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Introduction: The Robot Operating System (ROS) is a widely used framework
for robotic software development, providing robust client libraries for both C++
and Python. These languages, with their differing levels of abstraction, exhibit
distinct resource usage patterns, including power and energy consumption–an
increasingly critical quality metric in robotics.

Methods: In this study, we evaluate the energy efficiency of ROS two nodes
implemented in C++ and Python, focusing on the primary ROS communication
paradigms: topics, services, and actions. Through a series of empirical
experiments, with programming language, message interval, and number of
clients as independent variables, we analyze the impact on energy efficiency
across implementations of the three paradigms.

Results:Our data analysis demonstrates that Python consistently demandsmore
computational resources, leading to higher power consumption compared to
C++. Furthermore, we find that message frequency is a highly influential factor,
while the number of clients has a more variable and less significant effect
on resource usage, despite revealing unexpected architectural behaviors of
underlying programming and communication layers.
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1 Introduction

Robots play an important role in many areas of our society. They are commonly
used in manufacturing, medicine, transportation (including self-driving vehicles), and as
domestic allies (e.g., vacuum cleaners) (Ciccozzi et al., 2017). A great part of those robots
depends on increasingly complex software, for which the Robot Operating System (ROS)
(Stanford Artificial Intelligence Laboratory, 2024; Steve, 2011) is one of the most important
frameworks.

ROS is considered the de facto standard for robotic systems in both, research
and industry (Koubaa, 2015). It provides an abstraction layer that enables specialists
from different areas to integrate their software into one robotic system. In addition,
ROS comprises a comprehensive set of open-source libraries and packages. With over
half a billion ROS packages downloaded in 2020, it has also significantly encouraged
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code reuse (Stanford Artificial Intelligence Laboratory et al., 2024).
ROS currently has twomain versions, ROS one andROS 2, with end-
of-life of ROS 1 being set to 2025. In this paper, we focus only onROS
2, the only supported distribution in the near future, using ROS as
nomenclature.

Software energy efficiency has been a recurrent concern
among software developers (Pinto and Castor, 2017). This is
stimulated by factors that include environmental impact, budget,
and battery-dependent devices (Steve, 2011; Swanborn and
Malavolta, 2020), which also applies to the robotic domain. Simple
software architectural decisions can make an impact on the energy
efficiency of robotic software (Chinnappan et al., 2021), where
the programming language is known to be a determinant factor
(Pereira et al., 2017; Albonico et al., 2024). In the case of ROS,
C++, and Python are the two main programming languages
thoroughly supported and documented by the community.
Therefore, practitioners tend to start by choosing one of them,
which currently must be done with a limited understanding of their
impact on ROS systems’ energy efficiency.

In this paper, we conduct a systematic analysis of the energy
consumption associated with message exchanges among ROS nodes
implemented in C++ and Python. This study builds upon our
previous work (Albonico et al., 2024), which presented initial
findings on the energy impact of implementing ROS nodes in
different programming languages, motivating further investigation.
In that study, we observed two key challenges: (i) Python nodes
exhibited higher resource usage, resulting in reduced energy
efficiency, and (ii) high message frequencies constrained scalability
across multiple nodes. However, the experiments were limited
in scope, with only a few independent variables, which were
randomly defined. To address these limitations, this paper extends
the investigation by exploring four independent variables: (i)
the programming language of the ROS nodes; (ii) the ROS
communication pattern1 (e.g., topic, service, or action); (iii)
the frequency of message exchange; and (iv) the number of
clients/subscribers per server/publisher. Each algorithm in the study
is adapted from concrete examples on the ROS tutorials Wiki page2,
carefully adapted for this study. The experimental results revealed
the programming language and message frequency as consistent
key factors influencing energy efficiency across different ROS
communication patterns. Additionally, the number of clients had
an impact on power consumption, particularly for server/publisher
nodes, although to a lesser degree. Interestingly, increasing the
number of clients/subscribers sometimes resulted in unexpected
behaviors, such as reduced power consumption in client nodes.
This observation raises important questions that foster further
investigation.

The target audience for this study includes researchers and
practitioners involved in developing ROS-based systems. This
work provides valuable insights to help optimize ROS systems,
make informed design decisions, and conduct experiments in
energy-efficient robotic systems. It encourages researchers to
focus their further studies, which may consider other ROS
architectural models, such as multi-node composition within single

1 https://wiki.ros.org/ROS/Patterns/Communication

2 https://docs.ros.org/en/galactic/Tutorials.html

processes. Additionally, it supports practitioners in selecting suitable
programming languages for their specific robotics projects, thereby
contributing to the development of greener robotic software.

This paper contributes with insights into the energy
consumption and power of ROS nodes communication across
different paradigms and programming languages. It can used as
a source of inspiration for developing greener robotic software,
promoting environmentally conscious practices in robotic software
development. It also provides a methodological framework
and practical guidance for conducting further experiments
in this field. Additionally, we provide a complete replication
package and experimental data to benefit both researchers and
practitioners. Finally, despite the relevant energy-related results,
some combination of independent variables resulted in unexpected
behaviors that must be shared with ROS community and can lead to
important improvements ROS 2 software layers.

2 Background

This section presents the fundamental concepts of ROS,
its communication and programming premises, and discusses
Running Average Power Limit (RAPL)3 for energy consumption
measurements.

2.1 Robot operating system (ROS)

ROS is a standard robotics framework in both, industry and
research, for the effective development and building of a robot
system (Santos et al., 2016). Currently, there are many distributions
of ROS available, grouped into two main versions (ROS 1 and ROS
2). ROS 2 completely changed the architecture compared to the
first version, which now massively relies on the decentralized Data
Distribution Service (DDS) (Pardo-Castellote, 2003).

A ROS software architecture consists of four main types: nodes,
topics, actions, and services. Nodes are executable processes, usually
implementing a well-defined functionality of a ROS system, which
can communicate asynchronously or synchronously. Asynchronous
communication relies on the publisher/subscriber pattern, while
asynchronous communication can be implemented over services
or actions. All three communication patterns are presented in
the sequence.

Figure 1 depicts a Unified Modeling Language (UML)
sequence diagram that represents publisher/subscriber-based ROS
communication. In this communication model, the Publisher sends
messages to a topic, and the ROS Middleware routes these messages
to subscribed nodes (represented by the Subscriber component).
This is a unidirectional flow commonly used for continuous data
streams, such as sensor data4.

Figure 2 depicts a Unified Modeling Language (UML) sequence
diagram that represents service-based ROS communication. The

3 https://greencompute.uk/Measurement/RAPL

4 https://answers.ros.org/question/295426/why-is-pubsub-the-ideal-

communication-pattern-for-ros-or-robots-in-general-instead-of-

requestresponse/
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FIGURE 1
UML sequence diagram for publisher/subscriber communication.

diagram captures the synchronous nature of services, where a client
sends a one-time request to the server via the ROS Middleware. The
server processes the request and sends the result back to the client.
This direct kind of interactionmakes services suitable for operations
that trigger specific robotic actions, such as manipulating an object
with a gripper, which requires a synchronous response to identify
whether the operation was successful or not.

Figure 3 depicts a Unified Modeling Language (UML) sequence
diagram that represents action-based communication in ROS. The
diagram features two primary components: the action client and
the action server. The client sends a goal task to the server, which
optionally accepts it. Once the goal is accepted, the client requests the
result of the task. While the task is in progress, the server can send
periodic feedback to the client, providing updates on the task’s status.
When the task is completed, the server sends the final result to the
client. This interaction can be applied in navigation scenarios, where
a navigation goal is sent to the robot. During the navigation process,
the robot provides status updates, and once the task concludes, it
notifies whether the goal was reached or the task failed.

2.1.1 ROS programming
ROS is recognized for its flexibility in supporting multiple

programming languages, allowing developers to choose the
language that best suits their needs. As depicted in Figure 4,
all client libraries in ROS share the same underlying software
layers. From a bottom-up perspective, this architecture begins
with the communication middleware and rmw adapter (ROS
Middleware Adapter), which together enable the use of various
middleware solutions without requiring modifications to ROS 2
itself. Above the rmw adapter, the rmw layer serves as an interface
between the lower and upper layers. At the top of this stack,
the rcl layer provides a high-level API for programming ROS
applications. Finally, language-oriented libraries, such as rclcpp5 and

5 https://github.com/ros2/rclcpp

rclpy6, lie over the rcl layer, enabling developers to create ROS 2
algorithms in their chosen language.

2.2 Running average power limit

Modern processors provide a Running Average Power Limit
(RAPL) interface for power management, which reports the
processor’s accumulated energy consumption, and allows the
operating system to dynamically keep the processor within its limits
of thermal design power (TPD)8. RAPL is a recurrent profiling tool
in previous related work (Zhang and Hoffman, 2015; Hähnel et al.,
2012; Khan et al., 2018; von Kistowski et al., 2016). It keeps counters
that can provide power consumption data for both, processor
and primary memory. CPU is proven to be one of the most
energy-consuming parts of a computer system (Hirao et al., 2005;
von Kistowski et al., 2016; Pereira et al., 2017). Despite the primary
memory usage not being a usual determinant factor in other studies
(von Kistowski et al., 2016; Pereira et al., 2017), it is one of the main
RAPL metrics and in this work will be used to determine whether it
is still the case for ROS programming.

There are different RAPL-based energy profilers publicly
available, among which PowerJoular (Noureddine, 2022) stands out.
It has been recurrent in energy-efficiency studies in the literature
(Thangadurai et al., 2024; Noureddine, 2024; Yuan et al., 2024).
PowerJoular offers real-time insights into energy consumption
patterns across diverse hardware components, such as CPUs, GPUs,
and memory subsystems. Additionally, it facilitates granular energy
measurements of running processes, enabling precise analysis of the
energy consumption of individual ROS 2 components.

