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Data-driven modeling and
identification of a bistable
soft-robot element based on
dielectric elastomer

Abd Elkarim Masoud* and Jürgen Maas

Mechatronic Systems Laboratory, Institute of Machine Design and Systems Technology, Technische
Universität Berlin, Berlin, Germany

This paper presents the development and experimental validation of a hybrid
modeling framework for a bistable soft robotic system driven by dielectric
elastomer (DE) actuators. The proposed approach combines physics-based
analytical modeling with data-driven radial basis function (RBF) networks to
capture the nonlinear and dynamic behavior of the soft robots. The bistable
DE system consists of a buckled beam structure and symmetric DE membranes
to achieve rapid switching between two stable states. A physics-based model
is first derived to describe the electromechanical coupling, energy functions,
and dynamic behavior of the actuator. To address discrepancies between the
analytical model and experimental data caused by geometric asymmetries and
unmodeled effects, the model is augmented with RBF networks. The model is
refined using experimental data and validated through analytical, numerical, and
experimental investigation.
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bistable dielectric elastomer actuator, RBF network, dynamical and hybrid modeling,
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1 Introduction

The emerging field of soft robotics offers the potential to replace traditional articulated
robots made of rigid joints and materials, such as electric motors and piezoceramic
actuators, with soft actuators functioning as artificial muscles in robotic systems. Dielectric
elastomer transducers (DETs) are a prominent class of soft actuators capable of deforming
under applied voltage. These actuators mimic biological muscles, excelling in attributes
such as large deformation (Li et al., 2013), high energy density (Duduta et al., 2019),
and fast response times (Chen et al., 2019). DETs consist of a soft dielectric material
sandwiched between two flexible electrodes, with layer thicknesses in themicrometer range.
Functionally, DETs act as deformable capacitors, relying on electrostatic stress to achieve
significant deformation upon sufficient voltage application (Pelrine et al., 2000).

DE-based actuators have beenwidely adopted in the development of soft robotic systems
(Guo et al., 2021), including grasping mechanisms (Kofod et al., 2007; Wang et al., 2019),
walking robots (Eckerle et al., 2001; Pelrine et al., 2002), flying robots (Lau et al., 2014), and
humanoid robots (Kovacs et al., 2007).

Bistable soft robotic systems have attracted significant research attention due to their
energy-efficient and versatile design potential, particularly in applications requiring rapid
and reliable switching between two stable states. These actuators are well-suited for a variety
of applications, including robotic systems, valve controls, and gripper mechanisms, where
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precise and consistent actuation is essential (Cao Y. et al.,
2021; Chi et al., 2022; Harne and Wang, 2013). A range of
bistable DE transducer designs have been proposed, highlighting
their adaptability for diverse use cases. Examples include
digital mechatronic systems with multiple degrees of freedom
(Wingert et al., 2006), compact configurations combining cross-
shaped bistable elements with conical DE actuators (Follador et al.,
2015a), and bio-inspired soft grippers based on DE minimum
energy structures Wang et al. (2019). Another design involves a
bistable DE actuator comprising a buckled beam and two vertically
arranged DE roll actuators to drive a rigid plate (Baltes et al., 2022).
These designs are often supported by analytical and finite element
models to study their static and dynamic behaviors. A common
feature in many bistable DE designs is the use of buckled beams,
valued for their mechanical bistability and reliability. Additionally,
membrane geometries such as diamond, conical, roll, or strip shapes
allow for tailored actuator performance to meet specific application
requirements (Follador et al., 2015a; Follador et al., 2015b).

Beside, advancements in modeling and simulation of DETs
have addressed their complex nonlinear behaviors. Physics-based
approaches have been extensively utilized to describe the static
behavior of DEs, considering hyperelastic material properties and
electrostatic coupling (Suo, 2010; Zhang et al., 2006) as well as static
hysteresis effects (Mertens et al., 2024). Finite element methods
(FEM) have been used to capture the influence of mechanical
boundary conditions, geometric inhomogeneities, and complex
DE configurations (Wissler and Mazza, 2005; Kuhring et al., 2015).
Furthermore, advanced dynamic continuum models have been
introduced, accounting for nonlinear electromechanical coupling
(Hansy-Staudigl et al., 2019). In addition to FEM-based methods,
control-oriented modeling approaches have emerged, treating DEs
as systems with lumped parameters. These models incorporate
viscoelastic behaviors, represented by Kelvin-Voigt, Maxwell
elements and address electrical losses from resistances (Sarban and
Jones, 2012; Jones and Sarban, 2012; Hackl et al., 2005). Specific
dynamic models have been proposed for various DE configurations,
including stack actuators (Hoffstadt and Maas, 2015; Masoud et al.,
2021), membrane actuators with spring preloading (Rizzello et al.,
2016), and bistable robot modules featuring roll DE actuators
(Soleti et al., 2023). For bistable DE systems, dynamic vibration
and bifurcation analyses of circular membranes with springs were
further investigated (Wang Z. et al., 2024; Cao C. et al., 2021).

Despite the widespread success of physics-based methods, there
is a notable shift toward data-driven approaches for modeling
soft robot systems, using advancements in machine learning
techniques (Kim et al., 2021). Purely data-driven methods, such
as radial basis function networks, recurrent neural networks
(RNNs), and multilayer perceptrons, have been employed to model
complex nonlinear behaviors without requiring explicit knowledge
of underlying physical principles (Chen et al., 2024; Melingui et al.,
2014). These approaches rely on empirical training, achieving high
accuracy in capturing system dynamics.

Hybrid methods, combining data-driven machine learning with
physics-based models, have also gained attention. These include
frameworks that integrate machine learning components with
existing first-principles models (Johnson et al., 2021) and physics-
informed neural networks (PINNs), designed to embed physical
laws directly into the learning process (Liu et al., 2024;Wang X. et al.,

2024; Sun et al., 2022). Such approaches offer a balance between
empirical accuracy and interpretability, enhancing the robustness of
nonlinear system modeling. In the context of dielectric elastomer
actuators (DEAs), neural network architectures such as long short-
term memory (LSTM) networks (Xiao et al., 2020), radial basis
function networks (Xiao et al., 2023), and gated recurrent units
(GRUs) (Zhang et al., 2023) have been employed to model dynamic
and nonlinear behaviors, including hysteresis and creep effects.
Additionally, self-sensing models for DEAs have been developed
using nonlinear autoregressive networks with exogenous inputs,
enabling predictive modeling of displacement without requiring
external sensors (Huang et al., 2023). While these data-driven
approaches exhibit excellent alignment with experimental data, they
often lack explicit incorporation of physical principles, underscoring
the trade-off between predictive accuracy and interpretability.

This paper focuses on the development of a physics-based and
data driven dynamic model for a bistable soft robot based on DE
actuators. In this work, a similar structure to that in (Follador et al.,
2015b) is investigated, but with a different constructive and
kinematic design. While (Follador et al., 2015b) incorporated two
lateral beams and two parallel DEs (consisting of VHB) in the
center, our design features a single central beam with two laterally
arranged DE membranes made of silicone. Similar structures and
ideas have been previously introduced in (Masoud and Maas, 2023),
where a variant is implemented in this paper for model validation
and analyzed in detail. While previous studies employed a static
model for designing the bistable DE actuator, this paper presents
a systematic design approach that not only considers the static
behavior but also incorporates dynamic effects, external forces,
and a comprehensive description of the kinematics. The model is
developed to be directly applicable to further system and control
engineering applications. Moreover, the models investigated in
this paper are directly compared with experimental data, with a
particular focus on analyzing the transient response and accounting
for inaccuracies in the entire actuator design. The derivation of the
governing equations follows the framework presented in (Masoud
and Maas, 2023), providing a foundation for analyzing the DE
system’s dynamic behavior.

To enhance the accuracy and generalizability of the model,
a hybrid approach is introduced that integrates physics-informed
structures with data-driven methodologies. Specifically, the model
is refined and augmented using artificial neural networks trained
with experimental data, with a focus on radial basis function
(RBF) networks. The RBF network is chosen for its ability to
handle nonlinearities in a straightforward and interpretablemanner,
offering an effectivemeans of capturing the complex behaviors of the
bistable DE actuator.

