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Institute for Technical Informatics and Engineering Informatics, Technische Universität Ilmenau,
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Mobile service robots for transportation tasks are usually restricted to a barrier-
free environment where they can navigate freely. To enable the use of such
assistive robots in existing buildings, the robot should be able to overcome
closed doors independently and operate elevators with the interface designed
for humans while being polite to passers-by. The integration of these required
capabilities in an autonomous mobile service robot is explained using the
example of a SCITOS G5 robot equipped with differential drive and a Kinova Gen
II arm with 7 DoF. This robot also defines the framework conditions with certain
limitations in terms of maneuverability and perceptual abilities. Results of field
tests with that robot in an elderly care facility as well as in a university office
building are shown, where it performed transportation and messaging tasks. We
also report on the success rates achieved and highlight the main problems we
have encountered and dicsuss open issues.
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1 Introduction

For years the development of socially assistive robots for home and also public
applications has yielded promising user studies with positive expectations, but the lack of
appearance of such systems on the market paints a different picture. One reason might
be incisive boundary conditions for the robots’ deployment. Environments needed to
be barrier-free, otherwise an expensive integration into the buildings’ infrastructure is
necessary, or the robots would need human assistance of their own.

Against this background, the aim of our research project RobInCare1 (robots in care)
was to enable robots to overcome the reason for impediment by developing respective
capabilities to use an elevator and open closed doors on their own. The functionality is
realized in our layered architecture Gross et al. (2012), which allows to integrate the new
capabilities into other applications of our mobile service robots easily.

In order to test and evaluate the realized capabilities, we have integrated the developed
methods into a transport and messaging robot, which is used in our university on the one

1 https://www.robincare.de/
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FIGURE 1
Robot performing a transport task in an elderly care facility; (from left to right, top to bottom) (1) task is scheduled via web interface, (2–4) robot opens
and passes door to receive the goods, (5–7) robot has to ride an elevator on its way to the target person, (8) robot contacts the target person and
finishes the transport task.

hand and in an elderly care facility on the other (see Figure 1). The
latter consists of a three story buildingwith 24 apartments and public
rooms for social interaction.

This article serves as a summary of the individual methodology
used for realization of autonomous door manipulation and floor
switching capabilities by means of operating an elevator. It describes
the integration of these new functionality into a service application,
while minor changes, which were necessary to achieve a smooth
operation in a populated environment, are highlighted. We report
the concluding experimental results conducted at the end of our
research project and identify the open issues, which need to be
addressed in future work.

In the following, we discuss the state of the art regarding robotic
systems able to autonomously ride the elevator and pass through
closed doors. Then an overview of our robot and the methods used
are presented. Finally, we describe the setup and outcome of the
experiments we conducted in order to evaluate the robustness of the
autonomous navigation capabilities.

2 Related work

To the best of our knowledge, there is no publication of
a comparable robot system which deploys the detection and

manipulation of closed doors and the ability to ride an elevator
in a real-life application. Nevertheless, there is significant literature
dealing with the individual skills.

2.1 Using the elevator

One of the main problems to be solved for such a capability
is the recognition and localization of the buttons to be pressed.
Chen et al. (2023) recently introduced an approach to detect elevator
buttons by means of a YOLOv7 object detector in images, which
is a well understood standard approach that offers little room
for improvement. Alternatively, Zhu et al. (2020) use an eye in
hand system with a two step network architecture. One subsystem
functioning as the button detector, and a second one implements
a character recognizer to interpret the labels of the buttons,
which might be necessary for environments with excessively many
floors. Besides, there are also classic image processing approaches.
Nguyen et al. (2023) read displays and button labels by applying
a seven segment mask after the detection of squares and circles in
the image. Abdulla et al. (2016) describes a novel framework for
multi-story navigation through the use of an elevator by a mobile
robot. Using external landmarks for accurate positioning in front of
the elevator door and button panel, it detects buttons using a depth
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camera andmultiple stages of image filters.The work declares a 98%
accuracy in button detections.