3 Experiment definition

The experiment of this paper is defined after the Goal Question
Metric (GQM)model (Basili et al., 1994). It starts with awell-defined
goal, which is then refined into research questions that are answered
by measuring the software system using objective and/or subjective
metrics.

3.1 Study goal

This study goal is to analyze ROS programming with C++
and python languages for the purpose of understanding the
extent with respect to energy efficiency from the point of view
robotics researchers and practitioners in the context of ROS nodes
communication patterns.

6 https://github.com/ros2/rclpy

7 https://www.intel.com/content/www/us/en/developer/articles/

technical/software-security-guidance/advisory-guidance/running-

average-power-limit-energy-reporting.html

8 https://www.intel.com/content/www/us/en/developer/articles/

technical/software-security-guidance/advisory-guidance/running-

average-power-limit-energy-reporting.html
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FIGURE 2
UML sequence diagram for service communication.

FIGURE 3
UML sequence diagram for action communication.

3.2 Questions

From our goal, we derive the following research questions.

• RQ1: How is the energy efficiency of each ROS
communication pattern?

In ROS, the asynchronous pattern implemented through
topics is a common and straightforward method for
message exchange among nodes. However, the other two
synchronous patterns, service and action, provide essential
features enabling advanced synchronization and reliability.
Since synchronous communication patterns rely on session-
oriented connections, they are expected to consume more
computational resources. However, the impact of these design
choices on the energy efficiency of ROS systems remains
unexplored.

• RQ2: How do the C++ and Python implementations affect
resource usage and energy consumption when handling
different communication patterns among ROS nodes?

The motivation for this research question is that each language
depends on its canonical client library, i.e., rclcpp and rclpy.
Despite those libraries being developed following the same design
principles, both languages have distinct concepts, such as compiled
vs. interpreted, multi-threading management, abstraction level, etc.,
that may lead to particular implementations, and impact resource
usage and energy consumption.

• RQ3: How does language efficiency scale over different
frequencies of communication and number of clients?

Since communication is largely managed by lower-level layers,
such as the DDS (see Figure 4), the efficiency differences between
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FIGURE 4
Underlying layers of a ROS node programming7.

languages in simple examples may be minimal. However, message
packing and unpacking are processed locally, which can impact
both, resource usage and energy efficiency. Additionally, the
number of clients can trigger multi-threading, a feature worth
investigating, particularly given Python’s limitations. Python native
multi-threading is limited by its Global Interpreter Lock (GIL)9, so
achieving full parallelism often requires external libraries.

3.3 Metrics

Table 1 describes the metrics used for measurements during the
experiments. Energy consumption, power and execution time are the
keymetrics used to assess the energy efficiency of a ROS node, while
CPU and memory usage are metrics that help us to understand how
intensive is the ROS node in terms of computational processing, and
then reason about the measured energy efficiency.

All the measurements refer to the ROS node operating system
process. The energy consumption measurements take into account
the two main processing factors: CPU and memory. After the
energy consumption is measured, we calculate the power with
the following formula: P = EC

t
, where P is power, EC is energy

consumption, and t is the total ROS node execution time in seconds.
Power measurements help identify transient effects that energy
consumption (a cumulative metric) might mask. We give more
details of the measurement process and tools in Section 5.3.

4 Experiment planning

The experiment depends on six algorithms that cover the
three ROS nodes’ communication patterns (i.e., topics, services, and
actions), implemented in both languages, Python and C++. The

9 https://realpython.com/python-gil/

algorithms are based on ROS Tutorials Wiki pages10, which provide
concise examples. They are all independent from a physical robot,
seeking full controllability during the experiments.

4.1 ROS 2 algorithms

Table 2 depicts the six algorithms, with a short description,
details of their implementation, their dependencies, and their
complexities (i.e., logical lines of code–LLOC, and the algorithm
McCabe’s cyclomatic complexity–MCC), the last two, for a matter of
illustration of the compatibility between Python and C++ algorithm
implementations. For the implementation, we began with the
Python version of each algorithm, as it is the language we are most
familiar with. Subsequently, we used the ChatGPT tool11 (GPT-4o
version) to generate compatible C++ versions, which we manually
reviewed to ensure compatibility and correctness.

It is evident that the C++ implementations resulted in greater
LLOC, particularly for the action server and action client, where
the difference compared to Python nearly doubled, as highlighted
in red. It is important to note that exact equality is not possible
due to the inherent differences between the languages. Despite
variations in code size, all the algorithms exhibit similar complexity
(and exactly the same for service server, as highlighted in blue),
reflecting their overall similarity. The larger difference observed in
the size and complexity of action client implementation is due to
that node being folded into two services (one for sending the task and
another for retrieving the result) as well as topic communication (for
receiving task feedback). The size difference is compatible with the
other algorithms if we consider the sum of the difference between
the service client and subscriber, for example,. The complexity is
similar to the service client, and could not be reduced due to the
complexity of synchronizing the actions’ execution callbacks inC++.
Furthermore, all the algorithms lie in the complexity range 1–10
which classifies them as simple (Thomas, 2008).

The table presents the algorithms in pairs, as they execute in the
experiments (see Section 5.2). Algorithms 1 and 2 implement the
publisher and subscriber pair, which enable the publisher to exchange
different message types with the subscriber over a specific topic.
Algorithms 3 and 4 implement the service server and service client
pair, where the service client requests the service server to do a simple
calculation of adding two integer numbers and receives its response.
Algorithms 5 and 6 implement the action server and action client
pair, where the action client sends a task to the action server (i.e.,
to calculate a Fibonacci sequence) via a service goal, receives each
value of the sequence via a feedback topic, and at the end, receives
the notification of the task completeness via a result service.

4.2 Experiment variables

Table 3 summarizes the variables used in the experiments. It
categorizes the variables into three main groups: independent, static,
and dependent variables.

10 http://wiki.ros.org/ROS/Tutorials

11 https://chatgpt.com/
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TABLE 1 Experiment metrics.

Metric Unit Description

Energy Consumption Joules (J) Amount of energy necessary to run the ROS node

Power Watts (W) Energy consumption rate when running the ROS node

Execution time Milliseconds (ms) Total time spent to run a ROS node

CPU usage Percentage (%) Average CPU percentage used during a ROS node execution

Memory usage Kilobytes (KB) Amount of memory used during a ROS node execution

TABLE 2 ROS2 algorithms subject of investigation with their dependencies and complexity measurements.

Node Description Main dependencies LLOC python LLOC C++ MCC python MCC C++

1.Publisher ROS node that continuously
sends messages to a topic

rclpy/rclcpp,

std_msgs

45 58 2.3 1.7

2.Subscriber ROS node that subscribes to
the topic and reads the
published messages

rclpy/rclcpp,

std_msgs

52 67 2.2 1.8

3.Service Server ROS node that provides a
service

rclpy/rclcpp,

example_interfaces

40 67 1.8 1.8

4.Service Client ROS node that consumes the
server service

rclpy/rclcpp,

example_interfaces

52 82 2.2 3.5

5.Action Server ROS node that receives a goal
and returns its lifetime state
feedback

rclpy/rclcpp,

action_tutorials_

interfaces

53 85 2 1.3

6.Action Client ROS node that sends the goal
to the server

rclpy/rclcpp,

action_tutorials_

interfaces

36 96 1.2 3.2

1. Independent variables: these are the variables that we control
during the experiment. They include the ROS algorithm pair,
which refers to the specific pairs of algorithms that implement
different communication patterns in ROS; themessage interval,
which defines the time gap between message exchanges; the
number of clients, which specifies how many subscribers
or clients are interacting with the server or publisher;
and the programming language used to implement the
ROS algorithms.

2. Static variables: these are the variables that do not
change during the experiments. They include the ROS
distribution in the Docker containers (where the ROS
algorithms run), and the environment setup, which
refers to the computer and Docker setup for the
experiments.

3. Dependent variables: these are the measurements during
experiment execution, which use the metrics previously
described in Table 1. They include CPU usage, memory usage,
and energy consumption. They reflect the system’s performance
in terms of resource utilization, providing insight into how
different algorithm pairs and configurations affect the overall
efficiency of the system.

Table 4 presents the values of the experimental variables. The
pairs of algorithms and the programming languages have been
discussed previously. The message interval ranges from 0.05 (20
messages per second) to 1.0 (1 message per second). These intervals
have been selected with real-world applications in mind, where
critical robotic tasks such as navigation and telemetry typically
require short intervals (e.g., the joystick package by default relies
on 20 messages per second12). In contrast, less time-sensitive
applications, such as monitoring systems, can tolerate moderate
rates (0.5–1.0 s). Longer intervals, which might be suitable for
logging applications, are not considered as extended message
intervals tend to lead to inexpressive resource usage. The number
of clients increases gradually from 1 to 3, a range that is realistic
for small to medium-sized robotic applications on GitHub13. This
range also allows us to get insights into how the algorithm’s
efficiency scales.

12 https://index.ros.org/p/joy/

13 https://github.com/IntelAgir-Research-Group/frontiers-robotics-ai-

rep-pkg/blob/main/data-analysis/repos.csv
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TABLE 3 Experiment variables.