The further contribution of this paper is structured as follows.
Section 2 introduces the operating principles and design details of
the bistable DE actuated system. Section 3 presents the physics-
based modeling approach, analyzing the essential characteristics of
the soft system and offers a reduced-order model under analytical
considerations. In Section 4, a hybridmodeling approach is outlined,
where the physics-based model is enhanced with a RBF neural
network to effectively capture nonlinearities and uncertainties of
the bistable DE systems. Section 5 provides a comprehensive
validation of the proposed model through numerical simulations
and experimental data. Finally, Section 6 summarizes the findings.
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2 Concept and design of the bistable
dielectric elastomer

Figure 1 illustrates the concept and behavior of the proposed
bistableDE-actuator, highlighting both itsmechanical configuration
and its bistable characteristics through potential energy and
force curves. Figure 1a shows the actuator system in its three possible
states. The system consists of a buckled beam, two symmetric DE
membrane, and a moving mass (blue) that connects the elastic
structure to the DEs. The DE membranes are pre-stretched such
that the beam assumes one of two stable, buckled positions, either
to the left or to the right. The application of a voltage (vDE,1 or
vDE,2) to one of the DE actuators generates a force that drives
the system from one stable equilibrium state to the other. The
central position (q = 0) represents an unstable equilibrium point.
The beam’s horizontal displacement q defines its position, where
shifts q− and q+ correspond to the two stable states. The DE
membranes actively deform when voltage is applied, providing the
necessary force to shift the black buckled beam between these
configurations.

Figure 1b visualizes the bistable nature of the system through
potential energy U(q) and force F(q) curves. The potential energy
U(q) illustrates a double-well profile, with two minima at q− and q+,
corresponding to the two stable equilibrium positions. The peak at
q = 0 indicates an unstable equilibrium state, acting as a threshold
the system must overcome to transition between the two wells. The
force curve F(q), derived as the gradient of the potential energy
curve ∂U(q)

∂q
, further illustrates this bistable behavior. At q− and

q+, the force is zero. At q = 0, the force changes direction, driving
the system toward one of the two stable states, depending on the
applied input.

The CAD design of the bistable DE system is
illustrated in Figure 2. The exploded view shows the arrangement
of the system’s parts. The U-shaped lower fixed frame serves as
a platform for mounting two black suspensions on its right and
left sides, which are used to attach the two DE membranes at
their lower ends. The DE actuators are designed in a strip-like
configuration and arranged and arranged symmetrically. Centrally
positioned within this frame is a slender beam made of PETG,
which forms the buckled axis capable of toggling between two
stable positions.

The actuator’s active elements are two symmetrical DE
membranes and produced as multilayer laminates using the
manufacturing process (Krüger et al., 2023). For the experimental
investigations presented in this paper, we used the dielectric
elastomer material ELASTOSIL®2030 (EL 2030) (Wacker,
2016), which has a layer thickness of 50 μm and a dielectric
breakdown strength ranging from 80 V/μm to 100 V/μm.
As the electrode material, we employed the carbon black-filled
elastomer ELASTOSIL®LR 3162 (EL 3162) (Wacker, 2022), which
was applied using a jetting process (Cabuk and Maas, 2021). The
effective breakdown strength typically decreases after fabrication
processes such as electrode application, curing, and handling. To
ensure long-term stability and high durability of the actuator,
the maximum electric field is therefore conservatively limited to
60 V/μm. Given the film thickness of 50 μm, this corresponds
to an applied voltage of 3 kV. This operational limit is well below
the breakdown threshold of the processed material and has proven

effective in practice for maintaining device reliability over multiple
actuation cycles.

The two membranes, held in dedicated mounts, deform in
response to applied voltage, thereby actuating the buckled beam.
The two upper black mounts connect the two DE actuators at
their upper ends, which are linked to a freely movable U-shaped
frame. At this upper section of the actuator, two adjustment screws
enable precise control of the pre-strains in the DE membranes and
allow for fine-tuning of the membrane tension. The pre-stretched
DEs are a critical feature, as it enables precise calibration of the
actuator’s initial state and facilitates smooth transitions between its
two stable states. Various connecting components, including screws
and fasteners, ensure the precise alignment and structural integrity
of the system.

The fully assembled soft DE system in Figure 2b presents
a compact design tailored for precise functionality. The central
buckled structure is symmetrically clamped by the DE membranes,
which are configured to tilt the axis to either side based on
the activated voltage. The design is particularly well-suited for
demanding soft material applications that require consistent,
adaptable joint performance and the flexibility to integrate with
various structural configurations.

3 Modeling and analysis of bistable
dielectric elastomer

In the following, the bistable DE actuator shown in Figure 1
is analyzed, and a dynamic model is derived. The figure visualizes
the geometric dimensions and material parameters of the system.
The modeling approach presented in (Masoud and Maas, 2023) is
applied here. In the first step, the kinematic deformation of the
DEs are introduced. Subsequently, the energy and virtual work
terms for the DE actuators and the beam element are formulated,
taking into account the mechanical and electrical behavior of the
model. The dynamics of the electrical behavior are neglected in this
paper. The Rayleigh-Ritz approximation is employed to describe
the deformation of the beam, incorporating various boundary
conditions and defining the generalized coordinates. Finally, the
Hamiltonian principle is applied to the electromechanical system,
resulting in a nonlinear system of differential equations. This system
can be conveniently transformed into a state-spacemodel for further
analysis. Geometric nonlinearities are considered to accurately
describe the unstable buckling behavior of the beam element,
which leads to multiple equilibrium solutions. These solutions are a
characteristic feature of the actuator concept and play a crucial role
in its bistable performance.

3.1 Deformation of the DEs

To describe the deformation of the DE system in the deformed
state, the geometric quantities depicted in Figure 1 are introduced.
These quantities are used to calculate the kinematics of the actuators
and the forces acting on them as a result of the deformation. The
deformation of the DE actuator is described by the pitch angle φ,
which captures the rotation of the system due to the change in the
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FIGURE 1
Concept of the bistable DE actuated system: (a) Schematic Representation with geometric dimensions and material parameters, (b) potential energy
and force curves.

deflection w(x) in the x-direction. This pitch angle is given by:

φ = arctan( ∂w
∂x
|
l
), (1)

where ∂w
∂x

is the derivative of the deflection w(x) with respect to x at
the position l, representing the deformation in the x-direction. The
vertical displacement uy of the system is obtained from the initial
displacement u0 = ε0l, with the displacement due to the rotation of
the beam subtracted:

uy = u0 −∫
l

0

1
2
∂w
∂x

2
dx. (2)

The displacement

q = w (x = l) (3)

represents the deflection at the position x = l and is later selected as
the generalized coordinate. The geometric positions of the left and

right boundaries of the DE actuator, x1,y1 and x2,y2, as shown in
Figure 1, can be calculated as a function of the inclination angle φ:

x1 = a cos(φ) + b sin(φ) , y1 = b cos(φ) − a sin(φ) ,

x2 = a cos(φ) − b sin(φ) , y2 = b cos(φ) + a sin(φ) ,
(4)

where a and b are constants related to the geometry of the
system as shown in Figure 1. The lengths of the DE actuators in
the deformed state, lDE,1 for the left actuator and lDE,2 for the
right actuator, are calculated using the above-defined geometric
quantities. These lengths are derived as the Euclidean distances
between the deformed positions:

lDE,1 = √(−ez − q− a0 sin(φ) − x1)
2 + (ex − l− uy + a0 cos(φ) − y1)

2,

lDE,2 = √(ez − q− a0 sin(φ) + x2)
2 + (ex − l− uy + a0 cos(φ) − y2)

2,

(5)

where ex, ez and a0 are constants defining the geometry of the
system. From the deformed lengths of the actuators, lDE,1 and lDE,2,
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FIGURE 2
Design of the bistable DE actuated system: (a) exploded view and (b) assembly.

the stretches λ1,1,λ2,1,λ3,1 for the left actuator and λ1,2,λ2,2,λ3,2
for the right actuator can be calculated assuming an uniaxial
deformation state:

λ1,1 =
lDE,1

l0
, λ2,1 =

1

√λ1,1

, λ3,1 = λ2,1,

λ1,2 =
lDE,2

l0
, λ2,2 =

1

√λ1,2

, λ3,2 = λ2,2,
(6)

where λ1 represents the strain in the longitudinal direction of the
respective DE actuator, while λ2 and λ3 correspond to the strains in
the transverse and thickness directions, respectively. The kinematic
relations presented in Equations 1–6 are used in the subsequent
calculations of energy and work expressions.

