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Introduction: The deployment of mobile robots on construction sites has
gained increasing attention from both academic research and industry due
to labor shortages and the demand for more efficient project management.
However, integrating robotic systems into dynamic and hazardous construction
environments remains challenging. Key obstacles include reliance on extensive
on-site infrastructure, limited adaptability, and a disconnect between system
capabilities and field operators' needs.

Methods: This study introduces a comprehensive, modular robotic platform
designed for construction site navigation and asset localization. The system
incorporates Building Information Modeling (BIM)-based semantic navigation,
active Ultra-Wideband (UWB) beacon tracking for precise equipment detection,
and a cascade navigation stack that integrates global BIM layouts with real-
time local sensing. Additionally, a user-centric graphical user interface (GUI) was
developed to enable intuitive control for non-expert operators, improving field
usability.

Results: The platform was validated through real-world deployments and
simulations, demonstrating reliable navigation in complex layouts and high
localization accuracy. A user study was conducted, confirming improved task
efficiency and reduced cognitive load for operators.

Discussion: The results indicate that the proposed system provides a scalable,
infrastructure-light solution for construction site robotics. By bridging the gap
between advanced robotic technologies and practical deployment, this work
contributes to the development of more adaptable and user-friendly robotic
solutions for construction environments.

KEYWORDS

semantic navigation, BIM/IFC, path planning, domain knowledge, mobile robots

1 Introduction

The North American construction industry continues to face significant challenges,
including low productivity, labor shortages, safety risks, and substantial environmental
impacts (Pradhananga et al., 2021). Despite its vital role in the global economy, the sector
has been slow to adopt transformative technologies due to high implementation costs,
fragmented processes, and cultural resistance to change. These persistent barriers, coupled
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with an aging workforce and the physically demanding
nature of construction work, exacerbate inefficiencies and
limit progress (Pradhananga et al., 2021).

Robotics offers a promising avenue to address these challenges,
integrating advanced sensing, navigation, and decision-making
capabilities to improve productivity, enhance worker safety, and
reduce waste (Kostavelis and Gasteratos, 2017). Robotic systems
have already demonstrated significant potential in tasks such as site
surveying, tracking Mechanical, Electrical, and Pumbling (MEP)
equipment, monitoring worker safety, and transporting materials.
However, construction sites are dynamic and unstructured
environments, requiring robotic solutions capable of accurate
spatial understanding and adaptability to constant changes and
complex interactions. The fragmented nature of construction
processes further complicates the deployment of robotic systems,
necessitating solutions that integrate seamlessly with existing
workflows (Pradhananga et al., 2021).

Traditional navigation approaches often rely on geometric
maps, which, while useful, lack the semantic richness necessary
for handling complex tasks on dynamic construction sites.
Building Information Modeling (BIM) and digital twins present a
transformative solution by embedding both geometric and semantic
data into site representations (Kim and Peavy, 2022; Karimi et al.,
2021). These technologies provide robots with domain-specific
knowledge of the construction environment, enabling context-
aware navigation, informed decision-making, and efficient task
execution (Kostavelis and Gasteratos, 2017).

Semantic mapping, which integrates geometric and semantic
information, has shown promise in bridging this gap. Modern
methods often employ sensors such as cameras and Light
Detection And Raging (LiDAR), combined with deep learning
techniques (Pu et al., 2023; Zhang and Li, 2023). However, these
approaches are computationally demanding and require large
datasets, posing challenges for real-time deployment in dynamic
environments. BIM-based systems, by contrast, offer a structured
and lightweight alternative, allowing robots to directly access pre-
existing semantic information (Karimi et al., 2021; Kim and Peavy,
2022). Drawing on the Building Information Robotic System (BIRS)
framework (Karimi et al., 2021), this work leverages building
lifecycle data to enable robots to perform context-aware operations
and enhance site navigation.

In this paper, we propose a comprehensive system for robotic
site surveying, combining BIM-based semantic navigation, active
equipment detection using Ultra-Wideband (UWB) beacons, and
an intuitive teleoperation interface. The system features a cascade
navigation stack that integrates global and local path planning,
utilizing both topological and metric maps derived from BIM data.
Active sensing ensures real-time adaptability by updatingmaps with
newly detected elements during navigation. A semantic graphical
user interface (GUI) empowers non-expert users to manage robotic
operations and interpret survey results effectively, fostering seamless
human-robot collaboration.

The main contributions of this work include:

1. A cascade navigation stack integrating high-level path
planning with real-time local adjustments, fully leveraging
BIM data, implemented in the Robot Operating System (ROS).

2. An active equipment detection strategy using a minimalist,
low-cost UWB-based approach for precise localization of
construction assets.

3. A semantic graphical user interface designed to simplify robot
operation for non-expert users.

By integrating semantic navigation, active sensing, and user-
friendly interfaces, this study addresses key challenges in robotic
site surveying and highlights the potential for safer, more efficient,
and sustainable construction processes. The paper is organized
as follows: Section 2 reviews relevant work; Section 3 details the
proposed system and the experimental design; and Section 4
presents the experimental results. Section 6 discusses the findings
and outlines directions for future research.

2 Related work

2.1 Navigating construction sites

Effective navigation in construction settings requires an
integrated understanding of spatial and semantic site details. Recent
research has proposed diverse strategies to enhance navigation
capabilities, with approaches often categorized based on their map
structures and organizational frameworks.

Indoor map models, a cornerstone of navigation strategies,
are typically classified into grid-based, network-based, and hybrid
grid-network-based systems. Grid-based models divide spaces
into discrete, non-overlapping cells, offering straightforward
representations suitable for pathfinding algorithms. Network-based
models, such as the Geometric Network Model (GNM), represent
spaces as graphs where nodes correspond to locations and edges
encode travel distances (Chen Q. et al., 2022). Hybrid models merge
these paradigms to balance spatial accuracy and connectivity. For
example, Zhou et al. (2020) proposed a grid-network model that
uses the Zhang-Suen thinning algorithm (Zhang and Suen, 1984) to
extract indoor topological networks from grid maps, providing an
enriched framework for navigation.

