2022), addressing a limitation of the original TED
Dataset Yoon et al. (2020) by including expressive co-speech finger
movements alongside upper body key points. In the realmof culture-
related datasets, the BEAT Dataset (Liu H. et al., 2022) places its
main emphasis on capturing the emotions expressed by actors, and
it offers multi-cultural and multi-language gesture data since the
thirty participants are from ten countries. However, it is important
to recognize that this dataset requires significant resources and has a
limited variety of speaker identities, largely attributable to its reliance
on optical motion capture technology. Consequently, among the
existing 3D datasets, none have addressed the influence of culture
or language on gesture generation while simultaneously ensuring
efficient data collection and encompassing a diverse range of speaker
identities.

3 TED-culture dataset

To address the scarcity of the culture-aware co-speech gesture
dataset, we developed a new dataset called TED-Culture Dataset,
featuring six different languages: Indonesian, Japanese, German,
Italian, French, and Turkish. Inspired by the TED Dataset built
by Yoon et al. (2019), Yoon et al. (2020), we choose the TEDx
Talks channel on Youtube1 as the original source of our dataset.
While TED Talks have certain limitations, such as the lack of
representativeness of TED speakers in reflecting real-world diversity
and the tendency of these professional and trained speakers to
overuse gestures, the TED Talk video source has some advantages
including ample data, diversity, and well-prepared gestures. We
follow the dataset collection pipeline of Liu X. et al., (2022),
excluding word-level alignments due to the use of auto-generated
subtitles. Following the production process, we consolidated the
individual language datasets into a unified “Merged” dataset.

Regarding the source videos of the TED-Culture Dataset,
the average video length is 15 minutes. The total length of the
source video is 60.1 h, with each language having a relatively even
distribution of approximately 10 h each. The final dataset format
represents 3D coordinates, encompassing multimodal aspects

1 https://www.youtube.com/@TEDx
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TABLE 1 Statistics information about the TED-Culture Dataset.

Language Speakers Valid clip number Seconds Hours

Turkish 21 306 11,729 3.3

French 29 457 9,701 2.7

Italian 35 580 11,651 3.2

Indonesian 29 351 8,343 2.3

German 39 901 14,142 3.9

Japanese 30 202 7,407 2.1

Total 183 2,797 62,974 17.5

including Gesture, Audio, and Text. All poses are spine-centered,
with 43 key points (13 upper body joints and 30 finger joints) defined
in the dataset. The statistical information for the TED-Culture
Dataset is presented in Table 1.

In the table, we note a total of 183 speakers in our dataset,
surpassing speaker counts in datasets captured by motion
capture devices (typically involving fewer than or equal to
50 speakers), as well as most pose estimation datasets like
Speech-Gesture (Ginosar et al., 2019) and Speech-Gesture 3D
extension (Habibie et al., 2021).TheTED-CultureDataset comprises
2,797 valid clips, totaling 17.5 h with an average clip length of
23 s. The distribution of our dataset demonstrates a relatively even
distribution across all languages. German holds the largest share at
22.3%, while Japanese has the smallest share at 12%.The distribution
percentages for the other languages are as follows: Indonesian 13.1%,
Italian 18.3%, French 15.4%, and Turkish 18.9%.

4 The proposed approach

Expanding upon insights from speech and its accompanying
gestures, we have developed a deep learning approach focused on
uncovering the intrinsic relationship between these modalities.
Figure 2 provides an overview of our proposed DiffCulture
framework, which is based on Zhu et al. (2023) and aims to
enhance the fidelity of co-speech gesture generation. Unlike the
original DiffGesture model (Zhu et al., 2023), our approach updates
the objective function and modifies the architecture of the audio
encoder. Despite testing other similar audio encoders in previous
work (Zhu et al., 2023) (Zhi et al., 2023), no performance gains
were observed. For details on the individual components of the
framework, please refer to Zhu et al. (2023).