Independent of the method used, the handling of unavoidable
remaining detection errors is the key to a robust deployment.
Zhu et al. (2020) use a multi-camera system and a post processing of
detections by means of soft-non-maximum suppression and outlier
removal to reach higher accuracy. For executing the actual push
action, most systems rely on off-the-shelf offline motion planning,
which is not described any further. The analysis in said studies
concludes with giving success rates of the pure button detection or
at most report the success rate of pressing buttons with a robot (e.g.,
96% Nguyen et al. (2023)). Data on implementation of the whole
procedure of calling, embarking, and riding the elevator are rare.
Shin et al. (2023) describe a complete system and report a real-world
experiment with nine out of 10 successful button operations and
3/10 successful boardings, which shows that real-world deployment
is still questionable. In our own previous work Müller et al. (2023b)
(sumarized in 3.1.3), we also describe the realization of the whole
process with other necessary recognition skills, like floor tracking
and cabin state analysis. The complete procedure also includes
fallback and error handling in case of a failed button press, or failed
elevator boarding.

2.2 Door manipulation

Similar to the elevator problem, there are no reports of
real-world applications involving door handling. Rather, a broad
variety of lab experiments concentrate on individual aspects of the
door manipulation. One can divide the problem in the detection
part and the actual manipulation. Image-based door detection
is predominant among the approaches found. Arduengo et al.
Arduengo et al. (2021) for example, apply a YOLO detector for
the doors and use the depth image for identification of the door’s
plane, and afterwards deviating points inside the door rectangle are
interpreted as the door handle. The utilization of depth image data
and the fitting of geometric primitives is a standard approach for
analyzing the door’s exact location and opening angle. In contrast,
we suggest to use a computationally less expensive approach based
on lidar range scans Müller et al. (2023a).

On the other hand, there is the actual manipulation of the door.
New approaches are concentrating on learning the opening process
by means of imitation and reinforcement learning Sun et al. (2021);
Welschehold et al. (2017); Ito et al. (2022). These may be capable
of adapting to open new doors but at the cost of excessive training
in real world as well as in simulation. Traditionally, in contrast
there are many classic approaches, which categorize the door’s state
and specify respective heuristics for processing these situations.
For instance, Jang et al. (2023) use a graph of distinguishable
situations and an A

∗
planner to define a solving sequence

of actions.
Often generic solutions are proposed that intend to work on

arbitrary unseen doors, but this is not necessary for a deployment in
a given environment. Incorporation of prior knowledge regarding
specifics of the doors encountered helps to make an approach
resilient. Experience from previous trials can also be taken into
account when calculating door parameters for the next trial with a
similar door model Arduengo et al. (2021).

Another crucial limitation that we have with our robot system
compared to other solutions is the differential drive. While robots
with a holonomic drive Arduengo et al. (2021); Welschehold et al.
(2017); Ito et al. (2022); Stoyanov et al. (2023) can easily compensate
the limited range of the robotic arm by moving sideways during
the execution of the opening arc movements with hand on
the handle, non-holonomic robots Karayiannidis et al. (2012);
Endres et al. (2013); Sun et al. (2021) in literature often handle only
a subset of the complete spectrum of door states neglecting the
difficult cases.

Our previous paperMüller T. et al. (2023) (recapitulated in 3.1.4)
describes the advantages and disadvantages of current approaches
in detail and presents our own solution on a differential drive robot,
which consists of a predefined sequence of manipulation strategies.
These are based on prior knowledge of door geometry, which can
be easily acquired when installing the system and therefore lead to a
comparatively simple transfer to new application environments.

3 Materials and methods

3.1 System overview

3.1.1 Robot platform
The methods for opening doors originally have been developed

on a TIAGo robot with an under-articulated five-finger hand as
end effector. Although successful door manipulation was possible
with that robot, we later transferred the methods to a Scitos G5
robot by Metralabs, which is equipped with a Kinova Gen II
7 DoF arm. Figure 2 shows the robot with its main components
used. The platform has a differential drive, which limits its
maneuverability drastically compared to omnidirectional drives.
This explicitly had to be considered during the door opening
movement sequences. For perception the robot has two SICK Lidar
sensors at a height of 40 cm, one being oriented forward and one
backward. Furthermore, we use an Azure Kinect RGB-D camera on
a pan-tilt unit on top of the robot to detect buttons when operating
the elevator and to map the doors. An additional ASUS Xtion
depth camera is used for obstacle mapping in order to ensure a
safe operation of the arm. The active stereo approach of this device
yields fewer artifacts in the point cloud than the time-of-flightKinect
camera. The built-in accelerometer of the robot platform is used
to estimate the vertical movement in the elevator. Additionally it is
equipped with a touch display for user interaction.