3.2 Energy function and virtual work of the
bistable DE system

To investigate the dynamic behavior of the bistable DE system,
the Lagrangian function is derived:

L = T − Us − Um − UDE,1 − UDE,2. (7)

It includes the kinetic energy T , the strain energy of the beam Us,
and the potential energy of the mass Um as well the two n-layer DEs
UDE,1 and UDE,2.

3.2.1 Kinetic energy
The kinetic energy T of the system consists of the kinetic energy

of the mechanical connection in the upper part of the system and
the beam element B. The mechanical connection is modeled as
a concentrated mass element m. The kinetic energy of the beam
is simplified using the assumptions of the Euler-Bernoulli beam
theory.The total kinetic energy of the system is the sumof the kinetic
energies of the mass element and the beam:

T = 1
2
m(q̇2 + u̇2

y) +
1
2
∫
l

0
ρ(Iẇ′

2
+Aẇ2)dx. (8)

Here, ρ is themass density of the beam,A denotes the cross-sectional
area of the beam, and I = ∫Az

2dA is the area moment of inertia of
the beam’s cross-section. The first term in the integral represents
the kinetic energy associated with the rotation of the cross-sectional
plane around the beam’s neutral axis. The second term describes the
translational kinetic energy resulting from the displacement w(x, t)
in the z-direction.

3.2.2 Strain energy of the beam and potential
energy of the mass

Thestrain energy of the beam represents the elastic energy stored
in the material due to deformations. It is formulated as a function of
the displacement w and its derivatives w′ and w′′. The strain energy
is expressed as:

Us = ∫
l

0
EIw′′

2
(1+w′

2
)dx+ 1

2
EA
l
u2
0. (9)

Here, the first term represents the energy due to bending stress, while
the second term corresponds to the contribution from axial strain.
EI is the bending stiffness, and EA represents the axial stiffness of
the cross-section. Additionally, the potential energy of the massm is
considered, given by:

Um =m ⋅ g ⋅ uy (10)

where g represents the gravitational acceleration, and uy denotes the
vertical displacement of the mass.

3.2.3 Free energy of the DE actuators
The free energy of the two DE actuators UDE,1, UDE,2 are derived

based on the Neo-Hookean model while assuming a uniform
charge distribution across the dielectric area A0. The free energy is
expressed as:

UDE,1 = VDE
Y
6
(λ2

1,1 +
1
λ2
1,1
− 2)− 1

2
C0

λ2
3,1

v2DE,1

UDE,2 = VDE
Y
6
(λ2

1,2 +
1
λ2
1,2
− 2)− 1

2
C0

λ2
3,2

v2DE,2, with C0 = nε0εr
βA0
d0
.

(11)

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2025.1546945
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Masoud and Maas 10.3389/frobt.2025.1546945

Here, VDE represents the DE actuator volume, Y is the Young’s
modulus, C0 is the capacitance in the initial undeformed state, ε0
and εr are the vacuum permittivity and relative permittivity, n is the
number of DE layers, β is the area ratio between the electrode area
and the total area of DE, while vDE,1, vDE,2 denotes the voltages and
correspond to the left and right actuators, respectively.

3.2.4 Mechanical virtual work
The mechanical virtual work δWm describes the energy

dissipation within the system, accounting for beam damping and
viscous losses in the DE material (Kelvin-Voigt-Maxwell model) as
well as the generated work due to the external Force F. This can
be expressed in terms of w(x, t), ε3,1 = λ3,1 − 1, ε3,2 = λ3,2 − 1 and the
Maxwell strains εE,l, εE,r:

δWm = −∫
l

0
2ηIẇ′′δw′′dx+ Fδq

+VDE [ηMW (λ̇3,1 − ̇εE,1) −YMWεE,1]δεE,1
−VDE [YMWεE,1 + ηv ̇ε3,1]δλ3,1

+VDE [ηMW (λ̇3,2 − ̇εE,2) −YMWεE,2]δεE,2
−VDE [YMWεE,2 + ηv ̇ε3,2]δλ3,2,

(12)

where η, ηMW and ηv are the damping coefficients of the beam
and DE material, while YMW represents the elastic modulus of the
considered Maxwell element (Masoud and Maas, 2023).

The introduced energy and work terms form the basis for
modeling the bistable DE system. This framework enables the
analysis of the system’s static and dynamic behavior as well
as its electromechanical coupling. To describe the system, the
displacement w(x, t), the axial displacement u0, and the Maxwell
strains εE,1 and εE,2 are defined. These generalized coordinates
provide a comprehensive representation of the deformation state of
the DE system.

However, sincew(x, t) represents a spatially continuous field, the
resulting partial differential equations (PDEs) include spatial and
temporal dynamics along with boundary conditions. Such PDEs
are typically complex and unsuitable to design control systems
due to their high-dimensional nature. To reduce the complexity
of the PDEs and enable systematic analysis and controller design,
the Ritz method is employed. This approach approximates the
spatial deformation w(x, t) using polynomial functions, effectively
eliminating spatial dependency. The resulting simplified model
significantly facilitates mathematical handling and allows for the
application of classical control design methods, enabling targeted
system investigations.

3.3 Analysis of the bistable DE system

The geometric and material parameters used for this
investigation are provided in Table 1.

The material parameters of the DE actuators (Neo-Hookean
model with Y = 1.01 MPa and Kelvin-Voigt-Maxwell model with
ηv = 0.3 kPa, ηMW = 0.19 kPa, YMW = 0.11 MPa) were initially
adopted from Mertens et al. (2024). The mechanical properties of
both the elastomer and electrode were thoroughly measured using
standard procedures as outlined by Carpi et al. (2015). A more
complex material model could provide a more detailed and precise

representation of the hyperelastic behavior of the silicone material.
However, the Neo-Hookean model has been shown to adequately
capture the material response for strains up to 50% (Mertens et al.,
2024; Hoffstadt et al., 2018). Since the DE actuators used in this
study operate within this range, the chosen model appears to be
a reasonable approximation. Introducing a more complex material
model would increase the analytical complexity without necessarily
leading to significant improvements in accuracy for the given
operating conditions. The relative permittivity εr was taken from
data sheet (Wacker, 2016) and is also used by other researchers
for this DE material. Since the DE actuator is composed of a
composite material consisting of elastomer and electrode materials,
the parameters of the DE material are slightly higher than the
specified values, see (Mertens et al., 2024).

Regarding the beam material, the elastic modulus E =
1.6…2.1 MPa and mass density ρ = 1.27 g/cm3 were obtained
from PETG (2023). These values refer to the raw material of the
filament. For 3D-printed objects made of PETG, the effective
elasticity and density can vary due to printing parameters such
as infill density, layer height, and potential air inclusions. As no data
on damping properties for PETG was available we assumed a linear
viscous damping with parameter η for the beam, see Equation 12.

Therefore, the parameters Y, ηv, ηMW, YMW, E, ρ and η,
were subsequently adjusted for experimental comparison using
the complete actuator setup through an optimization process. The
specified parameters served as initial values and the deviation
between the model and the experiment was minimized using
the sum of squared errors with a gradient-based method in
MATLAB. The experimental data from Section 5 were used for
parameter identification. It should be noted that the damping
parameter η = 3.64 MPa is significantly larger than the parameters
ηv = 0.3 kPa and ηMW = 83.5 kPa. This indicates that the 3D-
printed beam material exhibits stronger damping behavior, which
dominates the viscous properties of the DE material. As will
be shown in Section 5.2, the DE material does not determine the
system behavior, but is dominated by the flexible beam structure,
so that further model improvements in the DE domain have only a
minimal influence on the overall behavior.

The static behavior of the bistable DE system is analyzed by
focusing on the total potential energy of the DE system, dependent
on deformation w(x, t), the applied voltages vDE,1, vDE,2, and the
external force F. In this analysis, kinetic energy and dissipative work
terms are neglected to simplify the model. This approach allows for
the characterization of the bistable DE system’s unique properties.