4.1 Problem formulation

For this gesture generation problem, we utilize the large-
scale co-speech gesture training corpus introduced in Section 3,
which focuses on videos featuring distinct and prominent upper
body movements synchronized with speech to conduct the model

learning process. Specifically, we assume every video clip has
N frames, then we can define the co-speech audio sequence
as a = {a1,…,aN} and annotate the per-frame human skeletons
as x = {p1,…,pN}, where pi denotes the ith pose. These skeletal
representations are pre-processed as the concatenation of unit
direction vectors using the same method in the baselines as in
Yoon et al. (2020); Liu X. et al. (2022). The unit direction vectors
are represented as pi = [di,1,di,2…,di,J−1] where pi means the pose
description coordinates of the ith frame, J is the total joint number
and di,j stands for the jth unit direction vector among the J joints
in the ith image frame. The diffusion model’s reverse denoising
process G parameterized by θ is optimized to generate the human
skeleton sequence x, taking into account the speech audio sequence
a and initial poses p1, .,pM from the first M frames as conditioning
factors. The primary objective of the framework is to generate
a pose sequence that closely approximates the ground truth x.
This objective can be mathematically formulated as arg minθ‖x−
Gθ(a,p1,…,pM)‖. In the context of deep learning, the system’s
training phase involves providing a gesture sequence (x), an audio
sequence (a), and seed poses (p) as inputs. In contrast, during the
testing phase, only the audio sequence (a) and seed poses (p) are
supplied, while the gesture sequence (x) is predicted.

4.2 Proposed model architecture

Figure 2 shows the DiffCulture Framework we developed, which
is mostly based on the DiffGesture (Zhu et al., 2023). The orange
area shows the forward diffusion process given the gesture sequence
x0. After adding Gaussian noise to the gesture sequence x0 based
on the formulation xt = √atx0 +√1− atϵ, we will get a corrupted
gesture xt. The blue area indicates the context information part,
which includes the initial poses p(1:M), speech audio a, and time
embedding t. It is worth noting that we add another text modal
to the context information when we do the ablation experiments.
Then the given gesture sequence x0 and context information were
input into the green part together to indicate the conditional
denoising process. The two neural network blocks consist of Linear
Embedding, Transformer Blocks, and MLP, which receive multiple
modalities in the context information and corrupted gestures with
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FIGURE 2
Overview of the DiffCulture Framework, based on the figure in Zhu et al. (2023).

time embedding. Instead of the MSE loss utilized in Zhu et al.
(2023), we use the Huber loss as our learning objective and do
the element-wise plus conditional and unconditional embedding
features together for further diffusion sampling. Huber loss is a
robust loss function used in regression tasks that is less sensitive
to outliers than the Mean Squared Error (MSE) loss. Given that we
employ the Huber loss as our learning objective, we can simplify
the training objective through parameterization to an ensemble of
Huber loss formulated as:

ln =
{
{
{

0.5(xn − yn)
2, if |xn − yn| < delta

delta(|xn − yn| − 0.5 delta) , otherwise
(1)

where (xn − yn)
2 = L(θ) = 𝔼q[‖ϵ− ϵθ(√atx0 +√1− atϵ,c, t)‖2].

Here t is uniformly chosen from 1 to T. As we concurrently
train the model in both conditional and unconditional settings,
a trainable masked embedding with probability puncond replaces
the context c, and the diffusion model predicts the noise in the
unconditional settings.

Lastly, the grey area highlights the diffusion sampling phase,
where we introduce the Diffusion Gesture Stabilizer, which
employs an annealed noise sampling strategy to address temporal
inconsistencies. Additionally, to integrate implicit classifier-
free guidance, we jointly train conditional (1− puncond) and
unconditional (puncond)models. This approach enables us to balance
between diversity and quality when performing inference.