Type Name Category Description

Independent variables

ROS Algorithm Pair Nominal The pairs of algorithms subject to this study, which implement the different ROS communication
patterns

Message Interval Ratio The interval between each message exchange

Number of Clients Ratio The number of clients/subscribers for each server/publisher

Programming Language Nominal The programming language used to implement the ROS algorithm pairs

Static variables
ROS distribution Nominal ROS distribution on the Docker containers used for running the experiments

Environment Setup Nominal The computer machine and Docker environment where the experiments are run

Dependent variables

CPU usage Ratio Average percentage of CPU usage during a experiment run

Memory usage Ratio Average percentage of memory usage during a experiment run

Energy consumption Ordinal Average energy consumption during a experiment run

TABLE 4 Independent variable values.

Variable name Values

ROS Algorithm Pair [publisher, subscriber], [service server, service client],
[action server, action client]

Message Interval (s) 0.05, 0.1, 0.2, 0.5, 1.0

Number of Clients 1, 2, 3

Programming Language Python, C++

The factors of this study are the four independent variables,
with two–three values each, where the number of treatments can be
calculated as following:

Number of Treatments =
k

∏
i=1

Li = L1 × L2 ×⋯× Lk

where:

L1 = 3 (ROSAlgorithmPair) ,  L2 = 5 (MessageInterval)

L3 = 3 (NumberofClients) ,  L4 = 2 (ProgrammingLanguage)

Thus, the total number of treatments is:

3× 5× 3× 2 = 90

The treatments are repeated multiple times (see Section 5.2)
to enable statistical inference from the measurements. We provide
additional details regarding the experiment execution in the
following section.

5 Experiment execution

In this section, we define hardware and software components
used in the experiments and detail how the algorithms are

orchestrated. For amatter of transparency and reuse, we also provide
a public replication package14.

5.1 Instrumentation

Figure 5 illustrates the deployment of the experimental artifacts
on a single desktop computer with the following specifications:
Linux Ubuntu 22.04 operating system, kernel version 6.2.0–33-
generic, 20 GB of RAM, and an Intel(R) Core(TM) i5-10210U CPU
at 1.60 GHz. Each algorithm was implemented as a ROS 2 node
using the ROS Humble distribution15, which has an end-of-life
(EOL) date in May 2027, and distributed as part of a single ROS 2
package with all the implementations. In the experiments, each ROS
node runs in a separate Docker (version 24.0.7) container. All the
procedures are inside the node’s callback functions, so ROS can spin
them, taking care of underlying threading16. Algorithm executions
are orchestrated by the ros2 run command, which speeds up
automation and guarantees the same underlying layers for every
execution.

To eliminate concurrency, all experiments were conducted on
a dedicated machine, ensuring no other end-user applications
were running. The operating system’s power-saving mode was
set to performance, ensuring unrestricted power usage. This
configuration was crucial to maintain a controlled environment,
providing consistent priority for each execution. Additionally, we
assigned a priority level of 0 (the highest as non-root) to the
processes corresponding to the algorithms under experimentation,
granting them priority access to the machine’s resources. Between
each experiment, a 30-s interval was observed to allow the

14 https://github.com/IntelAgir-Research-Group/frontiers-robotics-ai-

rep-pkg

15 https://docs.ros.org/en/humble/index.html

16 http://wiki.ros.org/roscpp/Overview/Callbacks%20and%20Spinning

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2025.1548250
https://github.com/IntelAgir-Research-Group/frontiers-robotics-ai-rep-pkg
https://github.com/IntelAgir-Research-Group/frontiers-robotics-ai-rep-pkg
https://docs.ros.org/en/humble/index.html
http://wiki.ros.org/roscpp/Overview/Callbacks%20and%20Spinning
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Albonico et al. 10.3389/frobt.2025.1548250

FIGURE 5
Adapted UML deployment diagram of experiment instrumentation.

machine to cool down, which by experimental observation is
enough waiting time for the CPU to return to its baseline
usage percentage.

5.2 Algorithms execution

The algorithms are implemented in pairs, as shown in Table 2,
consisting of a publisher/server and a subscriber/client. Each pair
executes repeatedly according to the defined message interval until
reaching a total run-time of 3 min. The total run-time has been
carefully chosen so the ROS nodes have time to capture transient
effects like initialization overhead, start-up energy spikes, and
system state changes, and to average out possible transitional
background processes that may insert noise to the measurements.
It also makes the experiment repetitions be completed in a couple
of days and enables enough data points for statistical analysis.
When multiple subscriber/clients are present, each performs the
same communication with the publisher/server in parallel. Each
round typically takes ≈4.5 minutes on average to complete, where
a complete round of the 90 treatments takes ≈405 minutes (or
6.75 h). To ensure statistical significance, each treatment is repeated
20 times, resulting in an overall execution time of ≈135 hours
(≈5.6 days).

• For nodes 1 and 2 (cf. Table 2), the publisher continuously sends
a preset message to the subscriber at the specified interval. To
avoid messages to be lost in high frequency, the subscriber is set
with a message querying of 10.

• For nodes 3 and 4, the service client establishes a connection
with the service server, uses its service (e.g., performing a
calculation with two integers), and receives the result. The
connection remains active throughout the experiment to focus
on evaluating communication exchanges.

• For nodes 5 and 6, the action client connects to the
action server once at the start of the experiment. It

continuously sends goals (e.g., calculating a Fibonacci
sequence), receives intermediary feedback, and obtains the final
sequence as the result.

5.3 Resource profiling

Weprofile energy consumption usingPowerJoular (Noureddine,
2022), which leverages Intel’s Running Average Power Limit Energy
Reporting (RAPL)17, measuring both, CPU utilization and energy
consumption. PowerJournal is an energy monitoring tool that
leverages the RAPL interface available in Intel processors tomeasure
power consumption. RAPL provides energy estimations at different
levels, such as the package (CPU socket) and the DRAM. These
estimations are derived from internal processor models rather than
direct physicalmeasurements but have been shown to be accurate for
comparative energy consumption analysis. PowerJournal interacts
with RAPL via the powercap framework in Linux, periodically
reading energy counters exposed through/sys/class/powercap. This
allows us to measure energy consumption at fine-grained intervals
with minimal overhead. For the experiments, PowerJoular is
configured to monitor the energy usage of each ROS node’s
processes individually, capturing data at a fixed rate of one
measurement per second (with no option to increase the frequency).
To gather more granular data on memory usage and CPU
utilization, we developed a customized Python script using the
psutil18 library. This script records measurements at a rate of 10
samples per second.

17 https://www.intel.com/content/www/us/en/developer/articles/

technical/software-security-guidance/advisory-guidance/running-

average-power-limit-energy-reporting.html

18 https://pypi.org/project/psutil/
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5.4 Data analysis

We begin the data analysis by visually exploring the
distribution of power consumption across different combinations of
experimental factors: the programming languages Python and
C++, message exchange frequency, and the number of clients.
After examining the visual data representation, we proceed with a
rigorous statistical testing strategy to assess and validate the primary
interpretations. In the following section, we detail the statistical
testing approach applied to our data, which can be replicated via
replication package19.

5.4.1 Statistical tests
The process of statistical testing starts with an evaluation of key

assumptions necessary for parametric tests, such as the distribution
of the data and the equality of variances across groups. This
approach involves four phases, each dedicated to confirming these
assumptions and determining the most appropriate test.

5.4.1.1 Normality assessment
The first step is to verify whether the data follows a normal

distribution, as many parametric tests, including ANOVA (St and
Svante, 1989), rely on this assumption. To assess normality, we use
the Shapiro-Wilk test (Shapiro andWilk, 1965), which is particularly
effective for small sample sizes. If the data does not meet normality,
we apply Box-Cox transformations (George andCox, 1964) to adjust
it. Once normality is nearly achieved, we proceed with detecting and
removing outliers using the Interquartile Range (IQR) method. We
performed a post hoc analysis to assess the impact of outlier removal,
and observed that this step removes only extreme values (less than
5%), where a representative part of the core dataset is still available
for statistical tests.

5.4.1.2 Homogeneity of variance evaluation
Next, we examine the assumption of equal variances across

groups, another important condition for tests like ANOVA.
Ensuring that the variances within groups are similar allows for valid
comparisons. Levene’s test is applied here, as it is still consistent even
with violations of normality.

5.4.1.3 Parametric and non-parametric testing
When both normality and homogeneity of variance are satisfied,

we proceed with the one-way ANOVA to test for differences in
means across groups. If the analysis involves just two groups, the t-
test is applied instead. With the violation of any of the assumptions,
we rely on non-parametric alternatives, such as Welch’s ANOVA
(Bernard, 1951) and the Kruskal–Wallis test (Kruskal and Wallis,
1952), which do not require normality or equal variances.

5.4.1.4 Post-hoc analysis
If statistical test results suggest significant group differences,

post hoc analysis is conducted to pinpoint where the differences
occur. For parametric tests, we rely on Tukey’s Honestly Significant
Difference (HSD) test (Abdi and Williams, 2010), as it accounts

19 https://github.com/IntelAgir-Research-Group/frontiers-robotics-ai-

rep-pkg/tree/main/

for multiple comparisons, reducing the risk of false positives.
In cases where non-parametric tests were used, we rely on
Dunn’s test (Olive Jean Dunn, 1961), which offers robustness in the
face of normality violations.

6 Results

In this section, we present the key results of the three studied
communication patterns and provide a concise discussion of the
observed data based on statistical tests. Finally, we compare the
measurements across the different communication patterns. All the
results presented in this section, have been carefully and manually
inspected, and the runs that result in unexpected measurements
have all been confirmed by re-execution.

6.1 Publisher and subscriber

We begin the analysis with the publisher and subscriber
data, first describing the mean/total values of each measurement
across different configurations. Next, we illustrate the primary
data distributions, followed by the presentation of the statistical
testing results.