3.3.1 Polynomial ritz approximation
To calculate the static deformation of the DE beam actuator, a

fourth-order polynomial Ritz approximation is employed:

w (x) ≈ w4 (x) = q2x
2 + q3x

3 + q4x
4. (13)

This approximation satisfies the boundary conditions and is chosen
based on a balance between accuracy and model simplicity. Lower-
order polynomials ( < 4) yield insufficient accuracy, while higher-
order polynomials provide negligible improvements but increase
computational complexity. Thus, the fourth-order approximation is
a suitable compromise.
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TABLE 1 Geometry and material parameters of the bistable DE soft robot joint under investigation for model-based analyses.

DET Beam Geometry

parameter unit value parameter unit value parameter unit value

ε0 As/Vm 8,854 ⋅ 10−12 l mm 90 a mm 32

εr 1 2.8 A mm2 11 b mm 23

n 1 8 I mm4 1.1 bmax mm 30

d0 μm 50 E MPa 1.62 ex mm 7

l0 mm 51 ρ g/cm3 1.2 ez mm 16

A0 mm2 1,326 η MPa ⋅ s 3.64 m g 40

Y MPa 1.2 a0 mm 11

YMW MPa 0.31

ηMW kPa ⋅ s 83.5

ηv kPa ⋅ s 0.3

3.3.2 Energy formulation using the Hamilton
principle

TheHamilton principle is applied to the static electromechanical
DE beam structure. The total potential energy of the system is
expressed as:

δU = δUs + δUDE,1 + δUDE,2 + δUm = Fδq, (14)

considering Equations 9–11. substituting the Ritz approximation
(Equation 13) into the total energy (Equation 14) and applying
the principle of stationary energy, the equilibrium equations with
respect to the generalized coordinates qm = [q2 q3 q4 u0]T

are derived as:

∂U
∂qm
=

∂Us

∂qm
+
∂UDE,1

∂qm
+
∂UDE,2

∂qm
+
∂Um

∂qm
= F

∂q
∂qm
. (15)

3.3.3 Influence of pre-strain on actuation
behavior

The influence of pre-strain on the actuation behavior is analyzed
by adjusting the geometric parameter b, see Figure 1. By varying b,
the system is tuned to achieve an actuated bistable state. All other
geometric and material parameters remain constant. The system
parameters used for this investigation are provided in Table 1.
The equilibrium positions for unactuated and actuated states are
computed using the equilibrium equations across the range b ∈
[20 mm,30 mm], with applied voltages of (vDE,l = vDE,r = 0),
(vDE,l = 3 kV, vDE,r = 0 kV) and (vDE,l = 0 kV, vDE,r = 3 kV).
These equations are solved for q2, q3, q4 and u0 using the Newton
method in MATLAB.

The results are presented in Figure 3, where the x-axis represents
the maximum displacement:

q = q(qm) = w (l) = q2l
2 + q3l

3 + q4l
4, (16)

and the y-axis denotes the displacement parameter zb:

zb = bmax − b. (17)

For zb ≤ zb,min, the beam is stable in its vertical position until
a critical point A. Beyond this point (zb > zb,min), the vertical
equilibrium becomes unstable, and small disturbances cause the
beam to snap to either a left-leaning or right-leaning stable
configuration. This bifurcation creates three equilibrium paths: two
stable operating points and one unstable point at q = 0.

When a voltage of vDE,1 = 3 kV is applied to the left DE
actuator, the equilibrium states shift horizontally from the black
curve to the red curve. Similarly, activating the right DE actuator
with vDE,2 = 3 kV shifts the equilibrium states to the green
curve. As seen in Figure 3, the region between zb,min and zb,max
exhibits bistability, allowing the beam to switch between equilibrium
states depending on the applied voltage. For zb > zb,max, bistability
persists, but the beam cannot perform transition between stable
states via electrical actuation of DEs. The practical operating
range for the bistable DE system lies between zb,min und zb,max,
as shown in Figure 3. Within this range, electrical excitation can
effectively toggle the system between stable states. Beyond this
range, the DE system remains locked in one stable state, limiting its
practical functionality.

3.3.4 Force-displacement characteristic
The force-displacement relationship of the bistable beam

actuator in the direction of q, is analyzed as shown in Figure 4. To
facilitate this analysis, the force F is varied along the q-axis.

Using Equation 15, the system is solved for q2, q3, q4 and u0 over
a range of forces F ∈ [−100 mN,100 mN]. The displacement q
is then determined. As shown in Figure 4, the force-displacement
curve is represented for the following voltage states:

• vDE,l = vDE,r = 0 kV (black curve),
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FIGURE 3
Equilibrium states of the DE-actuator system as a function of the position zb for the voltages vDE,l = vDE,r = 0kV (black lines), vDE,l = 3kV, vDE,r = 0kV (red
lines), and vDE,l = 0kV, vDE,r = 3kV (green lines).

• vDE,l = 3 kV, vDE,r = 0 kV (red curve),
• vDE,l = 0 kV, vDE,r = 3 kV (green curve), and
• vDE,l = vDE,r = 3 kV (blue curve).

The black curve illustrates the unactuated state, where the
actuator exhibits two stable equilibrium positions at A and Ā,
with an unstable equilibrium at q = 0. When the left actuator is
activated, the beam transitions to the right stable state (A). Similarly,
activating the right actuator causes the beam perform transition to
the left stable state (Ā). If the actuator is deactivated, the system
remains at the previous stable state. When both actuators are
simultaneously activated, the unstable equilibrium at q = 0 becomes
stable.This results in the blue force-displacement curve, highlighting
the significant effect of simultaneous actuation on the stability and
equilibrium characteristics of the system.

3.3.5 Evaluation of the capacitance-displacement
relationship

Thecapacitance-displacement characteristics,C1(qm) for the left
actuator and C2(qm) for the right actuator, are analyzed as functions
of the beam’s displacement q. The results are illustrated in Figure 5,
which also includes the derivatives of the capacitance with respect
to q. These derivatives play a critical role in determining the
electromechanical forces generated by the DE actuators.

The electromechanical force Fe acting on the beam in the
q-direction is calculated using the capacitance C1 and C2. This
relationship is expressed as:

Fe =
∂U e

DE,1

∂q
+
∂U e

DE,2

∂q
= 1

2
∂C1

∂q
v2DE,1 +

1
2
∂C2

∂q
v2DE,2, (18)

where U e
DE,1 and U e

DE,2 represent the stored electric energy in the
DEs. As shown in Equation 18, the applied voltages vDE,1 and vDE,2
influences the force quadratically, while the direction of the force
depends on the sign of ∂C1

∂q
and ∂C2

∂q
.

From Figure 5, it is evident that the derivative of the capacitance
for the left actuator is predominantly positive. This results in a net
force in the positive q-direction, causing the actuator tomove toward
the stable equilibrium on the right side. Conversely, the derivative
of the capacitance for the right actuator is predominantly negative,
generating a force in the negative q-direction. As a result, the
actuator moves toward the stable equilibrium on the left side. These
observations align with the bistable nature of the system, where the
actuators forces shift the beam between the two equilibrium states
based on the applied voltages.

The characteristic curves offer an intuitiveway to understand the
physical behavior of the bistableDE actuator.They serve as a basis for
explaining the system’s force generation and equilibrium transitions.
Additionally, these insights are critical for comprehending the
actuator’s dynamic behavior, which will be explored in the following
section. By analyzing these characteristics, simplifications can
be introduced to model the dynamic behavior more effectively,
ensuring a better understanding of the actuator’s performance under
varying operating conditions.

3.4 Data-based reduced order state space
model

The dynamic behavior of the bistable DE actuator can be
described analogously to the approach in (Masoud and Maas,
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FIGURE 4
Force-displacement characteristic F(q)for the voltages vDE,l = vDE,r = 0kV(black line), vDE,l = 3kV, vDE,r = 0kV(red line), vDE,l = 0kV, vDE,r = 3kV(green line),
and vDE,l = vDE,r = 3kV(blue line).

FIGURE 5
Capacitance-displacement characteristics of the left and right DE actuators, along with their derivatives with respect to q.