Simultaneous Localization and Mapping (SLAM) has evolved
to address the complex demands of construction sites. Visual-
only SLAM, using monocular or stereo cameras, offers a
lightweight and cost-effective solution but struggles with scale
ambiguity and drift over time, limiting its long-term reliability
(Macario Barros et al., 2022). VSLAM can be enhanced with using
Inertial Measurement Units (IMUs) to improve robustness in
dynamic environments (VI-SLAM) and by using depth sensors
to facilitate dense 3D mapping (RGB-D SLAM) but they increase
computational demands and increase the range constraints
(Macario Barros et al., 2022). Traditional SLAM algorithms still
struggle with occlusions and varying lighting conditions common
on construction sites (Abaspur Kazerouni et al., 2022).

To overcome these limitations, recent research has integrated
deep learning and semantic segmentation into SLAM pipelines,
enhancing object recognition, scene understanding, and dynamic
obstacle management, which may prove to be critical for
construction sites (Pu et al., 2023). In any cases, SLAM strategies
tailored for construction robotics must fuse various sensor
modalities to improve accuracy in cluttered and dynamic
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workspaces (Yarovoi and Cho, 2024). Despite these advancements,
ensuring real-time performance on resource-constrained platforms
and reliable, non drifting, localization, are still challenging.

BIM-aided navigation extends these concepts by offering high-
level representations of building structures that include geometric
and semantic details, enabling robots to interpret and navigate
environments with greater autonomy. Most BIM-driven studies
utilize this data for pathfinding algorithms like Dijkstra (Wang et al.,
2011), A∗ (Konakalla, 2014), and Fast Marching Method (FMM)
(Garrido et al., 2013). In 3D contexts, Chen Q. et al., 2022 developed
BI3DM, a voxel-based system mapping BIM information to enable
navigation for drones and pedestrians. This approach integrates
semantic and physical constraints to optimize paths, demonstrating
its effectiveness across various BIM models. However, many of
these approaches rely on manually pre-processed BIM data, which
limits their responsiveness to the dynamic conditions typical
of construction sites (Liu et al., 2021). Automating BIM data
integration remains a critical challenge for real-time adaptability.

BIM’s utility extends beyond static navigation models, offering
rich semantic data for dynamic and task-driven navigation. Studies
like those by Gopee et al. (2023) converted BIM data into navigation
maps, integrating semantic insights to guide stop-and-go operations
and obstacle avoidance. Pauwels et al. (2023) investigated real-
time semantic data transfer techniques, employing JavaScript Object
Notation (JSON) and graph-based formats to construct semantic
and grid maps for robotic workflows. Similarly, Zhou et al. (2020)
proposed methods to extract indoor topological networks from
BIM-based grids, creating integrated models for localization and
navigation. Hendrikx et al. (2021) convert semantic entities present
on BIM into a database of features that can be compared to the
robot’s sensors and aid in localization. In 3D, Yin et al. (2023)
translated BIM components into semantically enriched point cloud
maps categorized by type and location. Their method employs a
coarse-to-fine localization strategy, aligning LiDAR readings with
semanticmaps via iterative closest point (ICP) registration, enabling
robust pose tracking with minimal sensor setups.

These efforts underscore BIM’s transformative potential in
robotic navigation pipelines, improving localization, adaptability,
and task planning in dynamic construction environments. However,
gaps persist in integrating semantic data into comprehensive,
accessible solutions. Many studies lack implementations that adhere
to industry standards while offering intuitive, user-friendly systems
that connect BIM at both global and local navigation levels. This
paper aims to bridge these gaps by presenting an integrated,
practical solution for BIM-aided navigation and task execution,
demonstrating its utility in real-world construction scenarios.

2.2 User-centric design in construction
automation

User-centric design is a critical area of research across
all domains where robotic systems are gaining traction for
commercial and industrial applications.This emphasis on usability is
essential for achieving worker acceptance and operational efficiency
(Jacob et al., 2023;Wewerka et al., 2020). In construction, the design
and implementation of robotic systems must consider not only
technical performance but also the social and psychological factors

influencing human-robot interaction, including trust, perceived
safety, and ease of use (Belzile et al., 2021).

In the broader field of human-robot interaction, efforts to
create intuitive systems often focus on advanced interaction
modalities such as gesture recognition, virtual reality interfaces,
or natural language commands (Chen H. et al., 2022). However,
these approachesmay be impractical in industrial environments like
construction sites, where robustness and simplicity are paramount
(Braga et al., 2024). Many studies instead explore interfaces that
simplify robot programming tasks, such as visual programming
languages (Tilley and Gray, 2017). A notable concept involves
programming robots through semantic representations of their
capabilities in specific contexts (Steinmetz et al., 2018). While
promising, this approach has not yet been applied in construction
settings, particularly with map-based information systems that are
critical for navigation and task execution.

The construction industry, characterized by dynamic and
hazardous environments, presents unique challenges for automation
(Yarovoi and Cho, 2024). In such settings, safety must take
precedence in human-robot collaboration (HRC). Research
indicates that workers are more likely to accept robots when their
behavior is predictable, reliable, and seamlessly integrated into
existing workflows. One effective approach is the use of dynamically
generated safety zones around robots (Jacob et al., 2023; Braga et al.,
2024). These zones mitigate risks such as collisions and distractions
by adapting in real time to specific work scenarios, enhancing
both trust and system flexibility (Walzer et al., 2022). Teleoperated
systems, where human oversight plays a central role, are particularly
favored in construction due to their ability to ensure safety and
adaptability in high-risk scenarios.

Real-world deployments further underscore the importance
of user-centric interfaces in fostering trust and achieving
operational success (Walzer et al., 2022). By simplifying interactions,
aligning robotic capabilities with user needs, and prioritizing
safety, user-centric design principles enable smoother integration
of robotics into construction workflows. As the industry
increasingly adopts automation, embedding these principles into
the development and deployment of robotic systems is vital for
maximizing their potential.

2.3 Equipment detection and localization

Accurate localization of assets is crucial for managing materials,
equipment, and tools on construction sites, which are often
dynamic and challenging environments. Various technologies have
been explored (Marcy et al., 2023), with some achieving commercial
deployment, each offering distinct benefits and limitations.