5 Experiments

5.1 Co-speech gesture datasets

5.1.1 TED-expressive
In contrast to the TED Dataset (Yoon et al., 2019; Yoon et al.,

2020), which includes only 10 upper body key points and
lacks detailed finger movements, the TED-Expressive Dataset
(Liu X. et al., 2022) offers a more comprehensive representation of
both finger and body movements. This enhancement is achieved

using the state-of-the-art 3D pose estimator ExPose (Choutas et al.,
2020), which captures detailed pose information. Consequently, the
TED-Expressive Dataset annotates the 3D coordinates of 43 key
points, encompassing 13 upper body joints and 30 finger joints.

5.1.2 TED-culture
Thedata collection pipeline for the TED-CultureDataset follows

the same methodology as the TED-Expressive Dataset, resulting in
an identical representation format. In this work, we focus on the
TED-Culture Merged dataset, with experimental results for specific
languages provided in the Project Website2.

5.2 Experimental settings

5.2.1 Baselines
We evaluate ourmethod on two benchmark datasets, comparing

it with several state-of-the-art methods developed in recent years:
1) Attention Seq2Seq (Yoon et al., 2019) elaborates on the attention
mechanism to generate pose sequences from speech text; 2)
Speech2Gesture (Ginosar et al., 2019) employs speech audio
spectrums as input to adversarially generate speech gestures; 3)
Joint Embedding (Ahuja and Morency, 2019) maps text and motion
to the same embedding space to generate outputs from motion
description text; 4) Trimodal (Yoon et al., 2020) serves as a robust
baseline that learns from text, audio, and speaker identity to
generate gestures, significantly outperforming previous methods; 5)
HA2G (Liu X. et al., 2022) introduces a hierarchical audio learner
that captures information across different semantic granularities,
surpassing former methods; and 6) DiffGesture (Zhu et al.,
2023) leverages the stable diffusion model (Ho et al., 2020) and
Transformer architecture (Vaswani et al., 2017), achieving state-of-
the-art performance. We also present evaluations directly on the
pseudo Ground Truth annotated in the dataset.

2 https://yixin-shen-1218.github.io/TED_Culture
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5.2.2 Implementation details
In our experiments, we utilize two datasets: TED-Expressive

(Liu X. et al., 2022) and TED-Culture. We preprocess these datasets
following the method outlined in Yoon et al. (2020), setting the
length of each pose sequence N to 34 frames. Additionally, the
length of the seed gesture is set to M = 4, representing the gestures
of the first four frames used for reference during inference. To
eliminate the effect of joint lengths and root motion, we follow
(Yoon et al., 2019) and represent joint positions using J− 1 3D
directional unit vectors. For audio processing, we employ an audio
encoder consisting of three convolutional layers, each followed by
a Rectified Linear Unit (ReLU) activation layer and ending with a
one-dimensionalAdaptiveAvgPool layer.This configuration extracts
features directly from raw audio clips, encoding them into N audio
feature vectors, each with 32 dimensions. These audio features are
concatenated with the initial poses to form the conditional context
for the diffusion model. In the diffusion process, we use T = 500
timesteps, with variances increasing linearly from β1 = 1× 10

−4 to
βT = 0.02. However, for specific cases like the Japanese dataset,
additional experiments were conducted with increased timesteps
of 1,000 and 1,500 to compare their effects as experimental results
indicate that 500 epochs are insufficient for the model to converge
fully on these datasets. For the Stabilizer (Zhu et al., 2023), t0 can
be adjusted between 20 and 30 for thresholding, and a quadratic
non-increasing function σa(t) is applied for smooth sampling. The
hidden dimension of the transformer blocks is set to 512 for both
the TED-Expressive and TED-Culture. We use eight transformer
blocks, each comprising amulti-head self-attention block and a feed-
forward network. The Adam optimizer is used with a learning rate
of 5× 10−4. The threshold for the Huber loss is set to 0.1. Training
the model using each separate language dataset TED-Culture takes
approximately 1 h (6 h for Merged) and 44 h for TED-Expressive on
a single NVIDIA A100 Tensor Core GPU on HPC.