2023) neglecting the electrical equations. The governing equation is
expressed as:

Mq̈m +Dq̇m + fF (qm) + K̄qε =
1
2
∂C1

∂qm
v2DE,1 +

1
2
∂C2

∂qm
v2DE,2 + F

∂q
∂qm
,

q̇ε = K
Tq̇m −YMWη−1MWqε,

(19)

considering Equations 7–12. Using the state variables:

x =
[[[[

[

qm

q̇m

qε

]]]]

]

, u = vDE, y = g(qm) (20)
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the system can be transformed into the state-space form:

ẋ = f (x,u) ,

y = g (x,u) ,
(21)

where

f (x,u) =
[[[[

[

q̇m

M−1 (τ (qm,vDE,F) −Dq̇m − fF (qm) − K̄qε)

KTq̇m −YMWη−1MWqε

]]]]

]

,

g (x,u) = q = [l2 l3 l4 0]qm

(22)

and

τ (qm,vDE,F) =
1
2
∂C1

∂qm
v2DE,1 +

1
2
∂C2

∂qm
v2DE,2 + F

∂q
∂qm
. (23)

Equation 21 accounts for the specific parameters of the DE system,
represented by the mass matrix M(qm) ∈ ℝ

4×4, the damping matrix
D(qm) ∈ ℝ

4×4, the restoring force f(qm), and the creep matrix
K̄(qm) = VDEYMWK(qm) ∈ ℝ

4×2.
When the focus is on motion in a measurable direction q, and

it is known that only the first mode is significantly excited while
others can be neglected, the state-space model can be reduced
to this primary coordinate without altering the system’s essential
characteristics. Through the static analyses, it has been observed
that the horizontal motion q predominantly governs the system’s
behavior, motivating a reduction to this observable coordinate.

To analyze the system’s eigenmodes, simulation data from the
model defined in Equation 21 were evaluated using singular value
decomposition (SVD). The system was excited using the input
signals shown in Figure 7, where the left actuator was activated first,
followed by the right. The resulting beam dynamics were simulated
accordingly. Figure 6a presents the identified mode shapes. The
model response (black dashed line) closely matches the first mode
shape (red line), while the second and third modes are nearly
negligible. The right figure illustrates the mode shapes during
transient oscillation. Here, the second and third modes exhibit
significantly lower amplitudes compared to the dominant firstmode,
indicating that the transient dynamics are primarily governed by
the first eigenmode. A slight deviation between the model and
the first mode is observed under dynamic conditions. Overall, the
analysis demonstrates that the bistable DE actuator’s behavior can
be accurately captured by the first eigenmode alone, which supports
the validity of reducing the model to a single generalized coordinate
q.

The reduction of the system model is achieved by using the
equilibrium solutions of the static model. The state vector qm is
expressed as a function of the generalized coordinate q, as illustrated
in Figure 6b. The mathematical formulation is given by:

qm (q) = [q2 (q) q3 (q) q4 (q) u0 (q)] . (24)

The static solutions depicted in Figure 6b are approximated using
polynomial functions. This fitting enables the derivation of an
analytical expression for qm(q), facilitating its integration into the
Ritz approximation.

By substituting Equation 24 into the approximation

w (x, t) = q2 (q)x
2 + q3 (q)x

3 + q4 (q)x
4, (25)

the Hamilton principle is then applied based on the
measurable generalized coordinate q, utilizing the steps
outlined in previous sections. The dynamic equations are
reformulated as:

mqq̈+ d (q) q̇+ f (q) + (k̄1 (q)qε,1 + k̄2 (q)qε,2) =
1
2
∂C1
∂q

v2DE,1 +
1
2
∂C2
∂q

v2DE,2,

q̇ε,1 = k1 (q) q̇−
YMW
ηMW

qε,1, q̇ε,2 = k2 (q) q̇−
YMW
ηMW

qε,2.

(26)

mq represents the total mass, including the contribution of the
beam’s partial mass. The term d(q) denotes a nonlinear damping
characteristic, while f(q) corresponds to the restoring force.
Additionally, k̄1 = VDEYMWk1 and k̄2 = VDEYMWk2 describe the
creep behavior of the DEs. From this simplified Equation 26,
the characteristic curves can be visualized effectively. Simulation
results, comparing the high-dimensional and reduced-ordermodels,
are shown in Figure 7. The close agreement between the curves
demonstrates that the reduced-order model effectively captures the
dominant dynamics of the bistable DE actuator. This not only
validates the reduction approach but also highlights its ability
to significantly reduce computational complexity. This reduction
approach facilitates efficient system analysis and control design,
allowing the system’s behavior to be described through its most
influential generalized coordinate q.

4 Data-driven modeling using
RBF-Networks

Once the bistable DE has been designed and is available
for further control, the mathematical model can alternatively
be identified through experimental data aimed at accurately
representing real-world behavior. The model presented in
the previous section was used to design the actuator and
perform analytical investigations and simulations to gain a
better understanding of its behavior. However, in real-world
implementations, deviations from themodel can arise due to several
factors. These include undetermined geometric asymmetries in the
setup, such as imperfectly symmetric bearings, and unmodeled
friction effects, such as hysteresis and dynamic friction, which
are difficult to predict. These discrepancies necessitate significant
post-experimental effort to adjust the model parameters, such as
accounting for asymmetries in the geometry and fine-tuning the
viscous parameters, in order to match the actual measurement data
as closely as possible.

To address these challenges with comparably little effort, the
model will be refined using experimental data and enhanced
with RBF neural networks. This will allow for a more accurate
representation of the actuator’s real-world performance. A
generalized dynamic friction model will be incorporated to
better account for the nonlinear and time-dependent frictional
forces. Specifically, the viscous losses composed of the beam
and DE previously described in the equations will be replaced
with a generalized Maxwell-slip model (Al-Bender et al.,
2005). This simple adjustment will improve the model’s ability
to capture the complex friction dynamics and enhance its
predictive accuracy.
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FIGURE 6
(a) Identified mode shapes of the beam during vibration. (b) State vector qm as a function of q. The polynomial fit captures the dependency for
analytical representation.

The Hamiltonian principle is applied to the measurable
coordinates q, vDE,1 and vDE,2, formulating it with unknown
energy terms. These unknown energy functions depend on
both q and q̇, as well as on the measurable voltages vDE,1
and vDE,2. However, the explicit functional relationships among
these variables are not known and are modeled using RBF
networks. The derivation of the corresponding equations is based
on the Lagrange principle. The Lagrangian function is defined
as follows:

L(q, q̇,vDE,1,vDE,2) = T (q, q̇)
− (Umech (q) −U e

DE,1 (q,vDE,1) −U e
DE,2 (q,vDE,2)) ,

(27)

where the kinetic energy T is given by:

T = 1
2
mqq̇

2. (28)

The elastic energy of the beam and the hyperelastic behavior of
the DEs are collectively represented by the potential energy of a
nonlinear spring element

Umech = ∫
q

0
c ( ̃q) ̃qd ̃q (29)

This potential energy function encompasses both the mechanical
strain energy of the beam and the nonlinear hyperelastic properties
characteristic of DE materials, effectively unifying them within a
single expression. The electrical energy stored in the left and right
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FIGURE 7
Comparison of simulations between the full-order and reduced-order models. The alignment confirms the reduced model’s accuracy in capturing
key dynamics.

DE actuator can be represented using the energy expression for a
deformable capacitor. In this approach, each DE actuator is modeled
as a capacitor whose capacitance changes with deformation. This
variable capacitance effectively captures the energy dynamics as the
actuator undergoes shape changes. The electrical co-energy for each
DE actuator U e

DE,1 und U e
DE,2 are given as follows:

U e
DE,1 =

1
2
CDE,1 (q)v2DE,1, U e

DE,2 =
1
2
CDE,2 (q)v2DE,2. (30)

For the derivation of the dynamic equations, co-energy is
utilized since the voltages are directly measurable. To account for
additional hysteresis effects and dynamic friction forces, observed in
experimental laboratory tests, the model is expanded in accordance
with (Al-Bender et al., 2005). Thus a generalized dynamic friction
model is introduced, and an internal state equation is considered:

Ff = F (q, q̇,z) ,
̇z =Z (q, q̇,z) .

(31)

Following the principles of the Lagrange formalism, the differential
equations can be derived:

d
dt

∂L(q, q̇,vDE,1,vDE,2)
∂q̇

−
∂L(q, q̇,vDE,1,vDE,2)

∂q
= −Ff (q, q̇,z) ,

̇z =Z (q, q̇,z) .
(32)

This leads to the following equation:

mqq̈+ Ff (q, q̇,z) + c (q)q = gDE,l (q)v
2
DE,1 + gDE,2 (q)v

2
DE,2,

̇z =Z (q, q̇,z) ,
with

gDE,1 (q) =
1
2
∂CDE,1

∂q
, gDE,2 (q) =

1
2
∂CDE,2

∂q
.