3.1.2 System architecture
We followed the layered architecture of Gross et al. (2012)

when designing the modular software for our demonstrator. The
implementation uses the robotic framework MIRA2, and our
architecture depicted in Figure 3 is organized as follows: At the top
is the Control Layer, which manages the interaction with users and
the control flow. Here, the robot hosts a website for scheduling
transportation or messaging tasks, which are stored in a local
database on the platform. Having everything on board is crucial
for the robot, as the WiFi connection might be interrupted inside

2 https://www.mira-project.org
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FIGURE 2
Used robot platform (Scitos G5 by Metralabs) as also seen in
Müller et al. (2023b).

the elevator and when switching access points on the way through
the building. A user therefore can either interact with the robot via
mobile devices to call the robot remotely or via the GUI displayed
on the robot’s touch display.

In the Behavior Layer, we developed a hierarchy of reusable
control loops that are activated exclusively one after the other.These
behaviors make use of basic perception and action capabilities that
are implemented as real-time processing units of the Skill Layer,
which operate in parallel. Finally, the sensors and actors are accessed
through the Hardware Layer.

For navigation, we use a hybrid prerecordedmap of the building.
Each topological section (floor) consists of a 2D occupancy grid
defining the navigable areas, the location of doors and their
properties (for example, the width of the door, or its opening
direction), the location of button panels for interacting with the
elevators, and a series of destination points that can be selected in the
tasks by the users. For safe obstacle avoidance during manipulation,
a local 3D voxel map is generated in real time, using the live point
cloud from the ASUS Xtion camera and vertical walls generated
from the horizontal lidar scans, which comprise areas that are not
covered by the camera. This is illustrated in Figure 4, with the
robot positioned in front of an elevator. Furthermore, for non-
vertical structures such as handrails, a 3D representation of obstacles
is added manually and also stored in the global maps. The local
collision map has a cell resolution of 2 cm, while in each cell, the
exact position of the obstacles are stored. For collision testing with
the robot geometry during motion planning the local collision map

is processed with a distance transform in order to yield distances to
the closest obstacle in each of the grid cells.

The mapping process of the door properties is semi-
automated. To this end, a YOLOv5 detector network trained on
the dataset of Arduengo et al. (2021) identifies doors and detects
door handles in the RGB images during the initial mapping of the
building.The point cloud of the depth camera is then used to analyze
the properties of the doors in the detected bounding boxes. Points
are projected on the ground plane where lines are fitted to calculate
the distance between the door and the enclosing walls. This yields
the opening direction of the door. In a similar way, the occurrences
of buttons for the elevator are recorded during mapping, while
the geometry and semantics of the button panels are annotated
manually. With the help of this automation, the deployment in a
three-story building was completed in just a few hours, although
there is certainly still potential for further automation of these
annotation tasks.

Based on the data in themaps, we implemented the fundamental
Drive To Navpoint Behavior (see Figure 3), which checks whether
the destination is on the same floor and activates the Ride Elevator
Behavior if necessary. For navigation to destinations on the current
floor, the planned path is intersected with the lines of closed doors in
order to trigger the Pass Door Behavior, if necessary, which analyzes
the actual state of the door and triggers corresponding actions
to open it.

The 2D navigation skills of the robot are based on an E
∗
metric

planner and an evolutionary local motion planner, described in
detail in (Müller et al., 2017).