Quick Response (QR) codes are a widely used and cost-effective
solution for taggingmaterials and equipment.Their integration with
BIM systems allows for quick access to asset data via mobile devices,
improving communication and safety. However, QR codes require
line-of-sight scanning and are prone to physical damage, which
demands manual effort and makes them impractical for large-scale
or fast-paced operations.

Radio-Frequency Identification (RFID) systems address many
of these limitations by enabling contactless tracking without the
need for direct visibility. Using electromagnetic signals, RFID
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tags and readers efficiently monitor materials and track progress
(Omar and Nehdi, 2016), particularly when combined with BIM
systems. However, environmental factors such as liquids or metals
can interfere with signals, and deploying RFID infrastructure
requires specialized equipment and careful calibration, adding
complexity and cost (Xie et al., 2011).

UWB technology offers greater precision and reliability, even
in obstructed environments. By leveraging trilateration (Yin et al.,
2016), UWB enables real-time, accurate tracking of materials and
equipment, making it particularly effective for detecting MEP
assets. Despite these advantages, most UWB infrastructures require
the installation of several fixed anchors in the field to compute
trilateration, whose high cost restricts adoption.

Bluetooth Low Energy (BLE) provides a more
affordable alternative, using signal strength to estimate asset
locations (Marcy et al., 2023). Its compatibility with consumer-grade
devices makes it flexible for smaller projects, but signal variability
in complex environments limits its accuracy. As a result, BLE is
better suited for general tracking tasks rather than high-precision
localization.

Recent advances in artificial intelligence (AI) have introduced
object detection systems using vision or LiDARdata.These solutions
employ deep learning to identify and track assets based on visual
or spatial features (Fernandes et al., 2021), offering rich contextual
information and adaptability to dynamic environments. However,
their reliance on computationally intensive models and high-quality
sensors constrains their feasibility for real-time deployment in cost-
sensitive projects.

Each of these technologies—QR codes, RFID, UWB, BLE,
and AI object detectors—has unique strengths and trade-offs. By
leveraging UWB in combination with BIM and robot localization,
this work proposes a low-cost, scalable, and practical approach with
minimal infrastructure requirements - no fixed anchors -addressing
gaps in existing solutions and offering robust performance in
dynamic construction environments.

3 Materials and methods

3.1 Semantic navigation strategy

This section outlines our approach, focusing on how
information extracted from BIM is integrated into a two-level path
planning system and a user-friendly semantic GUI.

3.1.1 Topological semantic maps
Topological maps, enhanced with BIM-derived information, are

instrumental for robot navigation. These maps structure building
data into a graph of rooms, doors, and corridors enriched with
geometric and semantic details (Strug and Ślusarczyk, 2017). Since
BIM data encompasses vast information, identifying and translating
relevant content for robotic systems is essential (Karimi et al.,
2021). Such information is oftenmodeled with Industry Foundation
Classes (IFC), an open standard data schema for building and
construction industry data, using classes such as IfcSpace and
IfcDoor to describe the respective architectural elements. Here, we
extend the directed hypergraph approach of (Palacz et al., 2019)

FIGURE 1
A directed hypergraph of S = (V,E) where V = {V1,V2,…,Vn} is a set of
nodes and E = {E1,E2,…,Em} is a set of hyperedges. Each node (Vi) is an
IfcSpace containing its relationships and each hyperedge (Ej) is an
IfcDoor with its attributes extracted by BIRS (Karimi et al., 2021).

FIGURE 2
Data structure for IFC-based semantic optimal path planner algorithm.

by incorporating IFC semantics and geometry into a topological
representation (Figure 1).

Nodes in the graph represent rooms, corridors, and other areas,
and contain attributes such as room name, unique ID, center
coordinates, area, wall materials, scan age, and potential hazards
for the robot. Edges represent doors with attributes like unique ID,
location, and opening direction. The directed hypergraph allows
for multiple connections between nodes, so one-way paths are
represented by a single directed edge, while paths without this
restriction use two edges in both directions. Weights representing
navigation costs are assigned to nodes and edges to guide navigation.
The total weight of a node Vi is computed by Equation 1:

WVi
= wmi
+wai +wsi +whi (1)

where wmi
depends on the walls material, wai , on the room area, wsi ,

on the room scan-age, andwsi , of the hazards in room i. Edgeweights
depend on door opening direction (e.g., for pushing, for pulling).
The total path weight is computed by adding the total weights of all
nodes and all edges contained in the path, as shown by Equation 2:

W =
n

∑
i=1

WVi
+

m

∑
j=1

WEj (2)
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Paths with lower weights are prioritized. This system helps the
robot avoid potential risks, such as sensor issues with glass walls, and
ensures efficient navigation. Directed hypergraphs, incorporating
IfcDoor attributes like coordinates and opening directions, facilitate
assigning navigation costs. A Dynamo Script extracts IFC classes
and parameters, storing data in an Extensible Markup Language
(XML) database. A Python script translates this information into
a ROS-compatible format, enabling seamless integration with the
robot’s navigation system.

3.1.2 Room-level semantic path planning
The data structure of our semantic path planning algorithm

is shown in Figure 2. Using the generated hypergraph, the start
and end nodes are defined by the user. Our implementation
employs a directed BF-hypergraph (Gallo et al., 1993),
accommodating connections betweenmultiple rooms. Forward and
backward sub-hypergraphs represent bidirectional connections,
incorporating door opening costs. The “Shortest Sum B-Tree”
algorithm from Gallo et al. (1993) identifies optimal paths by
minimizing cumulative weights. The output includes room and
door coordinates in sequential order, guiding the robot’s navigation
while providing semantic context for the user.

3.1.3 Semantic graphical user interface design
The GUI, developed in Python notebooks, provides a semantic

interface for intuitive robot operation. It integrates real-time data
from ROS and BIM, displaying the building’s semantic information
alongside live robot status. Users can:

• Select a destination from a drop-down list of rooms.
• View a livemap showing the robot’s position and planned path.
• Adjust path planner weights (e.g., hazard, scan age) through an
interactive panel.
• Trigger the robot’s movement by clicking the “Move
Robot” button.

This design bridges domain knowledge and robotic operations,
enabling non-expert users to configure andmonitor navigation tasks
effectively (Figure 3).