6.1.1 Publisher
Table 5 summarizes the measurements of the publisher node

across the experiments. Across all metrics, C++ demonstrates
consistently superior efficiency than Python, particularly in
power/energy consumption and CPU utilization (both being
directly related). Python exhibits higher resource overhead,
especially at high message frequencies of 0.05 and 0.1 s. Memory
usage for both remains stable over different configurations, with
Python resulting at approximately 41,000 KB on average, nearly
double that of C++, which averages around 21,000 KB. The
little memory variation across different configurations for both
languages is comprehensible since the algorithms remain the same
and there is only message replication, with no special pre/post-
processing. Increasing the number of clients seems to raise resource
consumption for both implementations slightly, and the effect
appears to be less significant compared to variations caused by
message interval. Furthermore, at the highest frequency (0.05-
s message interval), the number of clients does not result in a
consistent increasing in power consumption for both languages,
despite the grow in CPU usage. However, it is not possible to
observer an important decrease either. We carefully investigated
the execution logs, and we could not identify any issues. Therefore,
we assume this is due to the overhead of such a high-frequency
message exchange.

Figure 6 illustrates the distribution of average power
consumption for the publisher across all repetitions. All figures
show C++ with consistently lower power consumption compared
to Python. It is also visually evident that shorter message intervals
are associated with higher power consumption. Additionally, in
most cases, power consumption tends to increase slightly with the
number of clients. An exception to this trend is observed at 0.05-s
message intervals (Figure 6A, where Python exhibits an anomalous
behavior previously highlighted in Table 5, with a slight reduction
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TABLE 5 Results of publisherwith different frequencies and number of clients over 20 executions.

Language # Clients Msg. Interval (s) Avg. CPU
utilization (%)

Avg. Memory
utilization (KB)

Total CPU
energy (J)

CPU power (W)

C++

1

0.05 0.59 21,009 48.82 0.27

0.1 0.32 20,837 25.45 0.14

0.25 0.13 20,908 11.1 0.06

0.5 0.07 20,862 6.19 0.03

1.0 0.05 20,856 4.05 0.02

2

0.05 0.63 21,067 52.03 0.29

0.1 0.33 21,041 26.48 0.15

0.2 0.15 21,023 12.33 0.07

0.5 0.08 20,991 6.95 0.04

1.0 0.06 21,003 4.52 0.03

3

0.05 0.68 21,086 54.53 0.3

0.1 0.37 20,018 29.11 0.16

0.2 0.16 21,100 13.58 0.08

0.5 0.09 21,004 7.74 0.04

1.0 0.06 20,985 4.96 0.03

Python

1

0.05 2.1 41,033 127.83 0.71

0.1 1.02 41,093 61.20 0.34

0.2 0.45 41,026 37.5 0.21

0.5 0.24 40,993 19.64 0.11

1.0 0.13 40,987 11.17 0.06

2

0.05 2.25 41,174 118.80 0.66

0.1 1.15 41,139 70.21 0.39

0.2 0.49 41,090 39.09 0.22

0.5 0.26 41,080 21.19 0.12

1.0 0.15 41,083 11.79 0.07

3

0.05 2.31 41,278 122.42 0.68

0.1 1.28 37,131 79.23 0.44

0.2 0.53 41,139 41.5 0.23

0.5 0.28 41,158 22.64 0.13

1.0 0.16 41,164 12.66 0.07
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FIGURE 6
Power distribution for the publisher node across 20 executions, varying the number of clients and message interval. (A) Message interval: 0.05 s, (B)
Message interval: 0.1 s, (C) Message interval: 0.2 s, (D) Message interval: 0.5 s, (E) Message interval: 1.0 s.

of power consumption with two clients, and then an increase with
three clients (which mean value is close to the one with one client).

6.1.1.1 Statistical tests
Shapiro-Wilk tests reveal a significant deviation from normality

in the data when grouped by a single independent variable.
For instance, in the case of the variable language, the test
statistic of 0.7147 with a p-value of 3.576× 10−11 falls far below
common significance thresholds (e.g., 0.05), strongly rejecting
the null hypothesis that the data follows a normal distribution.
This pattern is consistent across other independent variables. This
outcome aligns with the boxplots in Figure 6, which illustrate a
substantial difference between Python and C++ languages. For
instance, as shown in Figure 7A, when the data is grouped
by a specific message interval of 0.2 s, two distinct clusters
of measurements emerge. Figure 7B further reveals that these
clusters correspond to groups of measurements based on different
programming languages and the number of clients. This is a
pattern among groups of other independent variables (what can be
inspected in the replication package), where the clusters correspond
to the programming languages and, when isolated, appear to follow
a normal distribution. These observations strongly suggest that
programming language directly influences energy efficiency. This
is confirmed by Kruskal–Wallis test on groups by language (non-
parametric test since data is not normally distributed), which results
in an high H value (205.24) and a p-value (1.49× 10−46) very distant

from the significance threshold. Therefore, for comparative analysis
assuming normal distribution, it is essential to group other variables
with the programming language.

Considering the programming language as a determining factor,
we conduct statistical tests involving message intervals and the
number of clients, filtering the data by language (i.e., statistical
tests are run for each language separately). We start by testing
the effect of message intervals with Kruskal–Wallis test since not
every group is normally distributed. The test reveals a significant
difference among the groups for both Python (p = 6.53× 10−60)
and C++ (p = 1.9× 10−60). Table 6 summarizes the results of
Dunn’s post hoc tests for the C++ language across the different
message interval groups, with measurements for all numbers
of clients. A notable observation is that comparisons between
message intervals consistently display increasing differences
between groups as the message interval grows. This pattern is also
observed for the Python language and for both languages when
operating with only one client (which helps avoid bias due to the
number of clients). This confirms that the power consumption
of the publisher node tends to be heavily influenced by the
message interval.

Kruskal–Wallis tests on group by programming language and
number of clients revealed no significant differences between the
groups for Python (p = 0.36) and C++ (p = 0.13). However, when
additionally grouping the data by message intervals, most groups
exhibited statistically significant differences.The exceptionswere the
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FIGURE 7
Power distribution for the publisher node across 20 executions, varying the number of clients at 0.2-s message interval. (A) Overall distribution at 0.2 s
interval, (B) Distribution at 0.2 s interval by number of clients.

TABLE 6 Dunn’s post hoc test results for language C++ and different message intervals, with cells in gray representing no significant statistical
difference.

0.05 0.10 0.2 0.50 1.00

0.05 1.000000× 100 1.393× 10−3 3.484× 10−13 3.487× 10−29 2.570× 10−50

0.10 1.393× 10−3 1.000000× 100 1.636× 10−3 2.820× 10−13 2.067× 10−28

0.2 3.484× 10−13 1.636× 10−3 1.000000× 100 1.246× 10−3 6.858× 10−13

0.50 3.487× 10−29 2.820× 10−13 1.246× 10−3 1.000000× 100 2.585× 10−3

1.00 2.570× 10−50 2.067× 10−28 6.858× 10−13 2.585× 10−3 1.000000× 100

groups corresponding to the Python and C++ languages at a 0.05-s
message interval, suggesting an overhead of the publisher node.

6.1.2 Subscriber
Table 7 presents the performance results for a single ROS-based

subscriber node across the experiments. Similar to the findings
from the publisher node analysis, the Python implementation
demonstrates higher CPU and memory usage compared to C++,
along with greater energy and power consumption. For both
languages, resource usage generally decreases with increasing
message frequency, although not linearly. Exceptions are also
observed at frequencies of 0.05 and 0.1 s, which exhibit an unstable
trend consistent with the publisher results. Unlike the publisher,
increasing the number of clients does not significantly impact
resource consumption, which is comprehensible since there should
be no additional work to be processed as a subscriber. However,
especially for C++, we observe a slightly increasing pattern as
the number of clients increases, which may be the result of
extra synchronization work. Memory usage remains stable across
all scenarios and aligns closely with the measurements for the
publisher node.

Figure 8 depicts the distribution of power consumption means
for a single subscriber across 20 executions. The instability
highlighted in Table 7 is evident in Figures 8A, B. In Figures 8C, E,

we observe a pattern for C++ where power consumption increases
with the addition of a second client but stabilizes with a third
subscriber. However, the difference appears minor, supporting
the assumption that this is caused by overhead in the publisher
node managing multiple subscribers. Our analysis of the code,
including the rclcpp library, revealed no explicit synchronization
mechanisms in C++ publisher handling multiple subscribers. It
remains possible that this overhead originates from underlying
layers, such as the DDS middleware. For instance, DDS might
require additional internal structures and resources to manage the
second subscriber, resulting in a one-time setup cost with no further
increase when adding a third. However, further investigating this
potential behavior falls outside the scope of this paper.

6.1.2.1 Statistical tests
The statistical tests reveal that the data distributions closely

follow the ones of the publisher; however, it tends to be less normally
distributed which leads to some different statistical tests across
groups of independent variables, as discussed in Section 5.4.1.

For programming languages, the Kruskal–Wallis test results
in an H statistic of 205.42 and a p-value of 1.37× 10−46,
indicating a significant difference between Python and C++
measurements. This finding aligns with the observations presented
in Table 7 and Figure 8. A similar pattern is evident across
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TABLE 7 Comparative results of one subscriber node with different frequencies and number of clients over 20 executions.