For localizing the robot in the environment, a Monte Carlo
approach (Fox, 2001) is used, which relies on matching the lidar
scans against the occupancymaps. In a previous project (Gross et al.,
2015) using the same localization method on a similar differential
drive robot, the accuracy of the localization has been evaluated to
be within 7 cm. Unfortunately, this limited accuracy also affects the
position of modeled obstacles. In order to reach buttons and door
handles with the armwithout collisions, amore accurate localization
is required. To that end, we use the detections of button panels and
door keypoints as additional observation updates for the particle
filter-based localization, such that the deviation due to the coarse
map resolution of 5 cm can be reduced when the robot is facing a
door or button.

3.1.3 Operating the elevator
The Ride Elevator Behavior (see Figure 5 for a coarse sequence

of the algorithm) implements a sequence of actions in order to use
the elevator. The workflow is basically the same as described in
Müller et al. (2023b), except that a handling of traffic in front of
a lift to be used is added. First, the area in front of the elevator
is analyzed for other people who might be waiting for a ride.
They get precedence, and in this case the robot drives to a waiting
position. Wengefeld et al. (2019) gives an overview of the multi-
modal people detection and tracking system we use on the robot.

Once theway is free, the robot places itself in front of the elevator
door and activates the Press Button Behavior to call the elevator.
Then it observes the state of the cabin door and brings its arm back
to a safe home position, which is used for driving. The state of the
elevator door is determined in the lidar range scan by checking the
width of the free gap on the known line of the door. When the door
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FIGURE 3
System architecture consisting of the fundamental skills necessary to ride elevators autonomously and open doors on the way.

FIGURE 4
This figure illustrates the models used for safe navigation and manipulation. Navigation uses the 2D occupancy grid map (black and white on the floor).
The arm motion planner relies on a 3d local collision map which combines data of various sources. The dots represent occupied voxels (green is the
ground plane, pink the laser detections projected upwards, red static collision objects). The red boxes show the manually defined geometry of static
objects. The blue door’s states are updated when seen in the lidar scan and are added to the 3d local map as planes if in range. Additionally, the
pointcloud of the depth camera is integrated in the 3d local map as well.

opens, the cabin is analyzed for people inside, which might leave
the cabin. If there are passengers in the elevator, the robot gives
way and starts over with the call elevator procedure afterwards. In
the case of an empty cabin, the robot enters the elevator as quickly
as possible, which was a tough challenge as the door only stays
open for 6 s.

Inside the elevator, the Press Button Behavior is used again in
order to select the destination floor, and the robot immediately
retracts its arm and moves to a waiting pose in front of the
door, as the time for exiting is also limited. In the meantime,
the robot keeps track of the current floor the elevator is on by

measuring the time between the peaks of vertical acceleration and
deceleration (seeMüller et al. (2023b) for a more detailed analysis of
this solution).

When the elevator stops at the target floor, the robot leaves the
cabin and communicates to potential passengers waiting in front,
that it needs space to maneuver. In case the elevator stops at another
floor, the robot tells waiting people, that it is occupying the elevator
and wants to go alone in order to prevent any contact and blocking
of passengers, and starts over with the dial target floor procedure
in case a wrong button has been pressed, since the robot cannot
distinguish the reason for the stop at the unintended floor. This
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FIGURE 5
Flow-diagram of the ride elevator behavior algorithm.

repetition of dialing is also triggered, if the elevator does not move
after a button has been pushed.

The Press Button Behavior (see Figure 6 for a broad procedure of
the algorithm) is relying on a Faster-RCNN detector able to localize
16 button classes in the color image. The resulting bounding boxes
are used for a lookup in the depth image to obtain 3D positions
and surface normals of the individual buttons, which are matched
against the previously known button patterns on themapped panels.
The number of distinguishable buttons limits the applicability to
buildings with reasonable number of floors. Nonetheless, more than
10 floors are also possible due to the panel matching as described
in (Müller et al., 2023b). The matching of complete panels to
incomplete detections allows to compensate for unrecognized and
misclassified buttons and therefore correct buttons can be pressed
even if they cannot be detected individually. A detailed evaluation
of the detection accuracy can be found in (Müller et al., 2023b).

Having the 3D pose of the target buttons, the
motion planner (Müller et al., 2021) is used to execute a preparing
approach movement that brings a finger in front of the button. This
is followed by a linear push movement, that is terminated by a force
feedback event.