3.1.4 BIM-aware localization
Low-level path planning, which operates within the framework

of high-level plans, demands robust localization to adapt to
the dynamic and often unpredictable nature of construction
environments. Traditional localization methods, such as Adaptive
Monte Carlo Localization (AMCL), face challenges in these settings
due to environmental factors like dust, debris, and reflective
surfaces, which can degrade accuracy. To address these limitations,
we developed a BIM-aware localization technique that integrates
AMCL (Thrun, 2002) with an extended Kalman filter (EKF) via a
bridging node (Figure 4).

Before deployment, wall geometries extracted from the BIM
model are used to generate an occupancy grid map of the
building. This map is augmented with semantic information as
described in Section 3.1.1, presented as a separate element list,
and utilized by the localization module. During navigation, AMCL
combines the occupancy grid map with odometry and laser
scan data to provide real-time pose estimates for the robot.
Simultaneously, the bridging node monitors the semantic elements

associated with the robot’s current position on the map. In areas
where certain sensing modalities are unreliable—such as near
reflective surfaces like glass walls—the bridging node enhances
accuracy by connecting AMCL outputs to EKF localization. This
dual-layered approach leverages the detailed spatial and semantic
data provided by BIM to correct discrepancies in AMCL-derived
poses. A key feature of this strategy is its ability to mitigate the “pose
jump” issue common with map-based localization methods like
AMCL, where the robot might misidentify its position on the map.

When such errors are detected, the system temporarily switches
to odometry-only dead-reckoning to navigate past the problematic
zone. BIM data is critical in supporting this fallback strategy,
as it provides precise spatial information to ensure the map-
based localization is disabled for the minimum required duration.
Extended reliance on dead-reckoning, as is well-known, introduces
drift errors, emphasizing the importance of a tightly managed
transition back to map-based localization once the challenging area
is cleared.

3.2 UWB-based robot-centric equipment
localization

As the robot navigates and updates its map, it simultaneously
detects and localizes equipment on-site using active markers.
Our approach employs ranging measurements between the robot
and UWB beacons attached to the equipment. UWB, a radio
technology operating at high frequencies (3.1–10.6 GHz), was
chosen primarily for its high accuracy and robustness to occlusions.
According to Jiménez and Seco (2017), UWB can achieve a precision
of up to 10 cm, significantly outperforming alternatives such as BLE,
which is often limited to a 5-m accuracy.

In this system, the task involves determining the locations
of fixed UWB beacons based on the known positions of the
robot. To accomplish this, we adapted the trilateration localization
algorithm, commonly used to locate moving devices such as
robots or humans, and inverted its application to localize static
anchors instead (Yin et al., 2016).

As the robot navigates, its estimated position and the measured
ranges to the UWB beacons are recorded at a synchronized
frequency of 10 Hz. To simplify the system and improve accuracy
while maintaining operational flexibility, the anchors are deployed
at predefined, fixed heights. To enhance robustness against noise,
rangingmeasurements are collected from 70 distinct robot positions
distributed around each beacon. This aggregation of measurements
results in an overdetermined system of equations, as shown in
Equation 3:

{{{{{{{
{{{{{{{
{

(x1 − x)
2 + (y1 − y)

2 + (z1 − za)
2 = r21

(x2 − x)2 + (y2 − y)
2 + (z2 − za)

2 = r22
…

(xn − x)
2 + (yn − y)

2 + (zn − za)
2 = r2n

(3)

where n = 70 is the number of distinct ranging measurements being
taken at different times; ri is the range measured at time t = i; xi,
yi, and zi are the known coordinates of the robot at time t = i; za
is the known height of the anchor; and x, and y are the unknown
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FIGURE 3
Semantic Graphical User Interface for the intuitive operation of a mobile robot with domain knowledge. The controls in the header allow selecting a
destination and generating the path. The panel to the left shows the attributes of the selected room. The center contains a map of the environment,
with the robot’s pose in real time being represented by the purple arrow. The center points of the rooms and doors in the path are represented in the
map by the yellow circles. The right panel allows the user to reconfigure the different weights that are applied to the path generation.

FIGURE 4
System overview of AMCL-Robot localization bridge which detects the
presence of reliable AMCL pose and uses it to improve localization.

coordinates of the anchor. An approximate solution for this system
can be found using the Moore-Penrose generalized inverse method
(Equations 4–6):

x = (ATA)−1ATb (4)

with

A =

[[[[[[[

[

2(xn − x1) 2(yn − y1)

2(xn − x2) 2(yn − y2)

… …

2(xn − xn−1) 2(yn − yn−1)

]]]]]]]

]

(5)

and

b =

[[[[[[[

[

r21 − r
2
n − x21 − y

2
1 − z

2
1 + x

2
n + y2n + z

2
n − 2za (zn − z1)

r22 − r
2
n − x22 − y

2
2 − z

2
2 + x

2
n + y2n + z

2
n − 2za (zn − z2)

…

r2n−1 − r
2
n − x2n−1 − y

2
n−1 − z

2
n−1 + x

2
n + y2n + z

2
n − 2za (zn − zn−1)

]]]]]]]

]
(6)

The trilateration results provide an initial estimate, which is
subsequently refined using the Trust Region Reflective algorithm, as
shown in Equation 7 (Wang et al., 2017):

error =
n

∑
i=1
|ri − (‖x− roboti‖) | (7)

with ri: the rangemeasured by theUWBdevice at t = i, x: the solution
tested by the minimization algorithm, roboti: the robot position at
t = i. This optimization technique minimizes a cost function that
quantifies the discrepancy between the measured ranges and the
estimated distances derived from the solution. The cost function is
expressed as the sum of squared differences between the observed
UWB ranges and the calculated distances based on the current
beacon position estimate. This iterative refinement ensures a highly
accurate localization of the beacons, even in noisy environments.

3.3 Experiments

We evaluated our approach through three sets of experiments:
a simulation to validate the navigation system under challenging
conditions, an experimental deployment using a real wheeled
robotic platform, and a user study to assess the usability of
the semantic GUI tool. These experiments involved navigating a
building’s corridors while recording sensor data. We selected a
building at École de technologie supérieure (Montréal, Canada),
which, besides having a complete BIM model available, features
multiple rooms, corridors, open spaces, and alternate paths to
achieve the same navigation goal. This complexity allowed us
to evaluate multiple features of the semantic path planner, such
as dealing with blocked pathways and generating paths through
unvisited places to maximize the explored area. Notably, this
building also features a long corridor along a glass wall, which
provided an ideal scenario to test the effect of the AMCL-Robot
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FIGURE 5
Mobile robot platform equipped with various sensors.

