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The widespread and growing use of flying unmanned aerial vehicles (UAVs) is
attributed to their high spatial mobility, autonomous control, and lower cost
compared to usual manned flying vehicles. Applications, such as surveying,
searching, or scanning the environment with application-specific sensors, have
made extensive use of UAVs in fields like agriculture, geography, forestry,
and biology. However, due to the large number of applications and types
of UAVs, limited power has to be taken into account when designing task-
specific software for a target UAV. In particular, the power constraints of
smaller UAVs will generally necessitate reducing power consumption by limiting
functionality, decreasing their movement radius, or increasing their level of
autonomy. Reducing the overhead of control and decision-making software
onboard is one approach to increasing the autonomy of UAVs. Specifically,
we can make the onboard control software more efficient and focused on
specific tasks, which means it will need less computing power than a general-
purpose algorithm. In this work, we focus on reducing the size of the computer
vision object classification algorithm. We define different tasks by specifying
which objects the UAV must recognize, and we construct a convolutional neural
network (CNN) for each specific classification. However, rather than creating
a custom CNN that requires its dataset, we begin with a pre-trained general-
purpose classifier. We then choose specific groups of objects to recognize, and
by using response-based pruning (RBP), we simplify the general-purpose CNN
to fit our specific needs. We evaluate the pruned models in various scenarios.
The results indicate that the evaluated task-specific pruning can reduce the
size of the neural model and increase the accuracy of the classification
tasks. For small UAVs intended for tasks with reduced visual content, the
proposed method solves both the size reduction and individual model
training problems.
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1 Introduction

In many areas, the rapid growth of drone use and applications
directly correlates with an increase in onboard processing power.
This is due to the increased autonomy it provides. However, due
to increasing demands for various unmanned aerial vehicle (UAV)
tasks and power consumption (Abeywickrama et al., 2018; Jin et al.,
2023), many of the processes required for autonomous flight
and mission success must be performed off-board. For instance,
advanced computer vision, reasoning, flight control, and unexpected
situation-solving can be performed off-board on a powerful
computer or in the cloud, and control signals can be transmitted
to the UAV. This means that the UAV collects, compresses, and
sends data to the operator, who makes the decision. Although this
is the most natural approach, it requires reliable real-time updates
from the drone sensors to the controller. This need for reliable
and stable transmission can place significant stress on power-saving
measures (Pinheiro et al., 2019) since the transmitter’s power is
limited and signals can be lost. Automation of many drone functions
can reduce power consumption, provided the task operates at a
power level lower than that required for data transmission to
off-board processing. For instance, small drones could execute
simple computer vision tasks, such as object classification, onboard.
However, the hardware limitations of onboard processors often
necessitate the reduction, optimization, and adaptation of most
onboard tasks. The capacity of the different hardware platforms
varies depending on the UAV model, its power supply, and its
intended use. Generally, as the desired functionality becomes
more complex, we need to optimize the algorithms more or
use a more powerful onboard hardware platform. A comparison
was made by Pinheiro et al. (2019), where the authors compared
off- and onboard processing for path planning. They concluded
that, eventually, onboard processing is required due to transmission
problems and delays. Therefore, algorithm compression is essential
for compatibility with the onboard hardware and for increasing the
autonomy of individual UAVs.

Currently, a large number of methods for input-output
processing, decision-making, and UAV control are performed using
artificial neural networks (ANNSs), such as convolutional neural
networks (CNNs), for instance. There are several advantages to using
the neural-based approach in certain processing parts of the UAV.
For instance, CNNs are highly training-dependent, learning-based
tools that excel at handling noisy data. This advantage is especially
important when considering that UAVs must make decisions in
very noisy real-world environments. CNNs, which have been highly
successful at separating noise from the content (Goodfellow et al.,
2016), appear to be an efficient method when sufficient training data
are available. As a result, in the past few years, UAVs and related
fields have increasingly used CNNs for vision processing due to
their exceptional ability to extract information from real-world data.
Some examples of work include processing UVA-captured images,
such as Othman and Aydin (2023), Meng et al. (2023), Osco et al.
(2020), and Wijnker et al. (2021).

When it comes to optimization, ANNs have been studied to
find new methods for reducing their size because large models can
have billions of parameters (Brown et al., 2020). A lot of work
has been carried out to minimize, reduce, and improve neural
networks (Suzuki et al., 2018; Iandola et al., 2016a; Howard et al.,
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2017; Shimoda et al., 2017; Abdiyeva et al., 2020). Size reduction
techniques have also been used to make the reduced algorithm
perform better for certain tasks or the representation less sparse
in general (Abdiyeva et al,, 2021a). For our purposesr-reducing
ANNE s size for UAV hardware and tasks-we can divide size reduction
and optimization of ANNG, in general, into two distinct approaches.