Since we do not use an eye in hand setup but determine the
target position for the push movement in camera images, the robot
model needs to be carefully calibrated against the movable camera.
To that end, the end effector of the arm is labeled with a set of ArUco
markers (see Figure 10 right), which allows to calculate the exact
position of the fingers in camera coordinates at runtime, provided

FIGURE 6
Flow-diagram of the Press Button Behavior as also seen in
Müller et al. (2023b).

they are visible. This is used to compensate for deviations between
the robot model used for planning the motion and the real position
of the robot arm with respect to the camera and increases the hit
rate drastically during the push movement. The marker and button
detections runs with a frequency of 5 Hz on a 1280 by 720 pixel
image. The accuracy of the marker localization in lateral direction
usually is in the range of the pixel resolution, while depth estimation
from 2d image data is more error prone. Fortunately, the accuracy
of the targets’ distance in the direction of movement when pressing
the buttons plays a subordinate role.

3.1.4 Opening doors
Opening and passing through doors is governed by the Pass

Door Behavior (see Figure 7), that initially approaches a coarse
observation position, from where the door’s current state and exact
position is analyzed. Unlike many other solutions, our door analysis
is based on lidar range scanning and not on image processing. This
saves computational resources and is robust enough, as an analysis
of the position accuracy for reaching the door handle shows (see
Section 4.1.1). A detailed description of the door localization in
range scans using a 1D CNN can be found in (Müller et al., 2023a)
The detection of the door runs at the rate of the lidar scans, which
is 15 Hz. This additionally increases the robustness of the estimated
position of the door.

Depending on the observed opening state of the door,
specialized subordinate behaviors (unlatch door, pull/push door, or
simply pass through the open door) are activated, each of which
is responsible for bringing the door to the next more open state
(closed→ unlatched→ partly open→ fully open). Figure 8 shows
the procedure for unlatching a closed door for example,.

For these operations, it depends on the side of the door and
the opening direction whether to grasp the door handle for pulling
or only to push the door on its edge or face with the open hand
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FIGURE 7
Flow-diagram of the pass door behavior.

FIGURE 8
Flow-diagram of the unlatch door behavior.

(see Figure 9). All movement sequences have been designed by
hand and consist of a series of intermediate navigation points for
both the robot base and the arm, which are defined in the door
reference frame and scaled with the known door width. In this way,
individual deviations in the robot’s position can be compensated.
One aspect of importance is the fact that coordinated movements
of the robot’s base and the arm are necessary because of the limited
reach of the arm when the door swings open. This coordinated
movement is achieved by using a closed loop motion planner
for the arm (Müller et al., 2021), which runs at a frequency of 4 Hz.
Bymeans of that, the slowermotions of the base can be compensated
for and the end effector trajectory with respect to the door can
be achieved.

FIGURE 9
Flow-diagram of the pull/push door behavior.

The limitations due to the differential drive (robot cannot move
sideways) and the limited free space behind an open door make it
impossible for our system to open a door swinging towards the robot
without repositioning of the hand from the inside to the outside
handle. In order to pull open a door to the fully open state with
the end effector at the inside handle, due to the limited reach of
the used arm, the robot base would need to follow the door in a
circular movement ending up behind the open door. This, in most
of the doors seen in our scenario is not possible because of restricted
free space. Consequently, we have to let go the handle, when the
robot is moving through the door. As we only have one manipulator
onboard, the robot is prevented from opening doors with automatic
closing mechanisms, since during reposition of the end effector and
when passing the open door, the door cannot be locked in position.

Other external disturbances at the door, such as people
opening the door from the other side, can be compensated by the
supervising Pass Door Behavior. This triggers retry mechanisms
for the individual strategies. A repetition is also triggered if the
gripper slips off the handle while manipulating the door. This is
recognized by monitoring the force and torque measurements at the
end effector.

If the door could not be opened after three retires or restarts of
the behaviors, it is highly likely, that the robot is falsely localized or
the door might be locked and required human intervention. More
details regarding the doormanipulation strategies and the Pass Door
Behavior can be found in Müller T. et al. (2023).