(33)

Using the model in Equation 33, the nonlinear system can be
experimentally identified by utilizing the measured quantities q,
q̇, q̈, vDE,l and vDE,r as well neural networks for the unknown
functions. q̇ and q̈ need to be determined through time derivative,
which are often noisy. To derive the time derivatives from noisy
signals, the Total Variational Differentiation (TVRegDiff) algorithm
is utilized in machine learning frameworks to obtain smoother time
derivatives Chartrand (2011).

4.1 Radial basis function network

One approach to identify the nonlinearities in Equation 33 is to
use radial basis functions, as illustrated in Figure 8a.

The RBF network consists of a hidden layer that contains
neurons. The activation function of each neuron (radial basis
functions ϕi) is computed from its input values uN. The connections
between neurons are scaled using weights θi, i = 1,…,M, and the
output is calculated through a weighted summation.Theweights are
the variable parameters of the neural network, determined through
a learning process (e.g., least squares method, gradient method). A
key feature of this network is the use of local basis functions ϕ (uN),
shown at the top of Figure 8b. These radial basis functions exhibit
the following expression:

ϕi (uN) = ϕ(uN,ξi) = ϕ(‖uN − ξi‖) , (34)

where ξi represents the radial centers, and ‖uN − ξi‖ denotes the
Euclidean distance between uN and ξi.The activation functions used
here are based on Gaussian curves:

ϕi (uN) = e
( Ei

2σ2
), with Ei = ‖uN − ξi‖2 = (uN − ξi)

T (uN − ξi) . (35)
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FIGURE 8
Radial basis function (RBF) network: (a) structure of the RBF network, (b) example of function approximation.

FIGURE 9
Physics-informed RBF network comprising the dynamics of the bistable DE transducer.

The variance σ is referred to as the smoothing factor, which
determines the degree of overlap between neighboring activation
functions φi. Thus, a nonlinear function can be approximated using
the RBF network as follows:

yN (un) =
M

∑
i=1

θiϕi (un) . (36)

The basis functions transforms the D-dimensional input vector
into a high-dimensional (M) feature space using Gaussian radial

function. The output is simply a weighted sum of the basis functions
(hidden layer).

An important feature of the RBF network is that it is
nonlinear with respect to the input variables but linear with
respect to the parameters. This property is especially advantageous
for online parameter identification, as the linear dependency on
the parameters allows for efficient real-time computation and
adjustment. This means that the weights, which represent the
network’s variable parameters, can be optimized in real-time
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FIGURE 10
Experimental setup and hardware-in-the-loop system for the identification and validation of the bistable DE system.

FIGURE 11
(a) Measurement data: position, velocity, and acceleration profiles, along with the measured excitation voltages applied to the bistable DE system, (b)
sensitivity study of the mean squared error (MSE) with respect to the hyperparameters M and σn, (c) TVRegDiff for different regularization parameter α.

using techniques such as the least squares method or gradient
methods without requiring an extensive, computationally intensive
optimization of the entire model structure.

This separation of nonlinearity in the input variables from
linearity in the parameters also facilitates the stability and
convergence of model adaptation. In practice, this property leads
to improved adaptability of the RBF network, making it especially

suitable for applications that demand dynamic and rapid adjustment
to changing input data, such as in nonlinear dynamical models and
nonlinear system control.

The radial basis function (RBF) network was selected due to
its simple and interpretable structure, as well as the advantageous
property that its parameters enter the model linearly. This linearity
allows the identification problem to be formulated as a convex
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FIGURE 12
Comparison of measured data, analytical model, and RBF model of the bistable DE system.

TABLE 2 NRMSE of the analytical model, RBF-model against
experimental Data.

Model NRMSE(q) NRMSE(φ) NRMSE(q̇) NRMSE(q̈)

analytical 5.7% 5.6% 10.4% 10.8%

RBF 2.1% 2.0% 4.1% 5.0%

optimization task with a unique solution. In the presented approach,
the RBF network is embedded within a physics-based model
framework and serves to approximate nonlinearities arising from
uncertainties or simplifications in the physical description. Since the
dominant system dynamics are already represented by the physics-
based component, the RBF network acts purely as a corrective term
and does not need to reconstruct the full dynamics from data.

Alternative neural network architectures such as Long Short-
Term Memory (LSTM) or Gated Recurrent Units (GRU) are more
suitable for black-box modeling scenarios, where system dynamics
are learned implicitly through internal memory mechanisms and
time-delayed inputs. These models are inherently more complex,

demand significantly more training data, and involve nonlinear
optimization processes that are sensitive to initialization and
may result in multiple local minima. Moreover, the integration
of such recurrent structures into a physics-informed framework
would necessitate a discrete-time formulation of the governing
equations, which complicates bothmodel development and training.
In contrast, the use of RBF networks provides a transparent and
efficient means of enhancing model accuracy while maintaining a
strong connection to the underlying physical principles.

4.2 Dynamic identification of bistable DE
system using physics-informed RBF
network

The physical model should be as grounded in fundamental
physical laws as possible while still utilizing neural networks
to generalize any unknown functions effectively. This approach
reduces the demand for extensive training data, striking a balance
between the incorporation of physics-based structure and the
amount of data required for neural network training. Achieving this
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FIGURE 13
Zoomed-in comparison of measured data, analytical model, and RBF model in the time window from 24 to 30 s, highlighting differences in
transient behavior.

compromise allows for accurate model identification with limited
data, optimizing both computational efficiency and model accuracy.

Two approaches can be employed for identifying the nonlinear
model in Equation 33. The first approach involves measuring
characteristic curves with external integrated sensors and using
neural networks to identify the unknown dynamic friction. Thus,
a force sensor can be used to determine the force component c(q) ⋅
q in Equation 29. Position-dependent capacitance measurements
CDE,1(q) and CDE,2(q) allow for the determination of characteristic
curves gDE,1(q) and gDE,2(q) through differentiation. The inertial
force can also be estimated, if the massmq is known. By rearranging
Equation 33 to solve for Ff, the dynamic friction Ff (q, q̇,z) can
be identified, for example, using a Multi-Layer Perceptron (MLP)
network (Demuth et al., 2014; Popescu et al., 2009). However,
this approach requires significant hardware and measurement
resources to accurately capture the characteristic curves. Moreover,
parameterizing the neural network is complex, as it depends on
multiple input variables and requires comprehensive excitation
across the entire input space.

The second proposed approach involves predefining the
structure of dynamic friction and representing all unknown
functions using simple neural networks that are linear in the
unknown parameters. To simplify the structure of dynamic friction,
it is suggested in (De Wit et al., 1995; Dankowicz, 1999) to represent
the state equationZ (q, q̇,z) by a first-order low-pass filter to account

for the delay of static friction force relative to the input velocity.
Additionally, viscous damping is assumed by Ff = dz, where q̇ is
replaced by the internal variable z:

mqq̈+ d (q)z+ c (q)q =
1
2
gDE,1 (q)v

2
DE,1 +

1
2
gDE,2 (q)v

2
DE,2,

̇z = 1
Tz
(q̇− z) .

(37)

The nonlinear functions c(q), d(q), gDE,1(q) and gDE,2(q) can be
identified using radial basis functions according to Equation 36 in
Section 4.1:

c (q) =
M

∑
i=1

ϕi (q) θ̂c,i,

d (q) =
M

∑
i=1

ϕi (q) θ̂d,i,

gDE,1 (q) =
M

∑
i=1

ϕi (q) θ̂g1,i,

gDE,2 (q) =
M

∑
i=1

ϕi (q) θ̂g2,i,

ϕi (q) = exp(−
(q− ξi)

2

2σ2
nΔξ

2 ),

ΦT (q) = [ϕ1 (q) ϕ2 (q) … ϕM (q)] .