5.3 Quantitative evaluation

For quantitative analysis, we employ evaluation metrics
previously used in co-speech gesture generation (Liu X. et al.
2022); Zhu et al., 2023) and related tasks such as music-to-
dance (Sun et al., 2020).

5.3.1 Quantitative metrics
5.3.1.1 Fréchet gesture distance (FGD)

Like the commonly used Fréchet Inception Distance (FID)
metric in image generation research, the FGD metric serves the
purpose of quantifying the dissimilarity between the distribution
of synthesized gestures and that of real data. Yoon et al. (2020)
introduce the FGD metric by training a skeleton sequence auto-
encoder to extract features from both real gesture sequences X and
generated gesture sequences

X̂:FGD(X, X̂) = ‖μr − μg‖
2 +Tr(∑r

+∑
g
− 2(∑

r
∑

g
)
1/2
),

where μr and ∑r represent the first and second moments of the
latent feature distribution of the real gestures X, while μg and ∑g
correspond to the first and second moments of the latent feature
distribution of the generated gestures X̂.

5.3.1.2 Beat Consistency Score (BC)
The Beat Consistency Score (BC) Li et al. (2022), Li et al. (2021)

is designed to gauge the correlation between motion and speech
beats. Recognizing the diversity in kinematic velocities among
different joints, Liu X. et al. (2022) propose employing changes
in the included angle between bones to identify motion beats.
To initiate this process, they compute the Mean Absolute Angle
Change (MAAC) for angle θi between consecutive frames using the
following equation:

MAAC(θj) =
∑S

s=1
∑T−1

t=1
‖θj,s,t+1 − θj,s,t‖1

S∗ (T− 1)
,

where S represents the total number of clips within the dataset,
T signifies the number of frames contained in each clip, and θj,s,t
corresponds to the included angle between the jth and (j+ 1)th bone
of the sth clip at time-step t. The angle change rate for frame twithin
the sth clip can be computed as

1
J− 1
∑J−1

j=1
(‖θj,s,t+1 − θj,s,t‖1/MAAC(θj)),

Subsequently, kinematic beats are identified as local optima whose
first-order difference exceeds a predefined threshold. To detect audio
beats, we follow the methodology outlined in Li et al. (2022),
utilizing the onset strength (Ellis, 2007).The Beat Consistency score
is then determined as the average distance between each audio beat
and its closest motion beat:

BC = 1
n
∑n

i=1
exp (−

min∀txj ∈ B
x‖txi − t

y
j ‖

2

2σ2
),

where txi represents the i-th audio beats, By = tyi denotes the set
of kinematic beats, and σ is a parameter used for sequence
normalization.

5.3.1.3 Diversity
This metric assesses the disparities in generated gestures that

correspond to different inputs, as detailed in Lee H.-Y. et al.
(2019). When calculating FGD, we employ the same feature
extractor to map synthesized gestures into latent feature vectors
and determine the mean feature distance. Specifically, in some
studies (Liu X. et al., 2022); (Zhu et al., 2023) 500 randomly selected
generated samples are used to compute the mean absolute error
between the features and shuffled features.

5.3.2 Evaluation results
Table 2 presents the objective evaluation results for the TED-

Expressive and TED-Culture Merged datasets. Baseline results
for TED-Expressive are sourced from Zhu et al. (2023). Our
model, DiffCulture, surpasses all baselines and achieves state-of-
the-art performance on the TED-Expressive Dataset. Although the
performance improvement overDiffGesture isminimal, DiffCulture
still demonstrates superior overall results. Specifically, for the BC
and Diversity metrics, our model, despite being slightly weaker
than DiffGesture, outperforms all other models. On the TED-
Culture Merged dataset, DiffGesture achieves the best FGD score,
improving by nearly 30% compared to HA2G and DiffCulture.
Additionally, since BC and Diversity measure motion-audio beat
correlation and variation, these metrics for Ground Truth should
not be treated as upper bounds. Notably, our results are on par with
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TABLE 2 The Quantitative Results on TED-Expressive Liu X. et al. (2022) and TED-Culture Merged.