3.1.5 Limitations
Unlike other publications, our system does not aim to reactively

handle unseen doors. Rather, we intended to realize a reliable
solution for deploying a transportation service in a predefined
operation environment. Although we rely on a previously mapped
environment (doors and elevator), achieving a robust autonomous
transport service managing the doors and elevators is still
challenging. The robot needs a high degree of introspection and
needs to be able to recognize deviations from the expected behavior,
especially during the manipulation activities.
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For example, collision detection is implemented based on the
forces measured at the end effector. If a certain threshold is
exceeded, the systemhalts.Here, it is difficult to distinguish intended
interaction forces from accidental contact. In contact situations,
ethical questions arise, such as whether the robot is allowed to retry
moving or whether human intervention is required to recover from
such situations.

Another situation is in the elevator. The robot tells people that
it occupies the cabin and wants to go alone in order to prevent any
contact and blocking of passengers. Nevertheless, nothing prevents
people from entering the elevator and interfering with the robot’s
behavior. If people push the robot around, it may get stuck and
require for human intervention to recover.

In conclusion, we have tried our best to detect and handle
as many exceptional situations as possible, but due to a lack of
recognition capabilities, there will always be situations that the robot
cannot handle autonomously. In the evaluation section we will give
examples that have occurred.

4 Results and discussion

4.1 Evaluation

4.1.1 Analysis of grasp pipeline accuracy
All intermediate grasp poses of the doormanipulation strategies

are designed by hand and might depend on the exact situation at
the site of development. Nevertheless, each individual door handle
should be reached consistently in order to achieve a reasonable
success rate for opening the door.

Therefore, we first tested the positioning stability of the entire
pipeline of the integrated system at once. So the influence of the door
localization in the range scan, the robot platform localization and
navigation capabilities, and the accuracy of the execution of the arm
motion contribute to the final end effector position with respect to
the door handle.

In order to measure the consistency of the end effector
positioning, we utilized ArUco markers, which we placed beside
the door handle in an exact reference position to the axis of
the handle. For four different doors of different kinds (since
the evaluation environment did not offer more variety), we used
these visually recognizable markers and the calibration markers on
the arm (see Figure 10 right) to record the distribution of the relative
position of the end effector to the door handle. For each of the 15
trials per door, the robot first was approaching the manipulation
position with the robots’ base and conducted a grasping motion to
approach the handle afterwards. When the target position on the
door handle has been reached, the positions have been recorded.
Since the necessary door analysis is carried out in lidar data only,
the additional visual markers have no influence on the results, but
they do allow to measure the relative position precisely.

Figure 10 shows the intra- and inter-door variance of the four
measured doors, with the handle pivot point in (0.0;0.0). The intra-
door variance describes the distribution of the resulting grasp poses
for one individual door and therefore reflects the stability of the
grasping pipeline in application conditions.The inter-door variance,
on the other hand, mainly reflects the influence of the door analysis
and localization network.The exact localization outputs for the door

hinge and handle depend on the profile of the actual closed door,
seen in the lidar scan. Since different doors have differently shaped
door frames, a bigger inter-door standard deviation of 5 mm in x-
direction, 9 mm in y-direction (see the black ellipsis in Figure 10)
results. For application in our scenario, this is of minor relevance,
because it can be compensated for with a door specific correction of
the grasp target pose at the handle.

The average intra-door standard deviation over all trials (3.2 mm
in x-direction and 3.5 mm in y-direction) confirms that the stability
of the localization method and the navigation and manipulation
pipeline together is sufficient for a robust manipulation of the doors.
The actualminimum andmaximumgrasping position lies in a range
of about 1.5 cm around the target at the handle for a given door.The
horizontal and vertical deviation of the targeted point on the handle
of all trials is about 3 cm, which is roughly the area we need to hit in
order to apply sufficient torque on the handle pivot point, to unlatch
the door (not too close to the axis of the handle) without slipping
off the other end of the handle. These results support the hypothesis
that the system will easily generalize to other doors.