We refer to the first approach as the hardware-for-autonomy
approach. The purpose of this approach is to reduce or optimize a
given ANN/CNN to specific hardware requirements or limitations.
Consequently, these methods employ various low-power hardware
schemes to reduce overall power consumption. The reduction is
achieved by either creating new hardware platforms that lower
the total amount of power used (Li et al., 2022; Xu et al., 2021;
Lamberti et al.,, 2022) or by suggesting operation templates with
lower power consumption (Czachorski et al.,, 2022). Additionally,
a broader research area dedicates itself to UAV computation.
For instance, Paredes-Vallés et al. (2024) developed a fully
neuromorphic chip for an onboard drone. Mohan et al. (2021)
recently proposed a mountable framework using Jetson Nano and
observed a =9% decrease in flight time with onboard AI processing.
Rad et al. (2021) tested Jetson Nano and observed no decrease in
accuracy when using CNNs for object detection. Finally, although it
is not strictly related to hardware but rather to programming under
constraints, a Low Power Computer Vision Challenge has been held
annually since 2015 (Chen et al., 2024).

The second approach aims to reduce the code’s cost, size,
or other attributes within a specific hardware framework or
limits. These approaches include algorithm optimization, protocol
optimization, and reducing the size of control messages. For
instance, creating onboard CNNs for various visual tasks involves
significant effort in training compact and energy-efficient neural
networks (Othman and Aydin, 2023; Silva et al., 2020; Albanese et al.,
2022). Some other projects focus on processing UAV-collected data
(Meng et al., 2023; Wijnker et al., 2021) or building small, portable
networks to detect drones by separating their unique sounds from
background noise (Aydin and Kizilay, 2022).

The methods for the size reduction of ANNs/CNNss can, in turn,
be separated into compression (quantization), precision reduction,
and structural pruning.

Quantization refers to methods, like those described by
Bagherinezhad et al. (2016) and Abdiyeva et al. (2018), that reduce
the size of the network by storing the network parameters less
accurately. For instance, Abdiyeva et al. (2018) stored all the weights
in a look-up table quantized into bins. The weight retrieval process
returns approximate values.

Precision reduction removes, merges, or changes CNN filters
(Goyal et al.,, 2021; Courbariaux and Bengio, 2016. Courbariaux
and Bengio (2016) binarized the networks weights and activation
functions while maintaining reasonable accuracy. Goyal et al. (2021)
showed that fixed-point weight representation is possible with
almost no loss of accuracy.

Finally, pruning represents a set of methods that remove certain
filters or neurons from the network (Goodfellow et al., 2016). There
are many approaches to removing parts of the network to reduce
its size while preserving as much of the original performance as
possible (Iandola et al., 2016a; Li et al., 2016; Anwar et al., 2015). For
example, [andola et al. (2016a) removed certain filters basedon their
values, while Abdiyeva et al. (2021b) removed filters based on their
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average activation values. An intriguing result was that the authors
showed that after pruning a CNN trained for object recognition, the
recognition accuracy of certain classes decreased, while for others,
it increased.

In this work, we expand on this finding in the context of size
reduction and task specialization. We study how to reduce the size
of CNNs by focusing on tailoring a neural model to UAV-specific
visual tasks.

We consider the following schema. Let D = {e,,...,e,} be a set
of UAVs and T = {t,,...,1;} be a set of tasks. The system assigns
each task to one or multiple drones in real time, taking into account
the environment and user-entered commands. For our purpose,
let the task t € T be defined as a set of required functionalities,
such as object avoidance, flight stabilization, object recognition, and
lion tracking. The list of functionalities specifies which software
to load. Considering all the tasks that can be performed with
T, a neural model that covers all of them might be too large
to fit on a Jetson or a similar low-power accelerator. So, for a
rapid, on-demand deployment, we investigate task-specific CNN
size reduction. Specifically, we examine the vision component of
an unmanned aerial vehicle (UAV) in relation to a given task (t).
We consider the hardware limitations of smaller UAVs, where the
available resources cannot support a CNN capable of recognizing
or classifying all possible visual targets. This implies that the
UAV’s GPU cannot store larger networks in real time, and smaller,
function-specific networks must be used.

We consider image classification of objects obtained from an
onboard camera. Each classification target is considered a task t.
For the task-specific size reduction, we examine how pruning can
be used to make specialized, smaller CNNs that are better at a
certain visual task £. The method starts by pruning a larger network
containing all the visual tasks. Using response-based pruning
(Abdiyeva et al., 2021b) for a given task f, we prune the network
to identify the objects. We identify the unprunable parts of the
network and apply response-based pruning (RBP). RBP allows one
to selectively prune the network in visual tasks (Abdiyeva et al.,
2021b). The resulting pruned network is generally smaller in size
and is specifically modified for task . We evaluate the result as a
difference in accuracy and provide the results for how the pruning
parameters affect the resulting size and target accuracy.