Localization bridging node on the localization performance. The
robot was operated through the semantic GUI on a laptop, with
high-level destination commands transmitted via a WiFi link. The
robot’s global path planner processed these commands to generate
waypoints, which were subsequently utilized by the local path
planner to control the motors.

Running both simulated and real experiments served
complementary purposes in evaluating our system. The simulation
environment allowed us to test the navigation system under
controlled conditions, ensuring that specific factors—such as
BIM data integration, planned versus adjusted paths, and the
semantic GUI—could be analyzed without external disruptions.
Besides that, the user study was fully run on simulation to ease
the study constraints on recruitment. The real-world experiments
were essential to validate the feasibility of our approach in a
practical, realistic scenario. These tests demonstrated how the
system performs under real sensor noise, localization inaccuracies,
and unexpected obstacles—factors that cannot always be fully
replicated in simulation.

3.3.1 Robotic platform and deployment
The robotic platform used for this study was a Clearpath Jackal,

a four-wheeled unmanned ground vehicle equipped with a hybrid
vision and laser sensing system, as shown in Figure 5. With our
sensors and software stack, the Jackal is capable of semi-autonomous
navigation, with a remote operator issuing high-level commands.

For odometry estimation, the base platform streams wheel
encoders and an Inertial Measurement Unit (IMU) data to
an NVidia Jetson onboard computer that processes them and
executes navigation algorithms. Clearpath’s suite of ROS nodes for
control, state estimation, and diagnostics provided the foundation
for robot operation. The sensing system is designed for digital
twin data collection and includes LiDARs and depth cameras to
comprehensively monitor the robot’s surroundings. A front-facing

Intel Realsense T265 tracking camera combines visual data with
wheel odometry to provide accurate localization.The Intel Realsense
D435i depth camera feeds depth images to a collision avoidance
module, enabling the robot to react when nearing obstacles. A
horizontally mounted Velodyne Puck 32MR LiDAR scans the walls
for global localization inside the known map. Additional sensors,
including three more D435i cameras and an Ouster LiDAR, are
integrated for richer data collection. For assets detection, the robot is
equipped with a UWB Pozyx tag placed 78 cm above the floor level
(not visible on the picture).

Figure 6 illustrates the system architecture. The robot’s pose
within the map is estimated using the ROS implementation of
our localization strategy, integrating BIM semantic, described in
Section 3.1.4. When a destination room is selected by the operator
via the GUI, the semantic path planner outputs a preferred route
going through the center points of rooms, doors, and corridors along
the path. The local mapper (A∗ algorithm (Hart et al., 1968)) is
then used to compute the shortest path from the robot’s current
position to the next waypoint. Velocity commands derived from the
path are sent to the robot’s internal controller to execute navigation
through the planned route while reacting to obstacles detected by
the depth camera.

3.3.2 Simulation
The simulation experiments were conducted using the Gazebo

Simulator, leveraging its capability to create accurate digital twins
of real-world environments. Building information from the BIM
model was exported to generate a detailed 3D representation of
the environment. This digital twin provided a realistic testbed for
evaluating the robot’s navigation performance. Figure 7 illustrates
the simulated robot navigating its environment, complete with
varying wall textures and transparency to replicate the diverse visual
conditions encountered during deployment.
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FIGURE 6
System Overview: A high level planner that process BIM/IFC information and user inputs is integrated to a low level navigation stack in a cascade
design. The low-level module takes care of the localization, local path planning and collision avoidance tasks, while the high-level planner generates
paths based on BIM/IFC semantics.

3.3.3 User study design
To evaluate the usability, efficiency, and safety of our semantic

navigation system compared to conventional methods, we
conducted a user study with 22 participants.They controlled a robot
in simulation using two distinct modes: one leveraging our semantic
navigation algorithm and another employing a conventional
approach. The task involved exploring a simulated building,
collecting data at specified locations, and avoiding a designated
hazardous area. We recorded performance metrics, including task
completion time, area explored, and number of actions performed.
Participants also completed a usability evaluation questionnaire,
including the NASA Task Load Index (NASA-TLX), to assess
workload and user satisfaction.

The 22 participants in the user study were members of
our research group, representing diverse backgrounds, including
robotics (59%), construction engineering (18%), and others (22%)
such as mechanical engineering, biology, and psychology. The
inclusion of individuals not experts in robotics allowed us to assess
the system’s usability across varying levels of technical expertise.
We discuss potential impacts of the distribution of participants’
backgrounds in the Results section.

The experimental environment is depicted in Figure 8.The robot
started at the green circle, and participants were tasked with visiting
the four rooms marked with blue circles, returning to the starting
point afterward. The red-marked room represented a construction
zone and was off-limits. Each participant completed this exploration
task twice: once using the semantic navigation mode and once with
the conventional control mode, with the order randomized. A time
limit of 15 min was imposed for each task to simulate real-world
constraints where users must complete tasks under time pressure
and to prevent participants from engaging in non-task-related
exploration, ensuring that collected data accurately reflected system
performance. Participants had access to a reference document
summarizing the objectives and listing the names of all rooms.

The custom GUI was the only interface for participants to
interact with the simulation. The GUI displayed the robot’s current
pose, the navigation path, and interactive controls tailored to the
specific control mode:

• Basic control mode: Participants clicked on any point on
the map to set a navigation goal. Pressing the “Plan” button
triggered an A∗ algorithm to calculate the shortest path from
the robot’s current position to the selected point, which was
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FIGURE 7
View of the simulated environment used to test the BIM/IFC optimal
path planning approach. The building 3D model was built with
geometry information extracted from the BIM. The robot model
simulates the sensors and possesses the same characteristics as the
real robot.

displayed on the map. Additional “Move” and “Stop” buttons
allowed participants to control the robot’s movement.
• Semantic control mode: Participants selected a room from
a dropdown list of names, enabling the semantic navigation
algorithm to generate a path to the chosen room. Like the
conventional mode, “Move” and “Stop” buttons controlled the
robot’s actions.