4.1.2 Stability of the deployed system
Since our approach is one of the first known autonomous robotic

systems to perform a series of combined door openings and elevator
uses, the evaluation of our approach (see Table 1) might be able to
function as a coarse referencemetric for future systems.We first take
a look at the system as a whole, then go into detail on the specific
behaviors of elevator riding and door manipulation, and conclude
with a summary of problems encountered during testing.

4.1.2.1 Task and duration evaluation
The robot system was fully tested at two different locations. The

first one is an elderly care facility of the workers welfare association
(short ger.: AWO) and the second one is our office building named
after Konrad Zuse. A floor map can be seen in Figure 11 with the
doors and elevator included. In both buildings, the robot had to
execute a total of 119 transportation and notification tasks. In a
transportation task, the robot has to drive from the home position
to a pick-up location and afterwards to the destination, where the
object is delivered. For messaging tasks, the robot simply drives to
the destination andwaits for a person to be notified. Once the people
tracker recognizes a human, the message is presented to the person.

During the test campaign, each task comprised one or more
door opening procedures and up to two elevator uses.The robot was
accompanied by a supervisor who noted exceptional behavior and
recovered the system if necessary.

79 of the tasks were performed at the AWO facility with an
overall success rate of 88.6%, leading to a failure in 9 cases. We had a
slightly lower success rate of 80.0% for the tests in the Zuse building.
The average time to successfully complete a task stays between 5 and
7 min and is mainly influenced by the distance to drive, the number
of doors to open and floor changes required. The minimum time
span of 1–2 min arises from a task in which the target is on the same
floor behind just one closed door. Whereas the maximum durations
of the 10 min can be traced back to situations where many retries in
the door manipulation strategies were necessary.

Further, we evaluated each use of the elevator separately. In the
AWO environment 41 out of 44 elevator rides were successfully
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FIGURE 10
Distribution of end effector positions for multiple trials of approaching and grasping the door handle of four different doors. The colored lines mark the
maximal deviation on both axes. With (0, 0) marking the handle pivot point.

TABLE 1 Evaluation of the presented system.

Location Tasks Quote Duration [min:sec]

Min Avg Max

Full system

AWO 79 88,6% 01:13 05:47 13:47

Zuse 40 80,0% 02:15 06:37 12:03

Elevator riding

AWO 44 93,2% 01:39 02:07 05:23

Zuse 25 88,0% 01:26 02:48 06:14

Door manipulation

AWO 115 94,8% 01:06 01:45 04:30

Zuse 42 88,1% 01:06 02:07 06:03

completed, while in the Zuse building 22 of 25 rides worked well.
This yields a success rate of 93.2% and 88.0% respectively.

On average, the robot needs around 2–3 min for an elevator
ride, with 1:30 min being the minimum time span to change floors.
One fact that must be taken into consideration is other people
using the elevator, causing the robot to wait for the next free cabin.
Considering necessary retries while waiting and traveling to an
intermediate floor, the maximum time period the robot took was
less than 7 min.

The door opening procedure was evaluated at the end of Table 1
with 115 tasks in the AWO environment and 42 attempts in the
Zuse building. Our approach successfully opened 94.8% of the doors

at AWO and 88.1% in the office building. The varying success rate
in the two buildings is due to various problems, ranging from
localization errors to problems with force thresholds for detecting
the end points of movements (as seen in Figure 8 or Figure 9). The
latter had the largest impact on the duration, as each new attempt to
unlatch the handle adds at least 20 s to the total time.Theminimum
time required to open a door is about 1 minute, independent of the
location. We can therefore assume that different buildings generally
have no influence on the duration of the pure manipulation.

4.1.2.2 Failure reasoning
The main failures can be divided into three classes: i)

Localization, ii) Detection, and iii) Obstacle Perception and
Motion planning.

Starting with the localization, one of the major differences
between the two buildings is their internal structure. The Zuse
building has long hallways with few features for localization on the
one hand and wide open spaces on the other. In addition, the robot
often has to cover distances of up to 100 m. In contrast, the AWO
facility is more feature rich with clear edges and junctions as well
as much shorter hallways, like in a home environment. Therefore,
the localization of the robot in its map at the AWO facility is more
robust, which is reflected in the overall success rates.