To evaluate our methodology, we use the VisDrone dataset
(Zhu et al, 2021). This dataset offers several tasks specifically
designed for drone performance. Our research focuses on object
detection and the single-object tracking challenge. For each of the
datasets, we will use a pre-trained model and prune it using RBP.
We directly evaluate the pruned model under various pruning
parameters and compare its accuracy with the baseline accuracy
offered by other state-of-the-art models. Note that we do not provide
a comparative evaluation of other methodologies because, to the
bestof the author’s knowledge, no other study has applied CNN
pruning for context-specific size reduction. Generally, researchers
use pruning as a general size reduction approach without studying
an object- or class-specific size reduction. Therefore, we compare
various levels of pruning as a more objective evaluation.

A summary of this work’s primary contributions:

e We evaluate a task-specific pruning methodology on a UAV-
specific dataset.
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e We determine the feasibility of using pruning to improve the
classification accuracy of objects in UAV-related datasets.

e We demonstrate the possibility of specializing CNNs derived
from large models for smaller subtasks.

2 Previous work

The use of CNNs or ANNs in UAVs and related applications
is extensive. Researchers have explored applications, optimization,
size reduction, and cost optimization in various ways and for
different purposes. In this study, we mainly overview three different
sets of works related to UAVs. First, we outline the applications
for which ANNs are being used in UAVs; second, we outline
the purpose of off-board and onboard task development; and
finally, we also outline the optimization of neural networks for
UAV-related tasks.

Recently, the integration of image processing and computer
vision with neural networks has enhanced the capabilities of UAVs
significantly. For instance, Choi et al. (2021) used a neural approach
for path planning in stair climbing, while Li et al. (2023) used
a neural networkfor path planning in UAV highway inspection.
Direct image processing was performed by specialized CNN models,
such as in Xiao (2023), Dai et al. (2020), and Wang et al. (2018).
For instance, Othman and Aydin (2023) developed a low-power-
specific CNN for human behavior recognition. Meng et al. (2023)
developed a specific CNN for detecting small objects from the
VisDrone dataset by optimizing the YOLOv7 architecture. In
addition to vision, flight control has been examined in some
situations, and path planning for UAVs has been researched using
neural models. In the same way, CNNs have been used to identify
special UAV states that enable more reliable and autonomous flight
(Yang et al., 2023).

A large portion of the use of CNNs for UAVs is focused
on off-board processing with the primary goal of achieving the
target problem (Osco et al., 2020; Wijnker et al., 2021). More
recently, several reduced-size CNNs have been developed, such as
TinyNet (Dong et al., 2022), MobileNet (Howard et al., 2017), and
SqueezeNet (Iandola et al., 2016b), allowing the same results to be
evaluated under the hardware limitations of either platform, such as
Jetson Nano TX2 or FPGA accelerators (Xu et al., 2021).

Finally, the general area of optimization includes a large amount
of work that focuses on either encoding reduction (compression)
or pruning (size reduction). Early examples of compression are,
for instance, BinaryConnect, where the authors introduced a CNN
with binary weights, or the XORNet (Rastegari et al., 2016).
More recently, these reduced networks have been implemented on
FPGAs (Shimoda et al., 2017) for power reduction. Abdiyeva et al.
(2020) investigated a full binary CNN for general-purpose image
processing. The pruning approach focuses on structurally reducing
the size of the network by removing some of its components.
Pruning has been viewed as a general methodto reduce the
size of CNNs (Anwar et al, 2015) or make processing less
expensive (Ma et al., 2019).

However, the overall performance of the network is the primary
focus of all optimization methods. It is not known to the authors
whether pruning has been used in a task-specific manner for
improving the task’s efficiency and result accuracy.
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Trained CNN
for k classification
targets
RBP
Pruning

FIGURE 1
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Pruned CNN
for h < k classification
targets

Schematic representation of the methodology for reducing a pre-trained CNN to a task-specific, smaller model.

3 Methodology

Generally, the need for CNN reduction stems from hardware
limitations like Jetson Nano TX2, an embedded GPU accelerator.
However, in this work, we emphasize that optimizing a control
model for a specific context also reduces the size of the
computational model. Therefore, we can view the proposed method
as a second stage of a pipeline, where we first optimize a given model
for the hardware and then further optimize the same model for a
specific task.

The proposed method uses a pruning approach to specifically
reduce a CNN for a target classification. The overall schematic of the
proposed method is shown in Figure 1.

The method starts by taking a pre-trained CNN or training
a new CNN from scratch. This CNN represents the space of all
possible classification tasks T'. Then, we select a specific task t; € T,
and we apply RBP to prune the CNN for the task f;. The resulting
CNN is smaller and is specifically reduced to the recognition of
h classification targets. The pruned network is evaluated for the
classification of all k classes to determine the reliability and stability
of the proposed method.

3.1 RBP

The reduction in the size of the control networks is studied
in this section using RBP (Abdiyeva et al, 2021a; Lukac
and Abdiyeva, 2023). RBP is a method
neural networks.

Let F={F, ...,F;} be the set of all filters in a CNN and F; €
RM*Mxd e 3 filter, where M is the filter’s spatial dimension and d
is the depth.