4 Results

4.1 Localizing assets in real-world settings

To evaluate the active equipment localization algorithm, we
performed a series of tests with the Jackal robot and four
UWB beacons representing equipment, positioned in a room
according to Figure 9. The Figure shows the robot mapping of the
test room including line-of-sight obstructions: the boxes A and B
are 1.65 m high and the boxes 1 to 3 are 70 cm high.

As discussed previously, the positions considered for the 2D
trilateration have to be non-colinear, otherwise the algorithm will
output erroneous results. For that reason, the robot’s trajectory
must be winding in order to ensure it. A 10 cm interval between
consecutive positions is also enforced in the algorithm. Figure 9
shows an example of a winding trajectory on a generated plan of
the test room.

After cumulating 20 detections per anchor, we obtained the
results presented in Table 1, whereD is the distance from the origin.
The results show that the mean error on the detection is around
11 cm on both x and y axes. The worst results come from the tag 36
which is partially occluded. The minimal error is about 1 cm while
the maximal goes up to 63 cm. Figure 9 also presents a graphical
representation of the error and standard deviation for each tag. The
green dots represent the ground truth, the black dots are the mean

position detected by the algorithm and the blue ellipses represent the
standard deviation of the detections.

4.2 Navigation performance

We then navigate the robotic system out of the test room to
validate it in a series of tests with three primary objectives::

1. Assess the accuracy of the AMCL-Robot Localization bridge
when navigating challenging environments, such as areas with
glass walls.

2. Evaluate the effectiveness of the semantic path planner
in generating optimal paths using building information
from BIM/IFC.

3. Examine how modifications to the building information
influence the paths generated by the system.

To test the accuracy of the AMCL-Robot Localization bridge,
we selected a corridor with a glass wall—a challenging scenario
for conventional localization strategies. AMCL relies heavily on
LiDAR distance measurements, which can be inconsistent when
encountering glass surfaces, sometimes detecting the glass as
an obstacle and other times ignoring it. Figure 10 illustrates
a comparison between standard localization and the enhanced
AMCL-Robot Localization bridge under such conditions. When
the BIM-aware switching mechanism, described in Section 3.1.4, is
triggered by the semantic information of an upcoming challenging
feature, at the corner before the glass wall, it significantly improves
localization accuracy. For subsequent tests, only the best localization
method was used.

The semantic global path planner was evaluated in a scenario
where the robot started in a western corridor (CORRIDOROUEST)
and needed to reach an eastern open area (CORRIDOR EST).
Figure 11’s left-hand side displays the building map and the path
generated by a standard A∗ algorithm, marked in red. This path
represents the shortest route between the two points, considering
only the building geometry and a minimal safety margin around
the robot. When the semantic global path planner was applied
to the same scenario, a comparable path (marked in yellow)
was generated, as there were no hazards, doors, or undesirable
materials on the route. The algorithm identified and listed the
rooms along the path, allowing the user to intuitively monitor
the robot’s progress through the GUI, as shown in Figure 3.
Additionally, waypoints representing the centers of rooms and
doors were provided, enabling safer and more precise navigation,
especially in challenging environments like glass doors that are
less detectable by sensors. The semantic information aids the
A∗ algorithm in finding the shortest and safest path between
waypoints.

In a subsequent test, the building information was updated
to simulate a construction activity in a specific area, marked
by a dashed box in Figure 11’s right-hand side. The semantic
global path planner automatically adjusted the route to avoid
the hazardous zone, generating an alternative path (yellow).
The system flagged the hazard through the GUI, allowing the
operator to decide whether to proceed with scanning the area
or postpone the task. The alternative path prioritized safety over
distance, demonstrating the planner’s adaptability to dynamic

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2025.1548684
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Braga et al. 10.3389/frobt.2025.1548684

FIGURE 8
Map explored by the participants during the user study. The green circle indicates the starting position of the robot, the blue circles are rooms that
should be visited and the red area should be avoided.

environments. This scenario also provided an opportunity to test
the AMCL-Robot Localization bridge in proximity to a large
curtain wall, where the bridge enhanced the robot’s positional
accuracy by integrating BIM-derived spatial information with
sensor data. The semantic GUI further enhances usability by
displaying the aging of scanned rooms, enabling operators
to select destinations for data collection strategically. This
feature supports efficient robot deployment, allowing operators
to plan multiple missions with minimal redundancy and
improved coverage.

Finally, the robot was tasked with navigating to a destination
and then returning to the starting point. Figure 12’s left-
hand side shows the path generated by the A∗ algorithm,
which retraced the same corridor on the return trip,
minimizing the explored area. By contrast, the semantic
path planner, leveraging BIM/IFC semantics, tracked the
time since each room was last visited and prioritized
unexplored zones for the return trip. Figure 12’s right hand
side illustrates how this approach led to greater environmental
coverage, enabling the robot to collect more comprehensive
data. This cascade navigation system, integrating BIM-ROS
information, proved effective for autonomous and precise data
collection in construction environments.

4.3 User study

To evaluate the efficiency of each control mode from the
operator’s perspective, we analyzed three metrics: the number of
input actions (clicks), task completion time, and the size of the
explored area. Efficiency was defined by minimizing operator input
and reducing task duration. Since the semantic algorithm is designed
to position the robot centrally within rooms and corridors, it was
hypothesized to enable broader area coverage and improved data
collection compared to the basic control mode.

A Wilcoxon signed-rank test with a 95% confidence interval
was conducted to assess the statistical significance of observed
differences between the two modes.

Table 2 shows the average clicks per minute for each mode.
Participants using the basic control mode clicked, on average,
1.37 times more per minute than those using the semantic mode.
This difference, confirmed by a p-value of 3.9× 10−6, reflects
user behaviors during navigation: participants often explored
multiple paths to the same destination, corrected trajectories, or
set multiple intermediate waypoints. In contrast, the semantic
algorithm efficiently calculated optimal paths, reducing the need
for such adjustments. This difference and statistical significance is
consistent among the subgroups of roboticists and non-experts.
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FIGURE 9
Robot’s winding trajectory in the test room: the green diamond
represents the initial position and the red one represents the final
position. The anchors are indicated with the green dots. The mean
detected positions are the black dots and the blue ellipses represent
the standard deviation of the measurements. A and B are 1.68 m high
obstacles and 1 to 3 are 0.70 cm high ones.