Although we extended the Monte Carlo localization approach
to accurately localize the robot with respect to observed doors
and buttons, sometimes the robot could not recover from global
localization errors. The reason for this is that these additional
observations are only active when such targets are nearby and
also require a good prior estimation of the robot’s position to
work (correct sections of the range scan need to be extracted for
analysis). Incorrect positioning in the map and thus a following
localization error of door features or button positions can lead to
subsequent misbehavior without a direct indication for the robot
to recognize them. For example, a wrong position may prevent the
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FIGURE 11
This figure shows one floor map of our three-storey university building with the 3D collision objects (elevator and doors) as overlay on the 2D
occupancy grid map.

robot from recognizing the elevator door to be opened, resulting
in an infinite loop of attempts to call the elevator. It finally needed
human intervention in such situations as occured two times in the
Zuse building. Thus, one of the main disadvantages we will have
to overcome in the future is the precise self localization in large,
wide-open and unstructured areas.

A second problem related to the localization is caused by false
localization of buttons and door features. If the erroneous detections
are used to adjust the robot’s global pose in the map, it might
virtually be moved into static obstacles. Then the robot gets stuck
during navigation or manipulation as it spuriously believes to be
in collision. It can no longer safely recover from this situation, as
localization updates require the robot tomove in order to obtain new
independent measurements. Therefore, finally human intervention
is needed. This problem occured in the AWO elevator, which has
very little space left for manouvering (less than 4 cm at the robots
tail when turning).

Concerning the problems related to the detection and
localization of door keypoints, we observe an instability of the
predicted positions when the robot moves during operation. Since
the door analysis runs continuously during door manipulation in
order to keep track of the opening angle, the actual arc trajectory
of the hand may shift with the localization of the door hinge used
as the pivot point. When the arm motion planner reacts to that
changing target trajectory, contact forces can exceed thresholds and
the opening process is interrupted, requiring a retry. We aborted
the operation after the third attempt of each stage of the procedure.
Such erroneous localization of door features occurred mainly when
the robot was close to the door or in between the door frame.
These are poses that were not part of the dataset of lidar scans
used to train the detector. We tried to make the detection more
robust in these situations by verifying the location of the door’s
hinge and opening angle using a line fitting heuristic. Nevertheless,
uncertainties remain when there are contradictory predictions for

the position of the door, and exceptional situations could not be
completely avoided.

The last category of problems is related to the limited perception
of the environment and a lack of accuracy in the internal
representation of the robot’s geometry in relation to its real shape.
Due to the limited precision of depth perception and difficult
conditions, e.g., in the elevator where mirrors and reflective surfaces
are prevalent, the robot can come into unintentional contact with
obstacles. This resulted in one of the unsuccessful elevator rides.
Also, the non-deterministic nature of the used motion planner is
sometimes causing problems, when occasionally unconventional
solutions for a movement trajectory are produced that have not
been seen during development.These alternative solutions can bring
the arm into unforeseen configurations, which result in inadequate
poses for succeeding steps, due to unfavorable joint limits. Further
restrictions in the definition of the desired movements must be
introduced in order to eliminate these circumstances in future.

To summarize, there are many interdependent subsystems in
our approach that can fail and the success rate for complete task
execution is the product of the individual ones. Although the
individual parts can be made more robust, there will always be
critical situations that the robot cannot perceive with its limited
sensory capabilities alone. This requires a safe hardware design to
make it usable anyway.

5 Conclusion

In this article, we presented a first integrated solution for a
service robot operating in populated buildings with elevators and
closed doors. The long-term real-world application tests revealed
that the system basically operates autonomously thanks to its safe
hardware design. Although task completion still fails in 14% of cases
when doors and elevators are on the way, the robot cannot harm any
people and can be left running unattended. We identified aspects
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for future improvement in our methodology, but ultimately there
will always be situations that cannot be anticipated and require
human intervention due to the robot’s limited introspective and
perception capabilities. In the latter, we see the greatest potential for
optimization in the future.
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