Furthermore, let a subset of filters for a given CNN layer [ be
denoted as IL such that IL  IF. Let B € R™? be an input tensor to /
(X and Y are spatial dimensions).

of pruning

To calculate the output tensor B’ of the layer I, the input
tensor B is convolved with the set of filters L ={F, ...,F;}. The
output of the convolution between the input tensor B and a single
filter F; is R, € R¥*" (later referred to as a feature map), which
is given by Equation 1.

R;=F,0B,and B[ , (1)

where O represents a convolution operation and R; is the component
of the output tensor B’ at depth i.

=R,
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Let D be a dataset containing N data samples and C = {cy, ...,c,,}
be the set of all object classes in the dataset. Let D, = {I{...I{,} be a
subset of D (ID, ¢ D) containing all data samples (IJF) with the class
label ¢ € C. The number of samples in D, is denoted as N’, such that
N' <N.

Finally, we denote by R,»(I;) the feature map for the filter F;, and
the input data sample I]? eD..

Accumulated response (r¢) for a class c and a filter F; is defined as
the average sum of all elements in the feature map R, for all samples
in D_. It is calculated as shown in Equation 2.

N XY

1
1= ——— R -(I?), (2)
" XYN ];;; i\
where R, ; is a single element at a position x,y (x€ X',y € Y') ina

feature map R,.

Let r® = {r{,r5,...,7{} be a vector of accumulated responses of all
filters in the network for a class c. For a given pruning ratio 6 € [0,1],
RBP refers to the process of removing |r¢| * 6 number of filters from
IF with the smallest 7{ values in r¢, where |r‘| is the cardinality of
r¢. In general, we will refer to RBP applied to a network as a pruning
method o;. For instance, for 6 = 0.1, 10% of the filters with the lowest
accumulated responses will be removed.

3.2 Network evaluation

In practice, RBP is implemented by accumulating the filter
responses for a whole class of objects. This is obtained by propagating
the dataset D, through the network, collecting the accumulated
response of each filter for each input sample, and then averaging
over the number of class samples to obtain r{. The accumulated
responses are then ordered in descending order of their magnitudes,
and during the pruning process, 6 * |r¢| of them are removed starting
with ¢ with the lowest values. The result of pruning 6 * |r°| filters is
represented as a binary mask, with 1 representing filter coefficients
that are not pruned and 0 representing pruned filter coefficients.
This mask is the same size as the tensor representing all filters in the
network. The binary mask is directly multiplied with the network
filters, causing the pruned filters’ coefficients turn to 0 and thus
making the filters” output 0.
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The accuracy of a network A is measured by the sum of the
average class-wise accuracies, as shown in Equation 3.

ZIecha(N D0

AW,D)=) A(N,D,) = D

ceC

, )

where ID and ID, are the whole dataset and the subset ID, <D,
respectively.

To quantify the changes in the average accuracy of the evaluated
models, we define the accuracy difference AA such that given two
networks A; and NV, we have

AA= AN, D)) - AWN,,D). (4)

Note that in Equation 4, one can change the dataset to, for
instance, D, and the accuracy difference will show a single-class
accuracy comparison between two networks. In such a case, we will
use AA, to indicate that the average accuracy is for a specific class c.

The reduction in the CNN size impacts the accuracy of the
target task (Molchanov etal., 2016). For instance, in the case of
visual classification, the average accuracy for a n-label classification
decreases as a function of the amount of pruned cells (Molchanov
etal, 2016). However, this decrease in average accuracy is not
monotonic, as shown in Equation 5.

ifsign (AA) <0
then3c € C:sign(AA,) > 0. (5)

This means that when pruning a CNN in a multi-classification or
recognition environment, making the network smaller can improve
the accuracy of certain classes while ignoring other classes.

From a practical point of view, this means that one needs to
determine whether the pruning of the already minimized networks
can be used as a method of algorithm selection using a per-task
configuration by pruning.

4 Experimental settings

4.1 Dataset

In this work, we use the following datasets: VisDrone (Zhu et al.,
2021). The dataset contains five different tasks, namely, object
detection in images, object detection in videos, single-object
tracking, multi-object tracking, and, finally, crowd counting. The
VisDrone dataset provides various tasks for up to 10 different object
classes. Specifically, detection and tracking can be performed for the
class labels and their corresponding class IDs, as shown in Table 1.

The first column of Table 1 shows the class name, the second
column shows the class ID, and the last column shows the number
of data samples available for each class.

As observed, the training dataset is unbalanced. Furthermore,
the dataset incorporates a class label for ignored regions, facilitating
the training of detectors to avoid specific regions.

In the object classification task, we use all the |IL| = 10 labeled
objects that should be identified and localized by a bounding box.
To apply RBP more directly to the trained model, we reduce the
detection task to the classification task. To accomplish this, we follow
these steps:
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TABLE 1 Dataset description showing the class name, class id and the
number of samples in each class.