Language # Clients Msg. Interval (s) Avg. CPU
utilization (%)

Avg. Memory
utilization (KB)

Total CPU
energy (J)

CPU power (W)

C++

1

0.05 0.57 21,291 47.4 0.26

0.1 0.31 21,202 24.89 0.14

0.2 0.13 21,234 10.96 0.06

0.5 0.07 21,183 6.16 0.03

1.0 0.05 21,144 3.9 0.02

2

0.05 0.6 21,380 49.65 0.28

0.1 0.33 21,355 26.09 0.15

0.2 0.14 21,349 11.87 0.07

0.5 0.08 21,356 6.59 0.04

1.0 0.05 21,432 4.45 0.02

3

0.05 0.66 21,475 53.28 0.3

0.1 0.36 21,438 28.28 0.16

0.2 0.15 21,388 12.81 0.07

0.5 0.09 21,401 7.25 0.04

1.0 0.06 21,349 4.71 0.03

Python

1

0.05 2.79 41,063 160.21 0.89

0.1 1.43 41,053 90.35 0.5

0.2 0.6 41,023 50.08 0.28

0.5 0.31 40,889 25.39 0.14

1.0 0.17 40,975 14.51 0.08

2

0.05 3.08 41,120 147.60 0.82

0.1 1.53 41,107 92.66 0.5

0.2 0.61 40,977 48.55 0.27

0.5 0.32 41,014 26.25 0.15

1.0 0.18 41,127 14.51 0.08

3

0.05 3.06 41,126 154.82 0.86

0.1 1.7 39,193 93.21 0.52

0.2 0.64 41,134 49.97 0.28

0.5 0.34 41,148 27.19 0.15

1.0 0.19 41,080 14.78 0.08
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FIGURE 8
Power consumption distribution for one subscriber node across 20 executions, while varying the number of clients and message interval. (A) Message
interval: 0.05 s, (B) Message interval: 0.1 s, (C) Message interval: 0.2 s, (D) Message interval: 0.5 s, (E) Message interval: 1.0 s.

groups of programming language and message intervals, where
Kruskal–Wallis test results in anH statistic of 286.68 and a p-value of
8.09× 10−61 for Python, and in an H statistic of 284.88 and a p-value
of 1.97× 10−60 for C++. The statistical difference is also observed
when grouping programming language and different number of
clients. For Python language, one-way ANOVA test results in a p =
2.52× 10−8, while for C++ language it results in p = 0.005.

Upon further analysis of message intervals, the one-way
ANOVA reveals a statistically significant difference only for the
Python language at the 0.05-s message interval (p = 2.62× 10−8).
However, this finding may be inconclusive, given the anomalies
previously observed in the results table and Figure 8A. For the
other intervals, Kruskal–Wallis tests show no significant differences
among groups, with p = 0.54 for the 0.1-s message interval and p =
0.38 for the 1.0-s interval. Similarly, one-way ANOVA test across
0.2-s and 1.0-s message intervals indicates no statistical difference
among groups, with p = 0.21 for both message intervals.

Distinctly from Python, C++ subscriber nodes exhibit statistical
differences among groups for all message intervals except the 0.1-
s interval. Interestingly, the 0.1-s interval also shows the highest
variation with two clients, as seen in Figure 8B. We have repeated
this experiment to guarantee that this was not added by any noise,
and the result is consistent among both executions. Post-hoc tests
revealed that, in most cases where there is a statistical difference, it
occurs between groups with one and three clients, where gradual
increases in the number of clients do not result in significant

statistical differences (i.e., from one to 2, and from two to three
clients). The only message interval showing statistical differences
across all groups is 0.2 s. Analyzing Figure 8C, this interval visually
demonstrates the least variation in measurements, which likely
influences the statistical outcomes.

The results and statistical tests confirm that programming
language and message interval significantly impact the energy
efficiency of subscriber nodes. In contrast, the number of clients
shows only a slight impact on energy consumption, which is
expected since the measurements refer to a single subscriber node,
and the amount of messages received by that node should be
independent of the number of clients.

6.2 Service

In this section, we present the results for service server and
service client across the experiments with different independent
variable combinations.

6.2.1 Service server
Table 8 presents the mean values of service server measurements

across the different combinations of independent variables. Unlike
the publisher node in the previous results, for all the combinations,
CPU usage and energy measurements increase as the number of
clients grows. This behavior can be attributed to the nature of the
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nodes: the publisher node relies heavily on underlying layers, such
as rmw, for message replication, with minimal computation in the
node itself. In contrast, the service server node involves additional
calculations, which may contribute to increased processing and,
consequently, higher power consumption. Additionally, as observed
in the previous communication pattern, memory usage remains
stable and is approximately doubled for the Python implementation
compared to the C++ implementation. At highmessage frequencies,
the mean power consumption for C++ is less than one-third of
that of Python, a difference that is also reflected in the CPU usage
measurements.

Figure 8 depicts the distribution of subscriber power
measurements. The graphs show that the programming language
and message interval are key factors influencing the results. The
number of clients seems to affect the two languages differently.
For Python, the measurements are less predictable at high message
frequencies (0.05-s and 0.1-s intervals) while we observe a clear
trend for other message intervals, with power consumption
increasing as the number of clients grows. In contrast, for C++,
power consumption rises between one and two clients but remains
relatively stable between two and three clients, suggesting a one-time
effect once multiple clients are involved.

6.2.1.1 Statistical tests
The statistical tests confirm the main findings observed in

the results table and graphs. The Kruskal–Wallis test for different
message intervals shows a highly significant difference for the C++
node, with p = 3.49× 10−55, and for the Python node, with p =
1.98× 10−58. These results indicate a significant difference between
groups. For both languages, all pairwise comparisons in the post
hoc Dunn’s test reveal significant statistical differences, with each
group differing from the others. On the one hand, when grouping
by the number of clients for Python, the one-way ANOVA fails
to reject the null hypothesis (p = 0.19), suggesting no statistical
difference between the groups. On the other hand, for C++, the
Kruskal–Wallis test shows a statistically significant difference when
grouping by the number of clients (p = 2.32). For C++ groups,
however, post hoc Dunn’s test indicates no statistically significant
difference between group 2 and group 3, only between group
1 and the others. The observation about C++ groups is also
evident in Figure 9, confirming the one-time effect when adding
multiple clients. That figure also supports the assumption that
Python’s statistical unpredictability may be directly linked to its
high variation in measurements. However, as a future work, it
is important to further investigate the effect of a higher number
of clients.

6.2.2 Service client
Table 9 presents the mean values of service client measurements

across various combinations of independent variables. An
unexpected trend is observed for both languages, where power
consumption and CPU usage decrease as the number of clients
increases. This effect is more pronounced at higher message
frequencies, with both measurements becoming more stable or
showing no significant differences between the 0.2-s and 1.0-s
message intervals. Notably, Python likely for publisher/subscriber
pattern exhibits a larger variation at higher frequencies, suggesting

that it tends to be less stable when handling demanding robotic
communication.

Figure 10 shows the distribution of mean power consumption
across the 20 executions for each combination of independent
factors. This confirms the observation from Table 9, where Python
exhibits a noticeable reduction in power consumption as the number
of clients increases. In contrast, for C++ service clients, it is only
visually evident that there is an increase in the power consumption
from one to two clients, while is observed a reduction when
increasing the number of clients from two to three. Additionally,
Python measurements display a significant number of outlier data
points, whereas C++ measurements do not show this issue. We
conducted a careful investigation into the causes of the Python
node’s unstable behavior but found no issues in the execution
logs. We repeated the experiment without the Experiment-Runner
orchestrator to avoid any possible noise, which did not change
the results. Additionally, we experimented with an alternative
Quality of Service (QoS) strategy, inspired by a recently reported
issue on GitHub20. However, this adjustment did not affect the
distribution of themeasurements either. Based on these findings, we
assume that the nodes functioned correctly and that the instability
originates from a Python-related issue, which must motivate further
investigation as part of future work.

6.2.2.1 Statistical tests
Kruskal–Wallis test reveals a significant statistical difference

between groups of message intervals for both languages (p =
2.89× 10−53 for Python and p = 1.44× 10−57 for C++). Post-hoc
Dunn’s test confirms that all groups are statistically different for
both languages. For Python, when grouped by the number of
clients, the Kruskal–Wallis test indicates a significant difference
among groups (p = 0.015). However, the post hoc Dunn’s test shows
that the statistical difference is only evident between group 1
and the others, with no significant difference between groups
2 and 3. Similarly, for C++, groups based on the number of
clients also exhibit significant differences (Kruskal–Wallis test, p =
0.00024). However, the pairwise post hoc test (Tukey HSD) suggests
that the difference between groups 1 and 3 is not statistically
significant. This observation aligns with the trends depicted in
Figure 10.

6.3 Actions

In this section, we present the results for the action server and
action client. As for the other communication pattern pairs, we
provide related plots and perform statistical tests to validate our
visual observations from the data representations.

6.3.1 Action server
Table 10 summarizes the mean measurements of the action

server node across various message frequencies and numbers of
clients over 20 executions. The key observations are as follows: CPU
usage, and consequently CPU power, are consistently influenced
by message frequency, with notable increases at high frequencies

20 https://github.com/ros2/rmw/issues/372
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TABLE 8 Comparative results on service server node with different frequencies and number of clients over 20 executions.