TED-expressive Liu et al. (2022b) TED-culture

Methods FGD ↓ BC ↑ Diversity ↑ FGD ↓ BC ↑ Diversity ↑

Ground Truth 0 0.703 178.827 0 0.702 181.900

Attention Seq2Seq (Yoon et al., 2019) 54.920 0.152 122.693 27.858 0.205 150.985

Speech2Gesture (Ginosar et al., 2019) 54.650 0.679 142.489 53.676 0.567 136.512

Joint Embedding (Ahuja and Morency, 2019) 64.555 0.130 120.627 52.993 0.135 120.380

Trimodal (Yoon et al. 2020) 12.613 0.563 154.088 12.026 0.396 146.988

HA2G (Liu et al., 2022b) 5.306 0.641 173.899 5.919 0.310 160.225

DiffGesture (Zhu et al., 2023) 2.600 0.718 182.757 4.216 0.728 175.025

DiffCulture (Ours) 2.398 0.715 177.814 5.532 0.722 160.603

We compare the proposed diffusion-based method against recent state-of-the-art (SOTA) methods (Yoon et al., 2019); (Ginosar et al., 2019); (Ahuja and Morency, 2019); (Yoon et al., 2020);
(Liu X. et al., 2022); (Zhu et al., 2023) and ground truth. Lower values are better for FGD, while higher values are better for the other metrics.
Bold values denote the best performance for each respective metric in the table.

Ground Truth, indicating high-quality generated gestures. Results
for specific languages in the TED-Culture Dataset are listed in the
ProjectWebsite3, demonstrating both SOTAperformance and faster
convergence across languages compared with Zhu et al., (2023),
especially in Indonesian, Japanese, and Italian. It is worth noting that
during the evaluation process, the BC and Diversity metrics exhibit
significant fluctuations, highlighting the need for further refinement
of the quantitative metrics.

5.4 User evaluation

Given that the generated gestures will ultimately be used
in interactions with virtual agents or social robots, involving
real individuals or users in the evaluation process is the
ideal approach for assessing the quality and effectiveness of
these gestures. We will analyze the result from the cultural
perspective since the particularity of our dataset is multilingual
and multicultural. Figure 3 displays two cases, one in Japanese
and the other in Turkish. It is noteworthy that translation is
subject to a phenomenon known as the “word order change
phenomenon”, wherein the order of morphemes (words or parts
of words) in the target language differs from that in the source
language after translation. Consequently, the word order in the
English translation may not directly correspond to the order of
the gesture sequence due to changes in the timing of morphemes.
Take the Japanese case illustrated in the figure as an example: in the
Japanese sentence, “60” is positioned at the beginning, whereas in
the English sentence, “60” appears in the middle.When interpreting
semantic information conveyed through gestures, the focus should
be on the original subtitles rather than the translated version.
The translated version is intended to facilitate understanding
for individuals who do not comprehend the original language

3 https://yixin-shen-1218.github.io/TED_Culture

but understand English. For example, in the Japanese case, the
framework generates iconic gestures depicting “become so popular”,
constituting the third key frame where the gesture extends the left
arm to indicate emphasis. In the Turkish case, a similar phenomenon
is observed with phrases like “and for 8 years in a row” and “our
conversations were long”, corresponding to the fourth and fifth key
frames in the figure.