Class name Class ID Class samples

Pedestrian (1) 79,335
People (2) 27,059
Bicycle 3) 10,477

Car (4) 144,847

Van (5) 24,939
Truck (6) 12,870
Tricycle (7) 4,803
Awning-tricycle (8) 3,243
Bus 9) 5,926
Motor (10) 29,642

1. For each sample image I,, € D in the dataset ID that contains j

objects represented by the set O,, = {0y, ..., 0}, we extract each

of the labeled objects o, € O, as image i*, which result in a set
of images I, = {iy, ..., i}}.

. Each object i), € I, is extracted to the size of the bounding box

[\

and thus is resized to the same size x X y = 256 x 256 pixels.

3. The new dataset ID . is the union of all images from all the sets
I

4. The image set D is directly associated with a set of labels O
created similarly by the union of all label sets O,,,.

4.2 Network models

We evaluate three types of convolutional neural networks. The
first CNN is the simplest one. It contains only three convolutional
layers, each followed by a batch normalization layer. We refer to this
CNN as CNN,. The second CNN model is a set of four convolutional
layers, each followed by a batch normalization layer. We refer to this
CNN as CNN,. The last CNN is very similar to the first one, but
each layer of convolutional filters is larger, and it is expected that
this network will provide better classification accuracy. We refer to
this CNN as CNNj. Each of the convolutional network contains two
fully connected layers that serve as the classifier of the convoultional
features to the target labels. The details of the implementation of each
of the models are shown in Table 2.

The first column in Table 2 shows the name of the model. The
second column shows the configuration of the convolutional layers
in i:(j,k) format, where the layer ID, number of filters, and size
of the filters are represented by i, j, and k, respectively. Columns
three, four, and five show the number of batch normalization, fully
connected layers, and the activation function, respectively. Finally,
the last column describes whether any specific methods were used
for learning, such as dropout, and whether other layers, such as
MaxPooling, were used.
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TABLE 2 Configuration of various tested CNN models.

10.3389/frobt.2025.1552068

Network CNN Batch Fully Activation ’ Comments
CNN, 1: (10,5), 2: (20,5), 3: (20,3) 2 2 ReLU Used dropout (0.25) for learning
CNN, 1: (10,5), 2: (20,5), 3-4: (20,3) 3 2 ReLU Used dropout (0.25) for learning
CNN, 1: (10,5), 2: (20,5), 3-6: (20,3) 4 2 ReLU Used dropout (0.25) for learning
CNN;
Trained Mask
@ Baseline Extraction
CNN;
Train
Dataset Class
1,0 k.0
Subsets TestSet  CNNM?--- CNNF
FIGURE 2
Schematic representation of the experimental steps when applying the RBP methodology used in this paper.

The experiments are conducted according to the schematic
shown in Figure 2. For each CNN;, where i € [1,2,3], we first apply
training using the training dataset. CNN; is trained to the highest
possible accuracy for the classification of all |IL| = k class labels in
the dataset. The training parameters for all models are as follows:
training epochs = 20, learning rate A = 0.001, batch size = 256, and
Adam optimizer. In addition, as shown in Table 2, dropout at a rate
of 0.25 was applied during training. Each resulting baseline network
CNN; is used to generate k feature maps r¢, ¢ = 1,...,k, one for each
class label k € IL. The feature maps are then analyzed using the RBP
1.1, . mf.‘} is created. The
masks are applied one at a time to the network, producing the pruned
network, which is shown as CNNi’e. This is the CNN; network that
was cut down at the 6 threshold for the class label I. For each CNNi’g,
the test set is applied. Finally, the predictions of CNNi"9 are evaluated,

method, and a set of pruning masks M; = {m

and the accuracy for each class is calculated.

5 Experiments and results
5.1 Full network training

The accuracy of all three networks is shown in Table 3 as average
accuracy over the set of all 10 classes.

Table 3a shows the result of training the networks on the data
extracted from the original dataset without any post-processing.
The first column in both Tables 3a,b shows the class ID, the
second column in Table 3a shows the number of training samples
for the unbalanced dataset, and the three last columns in both tables
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show the accuracy of the evaluation dataset for each of the respective
three CNN models.

In Table 3a, the obtained data are highly unbalanced, and thus,
the models trained on these data are referred to as CNNY, CNNY,
and CNNY. We expect that training on unbalanced data will result in
the classification of certain classes being significantly more accurate
than others. In the present case, all three networks learned two
major classes very well (based on the number of samples), namely,
pedestrian (1) and car (4). In addition, classes truck (6) and motor
(19) had a significant classification accuracy. The network failed to
train on the remaining classes due to insufficient data representation.
However, note that the number of samples is not the only factor
determining the classification accuracy because classes 2 and 5 have
a relatively large number of samples in the training data, but their
generalization remains very low.