TABLE 1 UWB-beacons detection errors in meters.

Error (m) Mean Min. Max.

X 0.119 0.0116 0.489

Y 0.115 0.0119 0.638

D 0.0684 0.000105 0.294

Table 3 details the differences in completion time and
explored area, alongside their statistical significance. On average,
the basic control mode required 47 additional seconds to
complete tasks. This was expected, as participants in the basic
mode spent more time evaluating routes, experimenting with
pathways, and adjusting movements based on A∗ algorithm
feedback. However, the t-test revealed that the difference in
completion times was not statistically significant. Further analysis
indicated that longer durations were typically associated with each
participant’s first run, regardless of the mode, suggesting that
extended times were due to participants familiarizing themselves
with the environment rather than inherent inefficiencies of the
basic mode.

The semantic control mode significantly improved area
coverage, with participants exploring an average of 80.79 square
meters more than in the basic mode. This improvement stems
from the semantic mode’s approach, which prioritizes navigation
through the center points of rooms and corridors, optimizing

coverage. Statistical analysis confirmed this effect, as indicated
by the t-test results. However, when comparing participants
with robotics expertise to those without, we observed that
roboticists often achieved comparable coverage using the traditional
path planning strategy. As a result, for this subgroup, the
difference between the two modes was not statistically significant
(p-value = 0.289).

Safety assessments focused on the frequency of paths crossing
hazardous areas. In the basic mode, participants’ paths crossed the
hazardous “red room” in 31.8% of runs. While most participants
corrected their trajectories upon noticing the error, one instance
remained uncorrected, which would pose a significant safety risk in
a real-world scenario. In contrast, the semantic mode consistently
avoided hazardous areas, leveraging BIM data to assign higher
risk weights to such zones. This feature minimized human errors,
demonstrating a key advantage of integrating semantic reasoning
into navigation strategies.

Usability was evaluated through a structured survey based
on the QUEAD questionnaire (Schmidtler et al., 2017) and
the NASA-TLX workload assessment (Hart and Staveland,
1988). QUEAD, originally designed to assess the perceived
usability and acceptance of assistive devices, was adapted for
this study by including all relevant questions while omitting,
for instance, those related to physical interactions. The full
NASA-TLX questionnaire was applied, covering six dimensions
of task load assessment. The final survey1 consisted of 21
questions, each rated on a seven-point Likert scale, measuring
perceived ease of use, cognitive load, and user preference for both
navigation modes.

Figure 13 displays average responses to the four most relevant
survey questions, alongside the average NASA-TLX composite
score, which averages all six dimensions. Higher scores indicate
greater ease of use or lower cognitive demand. Statistical analysis
revealed that participants found the semantic mode more useful,
intuitive, and less cognitively demanding (p-value < 0.05).However,
the basic mode was perceived as more flexible, appealing to
participants who preferred greater control for tasks requiring precise
navigation.

When analyzing survey responses separately for roboticists and
non-roboticists, the same overall trends were observed across all
categories. However, statistical analysis revealed p-values exceeding
0.05 for the Useful and Intuitive categories among roboticists, and
for the Flexible category among non-roboticists. This suggests that
roboticists, being more familiar with control systems, were equally
comfortable with both navigation modes, whereas the semantic
control mode had a stronger impact on usability perceptions among
non-experts.

Across 44 unique runs, 10 instances were excluded from
analysis due to issues such as the path planner failing to
identify viable paths or the robot experiencing disorientation from
rapid command inputs, which affected localization performance.
These challenges highlight potential areas for refinement in
both path planning and control strategies to improve system
robustness.

1 Survey available at https://forms.gle/19fwfJVr9sKJQZvZ8
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FIGURE 10
The AMCL bridging node improves localization accuracy near glass walls. (left) Robot moving near a large glass wall. (right) Performance of AMCL
bridging node compared to the AMCL localization in that section.

FIGURE 11
High-level and low-level paths: A∗ generates the shortest path possible between start and end, not taking advantage of the BIM/IFC semantics. (left)
Without any special condition, both algorithms generate the shortest path. (right) When a construction activity is happening, our semantic path planner
is able to find an alternative path, while A∗ causes the robot to navigate through the hazardous area.

Overall, the semantic control mode proved to be more efficient,
requiring fewer user inputs, improving area coverage, and ensuring
safer navigation by automatically avoiding hazardous areas without
user intervention. However, 6 out of 22 participants expressed a
preference for the basic control mode, citing its greater flexibility
for precise navigation. This feedback suggests an opportunity to
combine the strengths of both approaches. A hybrid control mode
- where the semantic algorithm generates a baseline path, but
users retain the ability to make fine adjustments—could balance
automation’s efficiency with user-directed adaptability, making it
more suitable for diverse operational needs.

5 Discussion

Beyond addressing the problem statement, our findings
contribute to both theoretical advancements in robotic navigation
and practical applications for real-world deployment. The
integration of BIM with real-time sensing represents a significant
step forward in robotic decision-making for highly dynamic
construction sites, where traditional approaches struggle due to
frequent and unpredictable changes. Through simulation and real-
world deployments, we demonstrated the system’s capability to
navigate complex layouts while maintaining localization accuracy
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FIGURE 12
BIM/IFC semantics can be used to increase explored area. (left) By searching for the shortest possible path, A∗ causes the robot to navigate the same
corridor twice. (right) The semantic path planner avoids recently explored areas, resulting in paths that cover more of the environment.

TABLE 2 Average clicks per minute.

Basic mode
Map Plan Move Stop Total

0.87 0.72 0.64 0.12 2.36

Semantic mode
Room select Move Stop Total

0.45 0.39 0.15 0.99

TABLE 3 Average difference of completion time and explored area
between the two control modes, and corresponding p-value.

Difference p-value

Time (sec) −47 0.306

Area (m2) 80.79 0.011

and usability, which are critical for enabling autonomous robots in
practical construction scenarios.