5.4.1 Case study
To better validate the qualitative performance, we conducted

a user case study on the generated co-speech gestures. The study
involved 42 participants aged between 18 and 45 years, with 11men,
30women, and 1 non-binary person. From the language perspective,
English was the predominant language spoken among participants,
with 17 individuals, followed closely by Chinese and Indonesian,
spoken by 14 and 7 individuals, respectively. The remaining 4
participants spoke Vietnamese or other less common languages.
Each participant was required to assess the quality and coherence
of the motion, with all clips presented without labels. A total of
136 cases4 were selected, comprising 17 (3 for Indonesian, 2 for
Japanese, 3 for German, 3 for Italian, 3 for French, and 3 for
Turkish) for each baseline (seven different frameworks and one
ground truth). When distributing the questionnaires offline via
campus bulletin boards or online through email, we use Qualtrics’
randomization function to select three testing videos for each
method, resulting in a total of 24 videos per questionnaire. The
Mean Opinion Scores (MOS) rating protocol was adopted, where
each participant rated three aspects of the generated motions:
naturalness, smoothness, and synchrony with speech. The results
are presented in Table 3. Interestingly, the Attention Seq2Seq model
achieved the highest subjective evaluation scores, in contrast to

4 https://www.youtube.com/playlist?list=PLTTEUXLjZvB9-

ViI1ZkmpZdphsQb92cAt
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FIGURE 3
Visualization Results with subtitles of our DiffCulture model on the TED-Culture Dataset. Two cases are selected: (i) a Japanese case and (ii) a Turkish
case. Both cases are visualized with corresponding subtitles, with both the original language and translation format in English. Note that the stride
between every frame is 20.

TABLE 3 User Study Results.

Methods Naturalness Smoothness Synchrony

Ground Truth 2.21 (0.94) 1.96 (0.74) 2.21 (0.86)

Attention Seq2Seq (Yoon et al., 2019) 3.15 (0.69) 3.57 (0.52) 3.05 (0.64)

Speech2Gesture (Ginosar et al., 2019) 2.91 (0.73) 2.56 (0.65) 3.03 (0.80)

Joint Embedding (Ahuja and Morency, 2019) 2.66 (0.65) 3.37 (0.44) 2.41 (0.64)

Trimodal (Yoon et al., 2020) 2.74 (1.01) 2.27 (0.82) 2.74 (1.04)

HA2G (Liu et al., 2022b) 1.98 (0.69) 1.86 (0.64) 1.91 (0.64)

DiffGesture (Zhu et al. 2023) 2.29 (0.81) 2.11 (0.59) 2.43 (0.63)

DiffCulture (Ours) 2.59 (0.83) 2.27 (0.70) 2.52 (0.80)

The ratings for motion naturalness, smoothness, and synchrony are assessed on a scale of 1–5, where 5 indicates the highest performance. All the results in the table are presented in the format
of Average (SD).
Bold values denote the best performance for each respective metric in the table.

the results obtained in objective evaluation, where the Attention
Seq2Seq framework performed worse. Qualitative analysis revealed
that gestures generated by this model exhibited a slow and rigid
behavior, which intuitively might not lead to high subjective
evaluation scores. However, the slower gestures made by this
model contributed to smoother and more coherent movements for
virtual agents driven by gestures. In contrast, other models such
as DiffGesture were perceived to produce overly jerky gestures
due to pronounced changes between each frame, leading to less
favorable and poorer subjective evaluation results. Overall, our
DiffCulture model performed intermediately compared to the other
models, surpassing the Ground Truth and some of the other models
such as HA2G.

From a language acquisition perspective, we exclusively examine
the subjective evaluation results from seven participants who are
proficient in Indonesian as either their first or second language.
The study includes two conditions: one focusing on subjective

evaluation results for Indonesian videos and the other for non-
Indonesian videos. Table 4 presents the perception of Indonesian
participants in these two scenarios. According to the table,
participants assigned similar scores for smoothness to videos in
both familiar and unfamiliar languages. However, participants
tended to assign lower scores to gestures performed in their native
language,with Indonesian videos receiving significantly lower scores
in naturalness and synchrony compared to non-Indonesian videos.
This indicates that individuals aremore critical of co-speech gestures
in their native language and expect higher performance from
generative models.

5.5 Ablation studies

We conducted text-embedding experiments to investigate
whether using word embeddings from different languages would
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TABLE 4 The correlation between language acquisition and the
subjective perception of the participants.