(38)
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FIGURE 14
Physical characteristic curves. Comparison between the analytical curves (black lines) and the RBF-based curves (red and green lines for DE1and DE2,
respectively).

where σn is a the normalized smothing factor (σ = σnΔξ). The
radial centers ξi are defined equidistantly according to the
following equation:

ξi = qmin + (i− 1)
qmax − qmin

M− 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Δξ

, (39)

where qmax − qmin is the operating Range. The complete physics-
based RBF network for modeling and identifying the dynamic
properties of the bistable DE system is depicted in Figure 9. This
figure details the network’s structure, illustrating the integration of
physical laws with radial basis functions (RBF) to capture nonlinear
system dynamics.

The incorporation of fundamental physical principles allows the
model to accurately represent key system characteristics, reducing
the need for large data sets to train the neural network while
enhancing generalizability. The RBF functions provide a flexible
approach for modeling unknown nonlinear relationships within
the system without extensive data requirements. This results in an
efficient model structure that combines physics-based insights with
data-driven optimization to enable reliable predictions of the DE
dynamic responses.

Additionally, the figure illustrates the parameterization of
individual components, including the weighting parameters θc,θd,

θg1
and θg2

.These parameters, identified based on experimental data,
represent the nonlinear characteristics of the system’s mechanical
and electric components.Thus, Equation 37 can be transformed into
the following form:

mqq̈ = [−Φ
T (q)q −ΦT (q)z ΦT (q)v2DE,1 ΦT (q)v2DE,2]

[[[[

[

θ̂c
θ̂d
θ̂gDE,1

θ̂gDE,2

]]]]

]

, with

mqq̈ = ψTθ̂, q̈ ∈ ℝ, ψT ∈ ℝ1,4M, θ̂ ∈ ℝ4M,1.

(40)

The identification problem of the nonlinear system can be
transformed into a linear regression problemusing theRBFnetwork,
as the unknown parameters to be identified enter linearly, with the
nonlinearities contained within the measurement vector. Here, the
inertial force y =mqq̈ is defined as the output variable.

The model parameters θ̂ in Equation 40 were estimated using
a least squares (LS) approach, taking advantage of the model’s
linearity with respect to these parameters. The time constant Tz,
which characterizes the system’s dynamic friction behavior, was
identified through an iterative optimization procedure. In each
iteration, the LS method was used to update θ̂, while Tz was refined
via a gradient descent scheme until the norm of the modeling
error converged. This sequential optimization approach enabled
an effective calibration of the damping dynamics. The estimation
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FIGURE 15
Cross-validation of measurement data, analytical model, and RBF model. Comparison of model predictions with new measurement data not used in
the identification process.

problem is linear in θ̂, resulting in a quadratic cost function
that guarantees a unique solution. The parameter vector θ̂ was
computed using the pseudoinverse of the regressor matrix. For
the optimization of Tz, convergence was evaluated by monitoring
whether the cost function decreased below a predefined threshold.
To ensure parameter identifiability and avoid numerical issues, the
regressor matrix was verified to have full rank throughout the
optimization, which was confirmed numerically by rank analysis.

5 Experimental validation

5.1 Experimental setup for identification
and validation

The experimental setup for the characterization and validation
of the bistable DE system is illustrated in Figure 10. The setup
comprises the physical assembly of the bistable DE actuator, the
electronic drive circuitry, a laser sensor, and the dSPACE real-
time platform.

The pre-tension applied via screws serves a dual purpose: it
must exceed the critical buckling load of the beam to maintain
structural stability, yet it should not surpass a threshold beyond

which the DE actuators cannot move the system between its two
stable states. For the experiments, an operating point of b = 23 mm
was selected, ensuring both bistability and actuation capability. The
operational principle results in a rotational motion of the upper U-
shaped profile, but only the horizontal component, q, is used as the
measurement variable.

The horizontal displacement q is measured using a laser
sensor (Model ILD2300-20) from Micro-Epsilon. This sensor has a
measurement range of ±25 mm, a resolution of 0.3 μm, a linearity
deviation of 4  μm, and a sampling frequency of 30 kHz. The
sensor is visible to the left of the actuator in Figure 10.

The electrical actuation system employs two high-voltage
(HV) drive circuits configured as push-pull converters, as
described in (Junglas et al., 2022). These converters are HV DC-
DC systems specifically designed for capacitive loads in the range
of tens of nanofarads. Each converter can deliver a maximum
voltage of 3 kV and operates with a 24 V DC input. With a
peak output power of approximately 15 W, the system can rapidly
charge and discharge the capacitive actuator. The control inputs are
the reference voltages vDE,1

∗ and vDE,2
∗ , while the actual measured

voltages, vDE,1 and vDE,2, are available as outputs.
The programs are implemented in MATLAB and Simulink and

compiled for execution on a MicroLabBox from dSPACE. This
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platform interfaces with both the drive electronics and sensors
while providing a real-time data acquisition interface. It also allows
on-the-fly modification of parameters such as setpoints and filter
constants.

Figure 11a displays the position, velocity, and acceleration
profiles, along with the measured excitation voltages vDE applied to
both actuators. The excitation profile for training the RBF network
was designed to cover a broad frequency spectrum, ensuring
comprehensive system excitation. It is essential to stimulate the
entire measurement range adequately so that data is available for
every position covered by the radial centers ξi. This ensures that
sufficient information is obtained across all radial centers, which
is critical for accurate and effective system identification. The RBF
model was identified using input-output data sampled at 10 ms
intervals, yielding a total of 3750 data points. This was sufficient to
identify the parameters of the hybridmodel due to the incorporation
of physical knowledge. A purely black-box approach (e.g., LSTM,
GRU) would require significantly more experiments under varying
operating conditions to ensure generalization, as well as extensive
validation through multiple test scenarios.

To calculate the time derivatives of the measured signals
in a robust manner, we applied the total variation regularized
differentiation algorithm (TVRegDiff). The regularization
parameter was set to α = 0.01, and a small constant ε = 10−6 was
introduced to prevent division by zero during iterative updates. To
assess the sensitivity of the method to the choice of α, we performed
a parameter study as shown in Figure 11c. The results show that
small values of α produce derivatives with high-frequency noise,
while large values overly smooth the signal, leading to attenuation of
important dynamic features. The red curve in Figure 11c illustrates
this effect for α = 1. This analysis highlights the trade-off inherent
in selecting the regularization parameter and justifies the chosen
value, which balances noise suppression with temporal resolution.

The bistable behavior of the DE system is evident in the
measurements. Starting from an initial position near q = −
10 mm, an excitation voltage of vDE,1 = 3 kV is applied to the left
actuator. This action shifts the upper U-profile to the right stable
position, which is maintained even after the voltage is removed,
due to the system’s inherent bistability. The covered displacement
range of ≈ ±12 mm highlights the large operational domain
and the pronounced nonlinear behavior of the actuators within
these bounds.

5.2 Results

The generated measurement data from Figure 11 were used
to determine the parameters θc,θd, θg1

and θg2
according to

Equation 40. For this purpose, M = 10 radial basis functions were
selected, and σn = 0.5 was set. Each physical characteristic curve
requires 10 parameters, resulting in a total of 40 parameters being
identified using the least squares method. To analyze the influence
of the RBF network hyperparameters on model performance,
the number of basis functions M and the normalized smothing
factor σn were varied, and the resulting model accuracy was
evaluated using the mean squared error (MSE). The results are
presented in Figure 11b. The analysis shows that for M = 10 and
σn = 0.5, the model achieves a well-suited balance between accuracy

and complexity. Increasing M or σn beyond this point does not
significantly improve the prediction quality but leads to greater
overlap between basis functions, causing parameter redundancy and
reduced identifiability.

The results are presented in Figure 12, comparing the measured
position with the analytical model and the RBF-based model.
The comparison includes position, velocity, and acceleration as
well as the pitch angel φ. The time evolution of φ closely
resembles that of the generalized coordinate q, given their functional
relationship via the arctangent in Equation 1. For small angles, φ is
approximately linearly proportional to q, which is clearly reflected
in the experimental and simulated results shown in Figure 12.

For the following evaluation of the overall modeling, the
statistical error measure normalized root mean squared error
(NRMSE) was selected:

NRMSE (y) =
√ 1

N
∑N

k=1
(ymeas,k − ycalc,k)

2

ymax − ymin
. (41)

Here, N denotes the number of samples, while ymeas and ycalc
represent the measured and calculated signals, respectively. The
comparison includes the analytical model and the physics-informed
RBF network. The results are summarized in Table 2.