One of the key contributions of this work is the cascade
navigation stack, which advances BIM-based navigation beyond
static path planning. Existing BIM-driven navigation frameworks
often rely on precomputed routes derived from digital building
models, limiting their adaptability to unforeseen environmental
changes, or propose navigation strategies coupling tightly BIM and
path planing. In contrast, our approach dynamically integrates high-
level semantic information from BIM with real-time local sensing
and path planning, allowing for continuous path adjustments in
response to evolving site conditions. This hybrid methodology
bridges the gap between global planning and real-time perception,
ensuringmore reliable navigation in environmentswhere temporary
structures, moving equipment, and shifting obstacles are common.
Both simulation and real-world experiments confirm that the

FIGURE 13
Average score attributed to four relevant questions and NASA-TLX
score using a seven-point Likert scale (0–6). Higher values mean more
positive perception by the participants and less demanding task load.
All aspects were found to be statistically significant (p-value < 0.05).

system effectively adjusts its trajectory based on site dynamics,
demonstrating the feasibility of BIM-enhanced adaptive navigation
as a scalable and robust solution for construction robotics. Our
validation was performed only on AMCL based on 2D lidar scans,
but it could be combined with more recent AI-powered localization
and SLAM approaches.

Another major contribution of this research is the semantic
graphical user interface (GUI), which enhances accessibility for non-
expert users. One of the challenges in deploying autonomous robots
on construction sites is the reliance on specialized operators, which
limits large-scale adoption. Our GUI simplifies robot operation
through an intuitive, visually guided interface that leverages BIM
data for navigation. The user study showed that participants
from diverse backgrounds—ranging from robotics to construction
engineering—could effectively interact with the system, achieving
improved task efficiency while experiencing reduced cognitive load.
This suggests that integrating semantic and interactive elements into
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robot control interfaces can bridge the gap between automation and
construction practitioners, making robotic solutions more practical
for real-world applications.

Despite these advancements, certain challenges remain
regarding real-world deployment. Construction sites are highly
dynamic and unstructured environments, and while our approach
incorporates real-time sensing to update navigation paths, adapting
BIM models to reflect constantly changing site conditions remains
an area for improvement. Current BIM frameworks, while useful
for a priori planning, are not always updated frequently enough to
account for rapid field changes, such as newly placed scaffolding,
temporary work zones, or shifting material stacks. Although our
system partially mitigates this through real-time obstacle detection,
future research could focus on automated BIM updates based on
live sensor data, ensuring the digital model remains aligned with site
conditions. Furthermore, while our system is designed for indoor
construction environments, adapting it for outdoor or large-scale
projects would require modifications, particularly in cases where
BIMdata is incomplete or unavailable. Integrating alternative spatial
data sources, such as drone-based photogrammetry or real-time
LiDAR mapping, could further expand its applicability to broader
construction scenarios.

Beyond technical challenges, practical industry adoption is
a critical factor. The construction sector has historically been
slow to adopt automation technologies due to concerns over
cost, reliability, and workforce adaptation. While our study
demonstrates the feasibility of BIM-driven robotic navigation,
further validation in real-world workflows is necessary to ensure
seamless integration with existing site operations. Future research
could involve collaboration with industry professionals to assess the
system’s impact on productivity, safety, and efficiency over extended
deployments. Additionally, optimizing the cost-effectiveness of
UWB-based asset detection could enhance scalability, making it
viable for large construction projects requiring precise tracking of
multiple assets.

Furthermore, long-term usability and workforce adaptation
remain crucial aspects of practical deployment. While the user
study provided initial validation, further research is needed
to understand how construction professionals interact with
the system over extended periods. Studies involving a broader
participant base that better represents the potential end-users in the
construction industry are necessary to enhance the generalization
and applicability of our findings. Longitudinal studies assessing the
learning curve, long-term adoption, and potential modifications to
enhance ease of use would provide valuable insights into ensuring
effective integration into real-world construction workflows.

Looking ahead, this framework can be expanded to include
markerless detection of Mechanical, Electrical, and Plumbing
(MEP) elements, leveraging computer vision and AI-based
object detection techniques. Enhancing the user interface with
customizable options for dynamic site conditions will improve
adaptability and usability. Refining the high-level path planner
by incorporating normalized weight assignments for topological
mapping will allow further customization based on application
requirements. These enhancements will optimize semantic
navigation and further integrate robotics into construction
workflows.

The findings from this research contribute to ongoing
discussions in autonomous construction robotics, BIM-driven
navigation, and human-robot interaction. Future work should
focus on enhancing semantic scene understanding by fusing BIM
with real-time perception data, optimizing sensor fusion strategies
for improved localization accuracy, and conducting extended
usability studies with industry professionals. These efforts will
further solidify the role of BIM-integrated robotics in automated
construction, paving the way for more intelligent, adaptable, and
user-friendly robotic solutions aligned with industry needs. By
addressing both technological and usability barriers, this study
provides a foundation for continued advancements in construction
automation, demonstrating how robotics can be effectively
integrated into complex and evolving work environments.

6 Conclusion

This paper presented a comprehensive framework for BIM-
aided semantic navigation and asset localization, aimed at enhancing
the efficiency and safety of autonomous robotic operations
on construction sites. Leveraging the BIRS system, building
information was extracted from IFC schemas and structured
into hypergraphs for path planning. Weighted connections in
the hypergraph encoded conditions affecting navigation, enabling
the semantic path planner to prioritize safe and efficient routes.
These high-level paths were seamlessly integrated with a low-level
navigation system, where the A∗ algorithm calculated the shortest
feasible paths within the optimal semantic route. Additionally, a
BIM-aided localization strategy improved the robustness of the
AMCL algorithm, particularly in challenging scenarios such as
navigating near glass walls.

The framework’s effectiveness was validated through simulated
and real-world case studies, demonstrating its adaptability to
dynamic site conditions. Furthermore, the proposed active marker-
based equipment detection strategy achieved a mean localization
error of less than 12 cm, without requiring expensive infrastructure,
showcasing its practicality for asset tracking in construction
activities.

By addressing these advancements, the proposed system
contributes to the future of safe, smart, and sustainable robotic
operations in dynamic construction environments, offering a
scalable solution that meets industry needs.
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