Language # Clients Msg. Interval (s) Avg. CPU
utilization (%)

Avg. Memory
utilization (KB)

Total CPU
energy (J)

CPU power (W)

C++

1

0.05 0.52 19,768 41.5 0.23

0.1 0.29 20,696 23.11 0.13

0.2 0.13 19,722 11.13 0.06

0.5 0.09 20,856 7.16 0.04

1.0 0.06 19,698 4.4 0.02

2

0.05 0.94 19,915 70.8 0.4

0.1 0.5 20,939 38.1 0.21

0.2 0.22 20,825 17.52 0.1

0.5 0.12 20,793 10.04 0.06

1.0 0.08 20,810 6.25 0.03

3

0.05 1.0 19,657 72.83 0.41

0.1 0.53 20,965 40.61 0.23

0.2 0.24 21,016 18.84 0.11

0.5 0.14 20,959 10.95 0.06

1.0 0.09 20,914 6.5 0.04

Python

1

0.05 2.43 41,041 156.92 0.88

0.1 1.26 39,008 90.76 0.51

0.2 0.55 41,063 40.73 0.23

0.5 0.29 40,984 22.78 0.13

1.0 0.17 41,053 13.41 0.08

2

0.05 2.61 39,111 159.29 0.89

0.1 1.39 41,049 97.23 0.54

0.2 0.6 39,117 44.68 0.25

0.5 0.32 41,156 25.04 0.14

1.0 0.19 41,117 13.99 0.08

3

0.05 2.91 39,245 171.27 0.96

0.1 1.52 41,215 100.04 0.56

0.2 0.66 41,137 49.11 0.27

0.5 0.36 41,176 27.58 0.15

1.0 0.21 41,201 15.9 0.09
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FIGURE 9
Power consumption distribution for the service server node across 20 executions, varying the number of clients and message interval. (A) Message
interval: 0.05 s, (B) Message interval: 0.1 s, (C) Message interval: 0.2 s, (D) Message interval: 0.5 s, (E) Message interval: 1.0 s.

corresponding to 0.05-s and 0.1-s intervals. Additionally, memory
usage follows a pattern similar to that observed in previous
server nodes. Interestingly, at a 0.05-s interval, power consumption
decreases when the number of clients increases from two to three,
despite CPU usage not exhibiting a corresponding decrease. Given
the very low CPU power measurements, this anomaly could be
attributed to external noise.

Figure 11 depicts the power consumption distribution for the
action server node across 20 executions, varying the number
of clients and message interval. At higher frequencies, it is
visually evident that both the programming language and message
frequency remain key determinants of power consumption. This
trend is still noticeable at a 1.0-s message interval, although the
difference between the two languages becomes less pronounced,
varying by less than 0.1 W in executions with three clients.
Unlike other communication server nodes, theC++ implementation
appears to be more affected. However, this is inconclusive since
it may be a visual misinterpretation, as the overall power
consumption for each execution is lower compared to other
communication patterns. The most plausible explanation is that,
in other communication patterns, the client disconnects and
reconnects to the server for every message exchange, whereas
in action communication, only a new goal is sent, and feedback
is received. It is important to note that this behavior is not an
implementation issue but rather an inherent characteristic of this
communication pattern.

6.3.1.1 Statistical tests
The statistical tests indicate that, as for other communication

patterns, both programming languages and message frequencies
result in statistically significant differences in power consumption.
The Kruskal–Wallis test results in p = 1.70× 10−44 for Python and
p = 1.35× 10−54 for C++. However, varying the number of clients
shows a slight statistical difference among Python groups, which
is explained by Dunn’s test results, where groups 1 and 2 do not
indicate a statistical difference, and the difference for group 3 is
less expressive than for the communication patterns. In contrast,
for C++, there is a statistically significant difference among all
the groups, except at 0.2-s message interval. Further analysis,
additionally grouping the data by message frequency reveals that
all frequency measurements are statistically different among C++
groups, whereas none of the Python frequency measurements
show statistical significance. This indicates that Python either is
not holding the concurrent communication properly or it does it
precisely well that measurements are not impacted with multi-client
executions. The analysis of action client figures (Figure 12) gives
details of the possible reasons for such behavior, which better aligns
with the previous hypothesis.

6.3.2 Action client
Table 11 presents the results of a single action client node

operating at various frequencies and with different numbers
of clients across 20 executions. A visual inspection reveals no
observable influence of the number of clients on power consumption
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TABLE 9 Comparative results of one service client node with different frequencies and number of clients over 20 executions.

Language # Clients Msg. Interval (s) Avg. CPU
utilization (%)

Avg. Memory
utilization (KB)

Total CPU
energy (J)

CPU power (W)

C++

1

0.05 0.47 19,724 37.68 0.21

0.1 0.26 20,638 20.63 0.12

0.2 0.12 19,660 9.81 0.05

0.5 0.07 20,767 5.96 0.03

1.0 0.05 19,685 4.85 0.02

2

0.05 0.61 19,781 45.96 0.26

0.1 0.33 20,933 25.26 0.14

0.2 0.15 20,888 12.19 0.07

0.5 0.09 20,805 7.04 0.04

1.0 0.06 20,805 4.64 0.03

3

0.05 0.53 20,698 39.28 0.22

0.1 0.28 20,934 22.05 0.12

0.2 0.14 20,882 11.21 0.06

0.5 0.08 20,883 7.26 0.04

1.0 0.05 20,902 5.13 0.03

Python

1

0.05 3.07 40,005 221.04 1.13

0.1 1.74 39,038 124.8 0.7

0.2 0.67 39,003 51.4 0.29

0.5 0.37 40,033 28.9 0.16

1.0 0.2 40,063 15.73 0.09

2

0.05 2.86 39,397 175.16 0.98

0.1 1.56 41,154 108.82 0.61

0.2 0.65 39,129 55.62 0.28

0.5 0.34 41,088 26.24 0.15

1.0 0.18 40,168 13.9 0.08

3

0.05 2.67 39,734 157.21 0.88

0.1 1.32 41,424 87.01 0.49

0.2 0.54 41,238 39.41 0.22

0.5 0.3 41,208 22.67 0.13

1.0 0.16 40,188 12.72 0.07
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FIGURE 10
Power consumption distribution for one service client node across 20 executions, while varying the number of clients and message interval. (A)
Message interval: 0.05 s, (B) Message interval: 0.1 s, (C) Message interval: 0.2 s, (D) Message interval: 0.5 s, (E) Message interval: 1.0 s.

for C++. However, in Python, a consistent decrease in power
consumption is observed as the number of clients increases, which
differs from action server, and even the CPU usage consistently
decreases with more clients. Another interesting and related
observation is at 1.0-s message interval, when Python language
seems to consume less energy than C++, except with runs
with a single client. This consistent reduction in Python’s power
consumption suggests that all measurements with one client require
more power compared to those with two or three clients. This
behavior is likely linked to multi-client architectural triggering,
such as synchronization or multi-threading mechanisms, which are
potentially activated in such scenarios.

Figure 12 illustrates the distribution of mean power
consumption for a single action client node over 20 executions,
varying the number of clients and the message interval. The
observations from Table 11 are corroborated by the sub-figures.
Notably, disruptive measurements are evident for Python nodes
when operating with two or three clients, as compared to a single
client. Additionally, the power consumption gap between Python
and C++ narrows as the message interval increases. At a 1.0-s
message interval, Python measurements seem to be compatible
with C++ ones.

In a practical context, where an action client might send
navigation or manipulation tasks to a robot, having more than one
client is generally unnecessary, except for the need for feedback
messages by secondary nodes. Therefore, this configuration might

be neglected, which could cause the unexpected behavior observed.
Since the results focus on a single client (with monitoring limited to
the last client), we re-executed the Python experiments to monitor
all clients simultaneously.This approach aimed to verify whether any
client exhibited anomalous behavior, which was not identified over
a thorough log analysis.

6.3.2.1 Statistical tests
The statistical tests confirm that programming language and

message frequency are determinant factors, except for C++, where
0.05- and 0.1-s message intervals do not result in statistically
significant differences in power measurements. For C++, different
numbers of clients result in statistical differences on the measured
power consumption, except between groups 2 and 3. For Python,
the number of clients also leads to statistically different power
measurements among all the groups. An additional Kruskal–Wallis
between the two languages at 1.0-s interval indicates no statistical
difference (p = 0.92) between groups, confirming the visual
assumption when analyzing Figure 12E, that both languages result
in closely the same power consumption at low message frequency.

6.4 Comparison of communication pattern
measurements

Since we experiment all the studied communication patterns
with a controlled and homogeneous scenario, in this section,
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TABLE 10 Comparative results on action server node with different frequencies and number of clients over 20 executions.

Language # Clients Msg. Interval (s) Avg. CPU
utilization (%)

Avg. Memory
utilization (KB)

Total CPU
energy (J)

CPU power (W)

C++

1

0.05 0.32 21,680 14.85 0.08

0.1 0.33 21,102 15.52 0.09

0.2 0.13 21,152 7.41 0.04

0.5 0.09 21,058 5.31 0.03

1.0 0.07 20,084 3.79 0.02

2

0.05 0.37 21,884 16.93 0.09

0.1 0.36 21,590 17.16 0.1

0.2 0.19 20,694 8.84 0.05

0.5 0.12 20,582 5.26 0.03

1.0 0.08 19,610 3.68 0.02

3

0.05 0.43 21,696 19.59 0.11

0.1 0.41 21,408 19.14 0.11

0.2 0.31 18,826 10.03 0.06

0.5 0.17 19,620 5.23 0.03

1.0 0.11 18,630 3.49 0.02

Python

1

0.05 2.03 42,888 85.47 0.48

0.1 1.0 40,891 45.9 0.26

0.2 0.44 42,060 22.76 0.13

0.5 0.25 39,720 13.96 0.08

1.0 0.16 39,654 8.14 0.05

2

0.05 2.15 42,872 86.08 0.48

0.1 1.1 42,907 47.56 0.26

0.2 0.47 42,104 23.84 0.13

0.5 0.26 42,060 14.05 0.08

1.0 0.16 41,865 8.43 0.05

3

0.05 2.21 40,737 83.3 0.46

0.1 1.13 42,915 48.09 0.27

0.2 0.48 42,006 23.86 0.13

0.5 0.27 42,030 13.97 0.08

1.0 0.18 41,694 8.47 0.05
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FIGURE 11
Power consumption distribution for the action server node across 20 executions, varying the number of clients and message interval. (A) Message
interval: 0.05 s, (B) Message interval: 0.1 s, (C) Message interval: 0.2 s, (D) Message interval: 0.5 s, (E) Message interval: 1.0 s.

we compare their overall measurements, dividing them into
publisher/server and subscriber/client.