Table 3b shows the same networks but trained on balanced
data. The balanced dataset was obtained by oversampling all the
classes to the number of samples given by the class car (4), and
the total resulting number of samples is 1,448,470. The results
of balanced training show much more homogeneous results with
all classes having a classification accuracy larger than 0.25. It is
observed that using the balanced data for training resulted in all
three networks having very similar performance on average. We
refer to the networks trained on the multi-class dataset as CNNj,
CNN,, and CNNj.

For understanding the accuracy of the networks in Table 3,
Figure 3 shows samples of each of the 10 classes of the data. It is
important to note that we extracted the data specifically for object
detection. We resized all the data, which can lead to significant
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TABLE 3 Results of evaluation of the model CNNs trained on (a) unbalanced and (b) balanced training data.

Class ID Samples
1 79,335 0.87 0.89 0.87
2 27,059 0.11 0.13 0.15
3 10,477 0.03 0.04 0.07
4 144,847 0.94 0.93 0.93
5 24,939 0.03 0.05 0.06
6 12,870 021 021 0.26
7 4,803 0.02 0.01 0.07
8 3,243 0.00 0.00 0.00
9 5,926 0.09 0.07 0.11
10 29,642 0.32 038 0.34

Class ID
1 0.62 0.67 0.57
2 0.54 0.52 0.59
3 0.49 0.55 0.56
4 0.49 0.47 0.61
5 043 0.37 0.43
6 0.40 0.37 0.49
7 0.39 0.41 035
8 0.42 0.42 0.31
9 0.65 0.65 0.71
10 0.25 0.27 0.32

object distortion. In addition, as shown in Figure 3, the objects are
of entirely unique quality, and thus, the resulting initial performance
corresponds to the dataset.

Although multi-class CNN; networks are able to learn the data,
their baseline performance is not excellent.

5.2 Single-class network training at full
accuracy

To obtain a deeper understanding of how these three networks
can actually learn the classification tasks from the given dataset, we
trained each of the CNNs for single object classification, one at a
time. To distinguish between the multi-class trained models and the
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binary classifiers, we refer to the binary classifiers as CNNj, CNN3,
and CNN3.

To train the binary classifiers, we created 10 different datasets
(one for each target class). The size of each dataset is twice the
number of samples in the target class, which is shown in the second
column of Table 4. The negative label (not the target class) was
randomly sampled from the remaining datasets. There were three
convolutional networks trained to classify single objects. The results
of their tests are shown in Table 4.

As anticipated, the accuracy of the binary classifiers trained
for individual classes surpasses that of the networks trained for
multi-class classification. This is an expected outcome as the
binary classification is simpler (binary classification vs multi-class
classification). In addition, for multi-class learning, the data might
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FIGURE 3
Example of images extracted from the object detection and localization VisDrone dataset.
TABLE 4 Results of the classification using binary classifiers.
Class ID Class name ’ # Samples CNNj ’ CNN3 CNN3

1 Pedestrian 160,000 0.97 0.97 0.96
2 People 54,200 0.96 0.93 0.94
3 Bicycle 21,000 0.78 0.62 0.68
4 Car 290,000 0.20 0.20 0.05
5 Van 50,000 0.26 0.21 0.45
6 Truck 26,000 0.41 0.15 0.21
7 Tricycle 10,000 0.72 0.66 0.65
8 Awning-tricycle 6,500 0.38 0.58 0.36
9 Bus 12,000 0.33 0.23 0.35
10 Motor 60,000 0.64 0.74 0.65
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FIGURE 4

Accuracy of pruned single-class classifiers as a function of the size of
the training dataset.

not be large enough. Even when oversampling is used to create a
balanced dataset, the resulting dataset might not be large enough.
Finally, according to the results, the network is large enough to learn
a high-accuracy binary task, while for multi-class learning, a larger
network could be used. For instance, assume that the verification
accuracy for class pedestrian or people is over 0.95 for both classes
(Table 4). This value would indicate that the network is large enough
for this binary classification, but this result is not observed for all
classes; thus, the size of the network is not the only parameter
that would distinguish the single classifier from the multiple-class
classifiers. In addition, assume that there are some outliers. In
particular, Figure 4 shows the accuracy as a function of training data
size. Generally, we expect classes with more samples to have higher
accuracy, but when we prune a single class, dependency becomes
less precise.

Furthermore, note that the multi-class CNNs are able to provide
an improvement over the single-class classifiers only in specific
cases. The accuracy of single-class networks is lower for certain
classes compared to networks trained on unbalanced data and lower
for other classes compared to networks trained on balanced data.
In particular, classes truck (6), awning-tricycle (8), and bus (9) are
much better recognized by the network trained on balanced data,
while they are almost not recognized at all when the same network is
trained on unbalanced data. The most probable reason for this result
is that training it on a multi-class dataset allows it to better organize
the feature space.

5.3 Pruning full network

5.3.1 Networks trained on the balanced dataset
Pruning was performed over the set of pruning ratios

specified by 60=1[0.05,0.1,0.15,0.2]. We the CNNs

trained balanced datasets, and we

used
in Section5.1 on the
pruned them for one class at a time. We then evaluated the
pruned network for the classification accuracy of each of the
10 label classes.