Video Type Naturalness Smoothness Synchrony

Indonesian
Videos

1.94 (1.07) 2.18 (1.16) 1.80 (1.16)

Non-Indonesian
Videos

2.34 (1.05) 2.18 (1.14) 2.34 (1.01)

Bold values denote the best performance for each respective metric in the table.

influence the training process and results. Unlike the typical ablation
study that usually tests how system performance changes when
components are removed, we extended the proposed framework
to include text modality handling and performed three sets of
experiments by varying the language of the FastText embeddings,
using TED-Culture French. Aside from the language of the FastText
embeddings, we also adjusted the number of training epochs,
increasing them from 500 to 1,000 when using the French FastText
to embed the subtitles. Table 5 presents the results of these ablation
experiments on text embedding. From the table, it is evident that
the English FastText Word Embedding outperforms the other two
conditions, even though in the last case we trained the model for
1,000 epochs to ensure complete convergence. Conversely, when
using French FastText Word Embedding, the results indicate that
500 epochs are insufficient for the framework with text modality
to converge to an optimal state. Even with 1,000 epochs, the
model using French FastText still performs worse than its English
counterpart, despite the longer training time. We can conclude
that the language of word embeddings based on FastText does not
significantly impact the final performance of the framework, but it
can affect the convergence time.

6 Robot prototype

Unlike mapping gestures to virtual agents, some constraints
exist when mapping gestures to robots because the joints of the
robots are motor-driven and not as flexible as those of virtual
agents. Since the output of our framework consists of 3D directional
vectors, we first need to calculate the radian values for each
vector. These radian values often exceed the joints’ angle range,
making post-processing an essential step. We applied different
post-processing methods to the different joints to make it look
as natural as possible and consistent with the gesture motion
trends generated by the model. To mitigate the jittering issue in
the generated gestures, Bézier interpolation is employed during
the retargeting process. Since the robot has difficulty walking and
the dataset focuses only on the upper body, not all joints are used
in this project. We concentrate on the head and arms, as well as
hands which only have open and close functions. Specifically, we
utilize 12 degrees of freedom (DoF) in the upper body, namely
HeadYaw, HeadPitch, RShoulderPitch, RShoulderRoll, RElbowYaw,
RElbowRoll, RWristYaw, LShoulderPitch, LShoulderRoll,
LElbowYaw, LElbowRoll, and LWristYaw, plus the open and close
functions of the hands. All the robot prototype codes are available

TABLE 5 Ablation study on the impact of using corresponding text
embeddings in the DiffCulture model after incorporating the text
modality on TED-Culture French.

Methods FGD ↓ BC ↑ Diversity ↑

Without Text Modality, 500 5.053 0.747 91.817

English Text Embedding, 500 5.003 0.749 96.225

French Text Embedding, 500 10.691 0.750 101.947

French Text Embedding, 1,000 5.205 0.745 96.936

Bold values denote the best performance for each respective metric in the table.

at this repository5, and the playlist6 includes both the outputs of the
generative model visualized as skeletons and the robot prototype
demonstrations for better comparison.

7 Conclusion

In this paper, we present a large-scale monologue dataset
for cross-cultural gesture generation grounded in language and
refine the gesture generation model based on Zhu et al. (2023).
Additionally, we devise a state-of-the-art co-speech gesture
framework and implement the generated gestures on theNAOrobot,
enabling synchronized speech and gesture performance.We conduct
culturally subjective evaluations and an ablation study, validating
the cultural relevance of co-speech gestures and demonstrating that
word embeddingsmay not need to correspond to the language of the
text. However, certain limitations are evident. Firstly, low subjective
evaluation scores for Ground Truth indicate the dataset’s relative
lack of quality. Additionally, during the dataset creation process,
the filtering of valid clips lacks manual filtering. Furthermore, the
experiments were conducted exclusively on the NAO robot, which
has limited or no finger mobility, thus restricting the generalizability
of the findings. To address this, future work could explore testing
on more advanced platforms with greater dexterity to validate and
extend the results.
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