6.4.1 Publisher/server measurements
Figure 13 illustrates the distribution of power consumption across

all combinations of independent variables (configurations) for the
publisher/server nodesover 20 executions.Theplot reveals a consistent
mean CPU power consumption across the different nodes, although
there is an observable distinction across distribution variations. The
action server presents the least variation in measurements, while the
service server shows the greatest fluctuation.

6.4.1.1 Statistical tests
The Shapiro-Wilk test of three groups (publisher, service server,

and action server) indicates that their data are significantly non-
normally distributed. Following this, the Kruskal–Wallis test was
performed to compare the groups, which resulted in a highly
significant result (H statistic = 227.22, p = 4.56× 10−50), indicating
substantial differences between the groups. Further analysis with
Dunn’s post hoc test revealed that all pairwise group comparisons
were statistically significant, with very small p-values. This confirms
that despite the consistent mean values observed in Figure 13, the
power consumption among the three nodes is significantly different.

6.4.2 Subscriber/client measurements
Figure 14 illustrates the distribution of power consumption

across all combinations of independent variables (configurations)
for subscriber/client nodes over the 20 executions. The graphs
show a tighter distribution of values than those for publisher/server
nodes, which also seem to result in closer mean values. Among
the plots, the service client and action client show the most
similar distributions, while the subscriber displays a slightly
different pattern.

6.4.2.1 Statisitcal tests
The Shapiro-Wilk test results indicate that the data for

all three groups is likely not normally distributed. Therefore,
the Kruskal–Wallis test was performed to assess differences
among the groups. The test reveals a significant result (H
statistic = 80.48, p = 3.34× 10−18), indicating differences
between the groups. Post-hoc analysis using Dunn’s test
reveals significant pairwise differences among all the groups,
with action client showing the most significant differences
compared to the others. This confirms our observation
about the action client distribution, although rejecting
the hypothesis of power distributions being close, despite
their consistent measurement means.
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FIGURE 12
Power consumption distribution for one action client node across 20 executions, while varying the number of clients and message interval. (A)
Message interval: 0.05 s, (B) Message interval: 0.1 s, (C) Message interval: 0.2 s, (D) Message interval: 0.5 s, (E) Message interval: 1.0 s.

7 Discussion

In this section, we summarize and discuss further details of the
experiment results, answer the research questions, and ponder about
the impact of the findings of our investigation.

7.1 Summary of main findings

Here, we summarize the findings discussed as topics, which
makes it easier for the reader to navigate through them.

• C++ is the most efficient programming language: C++
consistently outperformed Python in terms of energy efficiency
and resource usage across all ROS two communication patterns.
This was already expected since a previous study that bases
this research (Pereira et al., 2021) has already revealed C
and C++ superiority regarding energy efficiency. However,
in the case of ROS, we expected a shrank difference since both
language libraries (rclpy and rclcpp) share the same underlying
programming and communication layers.

• Message interval is a determinant factor: Higher message
frequencies led to increased power consumption in both C++
andPython, highlighting the importance of optimizingmessage
intervals. The highest message rates experimented, i.e., 0.05-
s and 0.1-s message intervals, recurrently led to overhead,

indicating the it is important to limit the message exchange
to higher rates, starting from four messages per second (0.2-s
message interval).

• Thenumber of clients triggers unexpected behaviors: Despite being
less impactful, the number of clients is still a determining factor
that must be considered in the design phase of ROS software
systems. It also revealed potential architectural issues, such as
for Python action client nodes, that result in unexpected low
power measurements when scaling from one to two or three
clients, which foster further investigation.

• Python’s scalability is unpredictable: Python exhibited less
predictable and often unstable behavior as the number of
clients increased, particularly at high frequencies. This suggests
potential limitations in Python’s ability to handle demanding
robotic communication scenarios efficiently.

• Servers are directly impacted by different independent variables:
The number of clients significantly impacted power
consumption on the server-side nodes, but the specific effects
varied depending on the communication pattern.

• Clients are less susceptible to the number of clients: It is expected
that the number of clients do not affect clients directly since
it do not result in extra workload. However, some task from
the underlying architecture or the server, possibly related to
synchronization, seems to affect such nodes as well.

• Experiments revealed potential issues: The research suggests that
the dependency of programming language (C++ or Python) on
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TABLE 11 Comparative results of one action client node with different frequencies and number of clients over 20 executions.

Language # Clients Msg. Interval (s) Avg. CPU
utilization (%)

Avg. Memory
utilization (KB)

Total CPU
energy (J)

CPU power (W)

C++

1

0.05 0.59 2073 21.28 0.15

0.1 0.45 2,117 21.97 0.12

0.2 0.25 1984 14.22 0.07

0.5 0.19 1946 10.52 0.05

1.0 0.16 1864 9.01 0.05

2

0.05 0.35 2,175 16.32 0.09

0.1 0.36 2,192 17.72 0.1

0.2 0.26 1983 14.53 0.08

0.5 4.06 1932 9.00 0.05

1.0 0.15 1965 8.34 0.04

3

0.05 0.35 2,214 16.23 0.09

0.1 0.33 2,152 15.83 0.09

0.2 2.76 2073 12.60 0.07

0.5 0.22 1975 11.37 0.06

1.0 0.16 1837 8.56 0.04

Python

1

0.05 6.36 4,129 273.79 1.48

0.1 2.08 3,817 94.33 0.55

0.2 0.71 4,140 38.59 0.2

0.5 0.34 3,519 19.3 0.1

1.0 0.19 3,496 10.46 0.06

2

0.05 5.59 4,140 225.14 1.22

0.1 1.99 4,138 87.09 0.47

0.2 0.58 4,142 31.23 0.17

0.5 0.28 3,870 15.56 0.08

1.0 0.15 3,693 7.96 0.04

3

0.05 5.15 4,138 174.65 1.03

0.1 1.59 4,138 63.47 0.36

0.2 0.56 3,925 29.19 0.15

0.5 0.29 3,688 15.77 0.08

1.0 0.2 3,668 9.06 0.04
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FIGURE 13
Power consumption distribution over all the combinations of independent variables for publisher/server nodes across the 20 executions.

FIGURE 14
Power consumption distribution over all the combinations of independent variables for subscriber/client nodes across the 20 executions.

the underlying ROS two architecture (DDS middleware, client
libraries) plays a crucial role in energy efficiency. For instance,
unexpectedly, power consumption decreased as the number of
clients increased on the client-side for services and actions. We
could not identify any anomaly in the experiment executions
after a careful investigation of logs and measurement data. A
quick investigation on rclpy and rclcpp libraries does not reveal
substantial evidence of such a behavior either.

7.2 Research question answers

The research questions are repeated here, avoid seeking fro them
back in the document while reading their answers.

RQ1: How is the energy efficiency of each ROS
communication pattern?

The statistical tests described in Section 6.4 demonstrate that
the measurement data for the three communication patterns differ
significantly, highlighting that each pattern has a distinct impact on
energy efficiency. However, the mean values of the measurement
distributions for the publisher/server and subscriber/clients patterns
(Figures 13, 14, respectively) are closely aligned. Additionally,

the violin plots in these figures reveal that most measurements,
particularly for the subscriber/clients, are concentrated within a
similar range. Given these findings, we recommend a careful design
study when selecting a communication pattern. Nonetheless, we
acknowledge that the patterns can likely be interchanged without
significant consequences for energy efficiency, especially in the case
of publisher/subscriber and service patterns.

RQ2: How do the C++ and Python implementations affect
resource usage and energy consumption when handling
different communication patterns among ROS nodes?

The programming language is a determinant factor, where
Python leads to higher power consumption through all the
experiment results. This is an expected behavior based on
recent research with programming languages for data structure
algorithms (Pereira et al., 2021); however, the difference in
power consumption among the two studied languages is
surprising given the amount of underlying architectural layers
shared by both language libraries. After the experiments,
we strongly recommend the use of C++ for ROS two
implementations, which can benefit scalability, reliability
(due to a more predictable behavior), and energy/resource
usage efficiency.
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RQ3: How does language efficiency scale over different
frequencies of communication and number of clients?

We observe that message frequency is a strong determinant
factor of energy efficiency that should be carefully considered when
designing ROS systems. High message frequencies demonstrate
to lead to resource overhead, triggering unstable behaviors,
particularly in Python nodes when more than one client connects
with the servers, which significantly compromises scalability.
While the number of clients is a less critical factor compared to
the programming language and message interval, it remains an
important consideration. It impacts not only energy efficiency but
also introduces unexpected behaviors, such as those observed with
actions.These behaviorsmay indicate poor design choices, especially
since multi-client setups are often impractical in most scenarios
where such patterns are applied. Therefore, we recommend a careful
design when considering a multi-client ROS system.

7.3 Impact of the findings

The findings of this research have significant implications for
the development and operation of real-world robotic systems using
ROS. In the sequence, we discuss some of the key implications.
As an excerpt of real-world robotic projects, we analyzed a list of
946 carefully curated ROS two repositories on GitHub21, obtained
from a separate ongoing research project by the authors. Those
projects were selected considering quantitative criteria thatmake the
projects to be representative (such as number of forks, number of
followers and contributors, and size), which numbers are included
in the dataset.