The pruning of CNNs was performed by removing 0 * 100%

least active filters from the CNN. The results of pruning the three
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CNN networks (trained on balanced data) are shown in Figures 5-7.
There are four subfigures in each figure. Each one shows the accuracy
of each class when the network was pruned at the 6 ratio for the
respective class. In addition, each figure shows the results of the per-
class pruning and the measured accuracy for all 10 classes. The x-
axis is labeled by numbers from 1 to 10, representing the classes,
as described in Section 4.1. Each plot contains 10 lines, each one
representing a network pruned for a particular class.

Figure 5 shows the results of pruning CNN, for all four pruning
ratios 6. For 0 = 0.05, the network pruned for all classes except bus
(9) shows a test accuracy of 70% for the bicycle class. In addition,
when pruned for class bus (9), the verification for class tricycle (7)
shows the classification accuracy of 70%. For the remaining pruned
classes, the resulting network shows an accuracy of 20% or less. For a
pruning ratio 6 = 0.1, CNN, network displays, on average, not much
improvement compared to the original unpruned network. The
highest achieved accuracy is =60% when the network is pruned for
class people (2) and is evaluated for class 9. Interestingly, when the
network is pruned for classes from van (5) to bus (9), the accuracy
of evaluation for classes 1, 4, and 8 increases to =40%. Figure 5C
shows CNN, network being pruned at 0 = 0.15. When pruned for
class bus (9), the network shows an accuracy of 85% for class van
(5), and when the network is pruned for people (1) and pedestrian
(2), the network shows an improved accuracy for class 10. Finally,
when pruning CNN, at 0 = 0.2, the accuracy increase is the highest
among all four pruning ratios. In particular, pruning for classes from
bicycle (3) to motor (10) led to a classification accuracy of above 92%
for classes 5 and 6.

Figure 6 shows the pruning results for all ratios 6 applied
to network CNN,. Here, the improvement is generally more
pronounced as each threshold results in an increase in classification
accuracy for at least one class, reaching 90%. For 6 = 0.05, pruning
CNN, for classes pedestrian (1), people (2), and motor (10) results
in a classification accuracy of 88% for class bicycle (3). Pruning for
classes from van (5) to bus (9) results in an improvement, with class
(3) reaching 98% accuracy. For a pruning ratio of 6 = 0.1, pruning
only for class bicycle (3) shows an accuracy improvement of over
93% for all pruned classes except awning-tricycle (8) and bus (9).
For the pruning ratio 6 = 0.15, a considerable accuracy improvement
is observed only when the pruned class is bicycle (3). Pruning for
classes 4, 6, 7, and 9 also provides an accuracy increase above 60%
for class car (4). Finally, Figure 6D shows the pruning of CNN, at
a pruning ratio of 6 = 0.2. At this pruning ratio, pruning for class
motor (10) results in an classification accuracy of 70%; pruning for
classes 1 and 2 results in an classification accuracy of 84% for class 4,
while pruning classes truck (6) and bus (9) increases class 4 accuracy
to over 95%. In addition, pruning classes bicycle (3) and van (5)
increases the accuracy of class 4 to 80%.

Figure 7 shows the pruning results of CNN;. For 6 =10.05
(Figure 7A), the most observable accuracy increase is for pruning
of classes 4 to 9 for class bus (9) (up to 100%). A notable accuracy
increase of up to =80% is also obtained for class van (5) when
pruning for class bicycle (3). Figure 7B shows the pruning results
of CNN; at =0.1. For this pruning ratio, classes 5, 6, and 9
achieve an evaluation accuracy of 100% when CNNj is pruned for
classes awning-tricycle (8) and bus (9), people (2), and tricycle (7),
respectively. In addition, class 9 achieves an evaluation accuracy
of 90% when CNNj is pruned for class truck (6). For 6 =0.15
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FIGURE 5
Class wise pruning of the CNN; at a) 8 = 0.05, b) 8 = 0.1, ¢) 8 = 0.15 and d) 6 = 0.2 pruning thresholds.
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FIGURE 6
Class wise pruning of the CNN, at a) 8 = 0.05, b) 6 = 0.1, ¢) 6 = 0.15 and d) 6 = 0.2 pruning thresholds.

(Figure 7C), only class 9 has its accuracy improved significantly
(up to 100%) when pruning for classes people (2) and classes car
(4) to awning-tricycle (8). In addition, class 4 has a classification
accuracy of approximately 75% when CNNj is pruned for classes
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bicycle (3), bus (9), and motor (10). When CNNj is pruned at 6 =
0.2, as shown in Figure 7D, class 8 is classified at an accuracy of more
than 85% and up to 100%, when pruned for the classes pedestrian (1)
to tricycle (7) and motor (10).
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Class wise pruning of the CNN3 at a) 8 = 0.05, b) 6 = 0.1, ¢) 6 = 0.15 and d) 6 = 0.2 pruning thresholds.