The RBF-based model achieves a significantly lower NRMSE
across all tested scenarios, particularly in the transient regime and
during oscillatory behavior. This confirms that augmenting the
analytical model with a data-driven RBF correction improves the
model’s capability to capture nonlinearities and dynamic effects that
are not fully represented in the analytical formulation.

A zoomed-in view of the data for the time interval between 24
and 30 s is shown in Figure 13, highlighting the dynamic differences
between themodels. Overall, the trained RBF network demonstrates
excellent agreement with the experimental results.

While the analytical model captures the experimental data
reasonably well and reproduces the static behavior effectively, it
struggles to accurately represent the transient behavior during
the settling process. This limitation stems from imprecise
parameterization of the viscous effects and the presence of plastic
effects in the beam material. For the analytical model, new
parameters would need to be defined and optimized through a
labor-intensive process for each actuator to improve accuracy.
The analytical model exhibits a noticeable time lag and a stronger
damping effect, which leads to an underestimation of overshoot
and a failure to reproduce the oscillatory characteristics observed
in the experimental data during fast input transitions. In contrast,
the physics-informed RBF model closely matches the measured
response, accurately capturing overshoot, phase delay, and the
amplitude of oscillations. This improved performance demonstrates
the capability of the RBF-model to represent complex nonlinear and
transient dynamics that are not sufficiently captured by the analytical
model. These findings support the hybrid modeling approach as
an effective method for improving predictive accuracy in highly
dynamic regimes.

Interestingly, the identification process using the RBF network
allows for the direct derivation of the physical characteristic curves,
as shown in Figure 14. The analytical characteristic curves (black
lines) are comparedwith theRBF-based curves (red and green lines).
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The RBF network captures the force characteristic curve with
high accuracy, showing minimal deviation from the analytical
model. The RBF-based curves for the two dielectric elastomer layers
also align closely with the analytical model, demonstrating good
agreement across the entire range. The most significant discrepancy
is observed in the damping characteristic curve. This is where the
model uncertainties, particularly related to dynamic and viscous
effects of the beam, are most pronounced. This is due to the
fact that the beam was modeled using a linear damping behavior,
which is insufficient to improve modeling quality. One potential
approach to enhance accuracy would be to explore alternative
dynamic friction models for the beam and integrate them into
the analytical model, which would likely yield more accurate
results. However, this would involve a substantial modeling effort
and would still not address other sources of inaccuracies and
uncertainties.

Small asymmetries in the force and capacitance curves are
evident, which are effectively captured by the RBF model but are
absent in the analytical model. The comparison of the derived
characteristic curves also includes the derivative of the capacitance
∂C
∂q

, which exhibits some deviations between the analytical and RBF-
based models. These discrepancies can be reasonably explained
and are attributed to minor geometric deviations in the actuator
assembly.The actuators are not perfectly identical, and the alignment
of the bearings on the left and right sides of the actuator is
not precisely matched. The RBF-based model successfully captures
these variations, reflecting the influence of small asymmetries
and non-idealities in the real system. In contrast, the analytical
model assumes perfect symmetry and alignment, leading to a
smoother representation that does not fully account for these subtle
discrepancies.

The obtained results highlights the ability of the RBF network
to follow the experimental data precisely, including dynamic
transitions. These underscore the flexibility and accuracy of the RBF
network, particularly in capturing nonlinearities and asymmetries
that are not accounted for in the analytical model.

The cross-validation results, as shown in Figure 15, demonstrate
how the models respond to new measurement data not used in the
identification process. This validation is critical for assessing the
generalizability and robustness of both the analytical model and the
RBF-based model.

The results from the cross-validation, as depicted in the figure,
closely resemble the trends observed in Figure 12. The RBF model
exhibits excellent agreement with the experimental data across
all tested variables, including position, velocity, and acceleration.
The analytical model continues to capture the general trends
well, particularly in steady-state behavior, but shows limitations in
transient dynamics.

The RBF network model demonstrates excellent generalizability
by accurately predicting system behavior for previously unseen data.
This robustness validates the model’s applicability to new conditions
without requiring extensive reparameterization.

The main intention of our work was not to compare the
RBF model with the best possible analytical model but rather to
demonstrate a systematic approach for deriving a dynamicmodel for
complex DE systems by combining physics-based approaches with
the useful extension of data-drivenmodels in order to better capture
inaccuracies and uncertainties with comparatively little effort. In

the analytical model a perfectly symmetrical configuration was
assumed with identical parameters for the DE actuators. Of course,
the model could be modified and refined to match the experimental
results more closely. To achieve this, it would be necessary to not
only adjust the parameters describing the material behavior of
the DE material and the beam but also to account for geometric
asymmetries.

The entirety of all parameters could then be adjusted using
an optimizer by minimizing the sum of squared errors. Since
this problem represents a nonlinear optimization problem
with multiple parameters, it is well known that multiple local
minima may exist, and there is no guarantee that a global
minimum can be reached. Overall, these steps lead to a highly
complex and time-consuming process of model improvement
and optimization.

To simplify the parameterization of the model for new actuator
prototypes in systems and control engineering applications, the RBF
model was introduced. The complex analytical modeling process
could be replaced by a simple model based on RBF networks,
which are easier to parameterize since the unknown parameters
enter linearly. Consequently, the resulting optimization problem
is a simple convex problem for which a unique global minimum
always exists.

While the proposed RBF model offers notable advantages
in terms of accuracy and interpretability, it also faces inherent
limitations. A central challenge is its limited scalability in high-
dimensional or strongly nonlinear input spaces. As the input
dimensionality increases or the system exhibits complex nonlinear
behavior such as sharp gradients, discontinuities, or abrupt
transitions in behavior, the number of required basis functions
can grow rapidly, resulting in a significantly enlarged parameter
space and substantial computational effort. This phenomenon, often
referred to as the curse of dimensionality, may hinder the model’s
efficiency and generalizability in more complex scenarios.

Another important aspect is the need for sufficient excitation
of all relevant dynamic modes during the identification phase.
The model is only capable of capturing physical behaviors that
are adequately stimulated in the training data. Consequently,
its predictive performance is restricted to the domain spanned
by the experimental input signals. Extrapolation beyond this
range may lead to significant inaccuracies due to the inherently
local approximation properties of RBF networks. However, by
carefully designing the excitation signals during experiments,
it is possible to ensure that the system operates within the
trained domain during subsequent use, thereby avoiding the need
for extrapolation.

The risk of overfitting must also be taken into account. A large
number of basis functions or excessive overlap (e.g., σn ≪ 0.5) can
introduce strong correlations among parameters, thereby reducing
identifiability and compromising model robustness. However, due
to the linear-in-parameters structure of the RBF formulation, the
regression matrix can be systematically analyzed. By evaluating
its rank and condition number, potential overfitting issues can be
detected and mitigated.

The performance of the RBF-enhanced model depends on the
careful selection of hyperparameters such as the number and width
of basis functions. These must be chosen to balance model accuracy
with generalization capability.
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6 Conclusion

This work successfully demonstrates the development and
implementation of a hybrid modeling framework for a bistable
dielectric elastomer (DE) actuator system, combining physics-
based analytical methods with radial basis function (RBF) neural
networks. The proposed bistable DE actuator is analyzed in terms
of its mechanical configuration and bistable characteristics. A
physics-based modeling approach is employed to capture the key
features of the actuator, leading to the derivation of a reduced-order
model based on analytical considerations. To improve the accuracy
and to achieve generalizability of the model, a hybrid approach
is introduced, integrating physics-informed structures with data-
driven methodologies. The model is enhanced by incorporating
experimental data and RBF neural networks.

While the analytical model performs well for design purposes
and captures general characteristics, it requires significant parameter
tuning for each physical actuator prototype. In contrast, the RBF-
based model can easily adapt to uncertainties in assembly, making
it more flexible and efficient. The proposed approach effectively
addresses challenges posed by nonlinearities and unmodeled
dynamics, ensuring a highly accurate representation of the system’s
performance. Experimental results confirm the model’s capability
to capture both static and dynamic behaviors, including transient
responses and bistable switching, with high fidelity. By combining
physical principles with data-driven methods, the model achieves
improved accuracy and generalizability, while reducing the necessity
on extensive datasets. Future research will aim to use the proposed
model for the development of a model-based controller specifically
tailored to the bistable dielectric elastomer actuator, enhancing its
performance and control accuracy.
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