Due to its high level of abstraction, Python is a particularly
attractive language for newcomers to programming, which can also
be the case of those starting with robotics and ROS. However,
as these results suggest, the widespread use of Python can lead
to significant energy inefficiencies, impacting projects that rely
on battery-powered robots, besides the environmental side-effects.
Among the real-world repositories in the referenced dataset, 291
(30%) utilize Python as their primary language. This represents
a substantial number of projects, which can be directly used,
reused as packages, or serve as models for future implementations.
Disseminating this paper’s findings to both, academic and industry
communities, can lead to more informed decisions regarding
programming language selection in robotics projects, which will
potentially benefit resource and energy efficiency.

The direct correlation between message frequency and power
consumption highlights the critical need for optimization of
message intervals within ROS two systems. Robotics developers
should attempt tominimizemessage frequencies while ensuring that
essential system functionality remains unimpaired. To understand
this impact, we manually queried the first repositories in the real-
world dataset. A superficial analysis reveals that service calls tend to
be less affected by high frequencies since they are usually triggered
by events, such as in the main_camera_node.cpp file of cyberdog_ros2

21 https://github.com/IntelAgir-Research-Group/frontiers-robotics-ai-

rep-pkg/blob/main/data-analysis/repos.csv

project22, which triggers camera-related services on configure event
and resets it on clean up event. However, for publisher/subscriber
cases, the impact tends to be more critical. A critical example
of this is the webots_ros2 project23, where the epuck_node.py file
implements a node with multiple subscriptions to different topics,
and do not pace the communication with any delay or sleep. In such
cases, message frequency is primarily dictated by factors such as
the execution time of the whole algorithm. For simple algorithms,
these execution times can result in fractions of seconds, leading to
excessively high message frequencies, a significant concern in our
experiment results, particularly for Python-based projects.

The final factor, and the least impactful, is the number of
clients. This scenario is more commonly associated with the
publisher/subscriber communication model, given its sensor-based
nature. In a manual analysis of the first 20 projects in the dataset,
we identified only one project, ros2_canopen24, with more than one
subscriber. In this project, the node_name + rpdo topic is subscribed
to by two different test nodes (test_node and simple_rpdo_tpdo_
tester), while the low_level/joint_states topic is subscribed to by
the noarm_squat and wiggle_arm nodes. Despite multiple clients
seeming to be less common, the repositories’ manual inspection
supports the legitimacy of our concerns regarding multiple clients
and suggests that our observations can also contribute to thoughtful
designs that take the number of clients into account.

7.4 Open issues

Unfortunately, the results reveal a few issues whose sources we
were unable to identify. We outline these issues below to encourage
further investigations, as their resolution and deep investigation lie
outside the scope of this paper. We confirm that they are not related
to issues in our algorithms or their executions, which have already
been discussed in the previous sections.

1. The Python publisher and subscriber mechanisms exhibit high
variability at elevated frequencies, suggesting some form of
overhead that leads to unpredictable power consumption.

2. The C++ service server demonstrates an initial power increase
when the number of clients rises from one to two. However,
the power consumption stabilizes as the number of clients
increases from two to three. This behavior, distinct from
that observed in Python, suggests a one-time synchronization
method for handling multiple clients.

3. While the Python service server shows an increase in power
consumption as the number of clients grows, the Python service
clients exhibit a consistent decrease in power consumption.
This may indicate challenges faced by the server in addressing
all client requests, although this hypothesis is not supported by
manual log analysis.

4. At lowmessage frequencies, the action pattern results in similar
power consumption for both languages.This consistency is not
observed for other communication patterns.

22 https://github.com/MiRoboticsLab/cyberdog_ros2/

23 https://github.com/cyberbotics/webots_ros2

24 https://github.com/ros-industrial/ros2_canopen
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8 Threats to validity

In this section, we discuss potential threats to the validity of our
experiments, outline considerations, and describe how we address
each of them.

8.1 External validity

One limitation lies in the simplicity of the messages exchanged
between ROS two nodes in our experiments. We focused
on plain text messages in the publisher/subscriber pattern,
which are less complex compared to sensor messages like
PointCloud25 or geometry-based messages26. However, our
results show consistent behavior across various configurations
and communication patterns, with significant differences between
configurations, suggesting that the experimental variables
likely impact systems using more complex message types.
Additionally, prior work (Albonico et al., 2024) involving more
diverse message types indicates that at least the number of
clients plays a critical role, reinforcing the applicability of
our findings. To facilitate further exploration, our replication
package supports extensions to other communication patterns and
message types.

To mitigate potential biases due to the representativity of the
implemented ROS two nodes, we based our implementation on
official ROS two tutorials. This ensures relevance and applicability
to a wide range of general-purpose applications since they may
work as a template for different types of applications worldwide.
Moreover, our study uses ROS 2 Humble, an active distribution
supported until 2027, enhancing the relevance and timeliness of
our findings.

8.2 Internal validity

We ensured internal validity by maintaining a strictly controlled
experimental environment, minimizing the influence of variations
in system load, background processes, or hardware inconsistencies.
All experiments were conducted using the same tools and
environment and repeated twenty times to account for variability.
For CPU and memory usage measurements, we relied on widely
used Python libraries. Energy consumption measurements were
conducted using a tool extensively validated in prior studies
(Kamatar et al., 2024; Nahrstedt et al., 2024;Makris et al., 2024).This
rigorous approach minimizes confounding factors and strengthens
the reliability of our conclusions.

The use of Docker in our experimental setup introduces
a potential internal threat, as it may slightly influence energy
measurements due to its resource isolation and runtime overhead.
These effects could introduce systematic measurement biases,
affecting the accuracy and reproducibility of our results. This is
mitigated by a controlled execution, where we compare the energy

25 https://docs.ros.org/en/noetic/api/sensor_

msgs/html/msg/PointCloud.html

26 https://docs.ros2.org/foxy/api/geometry_msgs/index-msg.html

usage of different ROS two communication methodologies within a
comparable environment.This approach helpsmitigate the potential
impact of Docker-induced variations, as any overhead introduced
by containerization would be present across all experimental
conditions. Since we are primarily interested in how different
communication patterns compare to each other in terms of energy
consumption, rather than the exact power drawn by each, minor
variations introduced by Docker do not compromise the validity of
our conclusions.

8.3 Construct validity

Our experiments were designed with well-established
metrics that align with the goals of this research
(Pereira et al., 2017; Hähnel et al., 2012). Power consumption,
a primary metric, directly measures the rate of energy usage
while running ROS nodes, capturing nuanced differences in
energy efficiency attributable to language-specific and architectural
factors. This metric is independent of confounding variables
such as execution time, ensuring that observed effects are solely
related to energy efficiency. Furthermore, all findings were
validated using a robust statistical testing strategy, ensuring
the reliability of our conclusions and alignment with the
study’s objectives.

9 Related work

The energy efficiency of software has received significant
attention in recent years, particularly concerning the deployment
infrastructures and programming languages utilized in various
applications. This aligns closely with the objectives of our research,
which aims to investigate the energy efficiency of programming
languages within the Robot Operating System (ROS) ecosystem.
Notably, a comprehensive search across major research databases
revealed a gap in the literature, as no previous studies have
specifically addressed the energy efficiency of programming
languages in the context of ROS.

The work by Pereira et al. (2017) stands out as the most
related to our investigation. Their extensive study evaluated energy
consumption across a variety of algorithms implemented in
different programming languages, producing a ranking based on
energy efficiency. While their findings provide valuable insights,
the algorithms they examined were executed natively, without
the influence of middleware or frameworks, contrasting with
our focus on ROS-specific algorithms that operate within an
active ROS stack. This distinction is crucial, as the architecture
and operational context of ROS can significantly impact energy
consumption metrics.

Other studies have explored the energy efficiency of
programming languages in different contexts. For instance,
Kholmatova (2020) examined the impact of programming
languages on energy consumption for mobile devices,
highlighting how language choice can influence energy efficiency.
Similarly, Abdulsalam et al. (2014) investigated the effects of
language, compiler optimizations, and implementation choices
on program energy efficiency, emphasizing the importance
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of these factors in software development. Furthermore,
research by Holm et al. (2020) focused on GPU computing
with Python, analyzing performance and energy efficiency,
which underscores the relevance of programming paradigms in
energy consumption.

In our previous work (Albonico et al., 2024), we investigated the
energy efficiency of ROS nodes implemented in C++ and Python.
Their study focused on the publisher-subscriber communication
pattern and assessed the power consumption of ROS nodes in
both languages. The results demonstrated that C++ nodes exhibit
superior energy efficiency compared to Python nodes, particularly
in scenarios withmultiple subscribers.This differencewas attributed
to the architecture of the client libraries and the native multi-
threading capabilities of C++. However, compared to this paper,
their study considered fewer independent variables, followed a less
systematicmethodology, and provided only preliminary results with
limited discussion.

10 Conclusion

Our study provides a comprehensive analysis of the energy
efficiency of ROS two communication patterns, revealing that C++
implementations consistently outperformPython in terms of energy
efficiency and resource usage. Message frequency significantly
influences power consumption, while the number of clients has
a less predictable impact, particularly for Python. These findings
have significant implications for real-world robotic systems,
guiding programming language choices, message frequency
optimization, and system architecture considerations. Therefore,
our research contributes to a better understanding of energy
efficiency in ROS 2, promoting the development of greener
robotic software.

Despite the consistency of our findings across various
configurations and communication patterns, there are still a few
open issues that can be further investigated. For example, further
research can explore the impact of message type complexity,
particularly with other types of messages. We also plan to examine
the specific synchronization or multi-threading mechanisms in
both C++ and Python service servers and clients to understand
the observed power consumption trends as the number of clients
increases. Finally, another possible extension of this research, is to
analyze the action pattern to determine why it results in similar
power consumption for both C++ and Python at low message
frequencies.
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