It is observed that the results show two types of patterns. First,
pruning generates a complete collapse of the classification of certain
classes. This result can be observed across all pruning results, such
as in Figure 5A, for classes such as van (5) or bus (9). The second
type of result shows that for a given pruning ratio (6), certain classes
have their classification accuracy improved. These results can be
observed in Figure 5C for classes such as van (5) or motor (10).

Next, it is observed that for the CNN; network, classes that
show significantly improved classification accuracy compared to
the corresponding CNN; models are van (5), truck (6), and motor
(10). Other classes have had their classification accuracy increased
but not by a sufficient amount to improve over the single-class
classification networks. However, often, the changes in the accuracy
of such classes, in general, resulted in an accuracy higher than that
in the original model from Table 3b.

For network CNN,, the results of pruning are shown in Figure 6.
For the classes bicycle (3), car (4), and van (5), the accuracy
improved beyond that of both the single-class and multi-class CNNs.

For network CNN3, the results are shown in Figure 7. Just like
the previous two pruned models, only specific classes, in this case,
have benefited from pruning. In particular, these classes are van (5),
awning-tricycle (8), and bus (9).

5.3.2 Networks trained on the unbalanced
dataset

Similar to the models trained on balanced data, we also
performed network pruning on CNNs trained in Section 5.1 on the
unbalanced datasets, and we pruned them for one class at a time.
Pruning was again performed over the set of pruning ratios specified
by 6=1[0.05,0.1,0.15,0.2], and we refer to these models as CNNiU
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to distinguish them from the models trained on balanced data.
We evaluated the pruned network for the classification accuracy of
each of the 10 label classes. The purpose of pruning the unbalanced
models was to observe the quantitative difference in individual class
classification accuracy—improvement or reduction.

Figure 8 shows the results of pruning CNNV. Note that for this
model, only classes pedestrian (1) and people (2) have an observable
improvement in classification accuracy. When the network is pruned
for any of the 10 available classes, the classification accuracy of
classes pedestrian (1) or people (2) is almost always increased to
above 80%. When CNNIU is pruned at 0= 0.05, the classification
accuracy for class pedestrian (1) reaches 100% regardless of which
class the network is pruned for. For all the other thresholds, the
classification accuracy of class people (2) is improved only for most
of the classes that the network is pruned for.

A similar result can be observed when pruning the CNNY
network. The results of this pruning are shown in Figure 9. It
must be observed that, again, only two classes showed improved
classification accuracy across all the different pruning thresholds.
When pruning CNNY at threshold 6=0.05, the classification
accuracy is improved only for classes pedestrian (1) and motor
(10). However, only class motor (10) shows improvement over the
classification accuracy of CNN; for motor, and that occurs when
CNN;J is pruned for class truck (6). For threshold 6=0.1, the
classification accuracies of classes pedestrian (1) and motor (10) are
improved to up to 100% for pruning classes truck (6) and bus (9)
and all classes, respectively. For 6 = 0.1, the accuracy reaches 100%
only for class pedestrian (1) when pruning tricycle (7), awning-
tricycle (8), and motor (10). For threshold 6 = 0.2, again only class
pedestrian (1) has its classification accuracy significantly improved
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up to 100% when CNN = 2V is pruned for pedestrian (1), van (6),

and tricycle (7).

A similar picture is shown by the pruning of CNNY,

as shown in Figure 10. For 6 = 0.05, when pruning for truck (6) and
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tricycle (7), class people (2) is improved to almost 100% classification
accuracy. When pruning at 6 = 0.1, class car (4) has its classification
accuracy significantly improved. For pruning classes tricycle (7)
and motor (10), the classification accuracy becomes 100% for class
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car (4), and when pruning for class awning-tricycle, the accuracy
becomes over 80%. When pruning at a ratio of 6 = 0.15, class car (4)
is classified at 100% when CNNY is pruned for any of the 10 classes.
Finally, when pruning at 6 = 0.2, the classification accuracy of class
car (4) is significantly increased when the network is pruned for all
except the tricycle (7) and awning-tricycle (8) classes.

6 Result discussion

By examining the evolution of class accuracy as a function of
pruning and pruning masks, we can compare the results across
different networks. These results are intriguing because of the
following observations.

First, the three networks encode the same learned information
differently. For instance, for the pruning ratio 6 = 0.1, the classes that
are improved by pruning are different. Table 5 shows the summary of
the improved classes for the different networks and pruning ratios.
Note that each network in Table 5 in the column “Network Name”
represents a group of pruned networks that are pruned at a given
0. The name CNN:’B includes all pruned networks resulting from
pruning CNN: at threshold 6 for all label classes [ € [1,10], while
CNNY’G represents all pruned networks resulting from pruning
CNNV at threshold 6 for all label classes. Thus, each such group
contains 10 networks.

As observed, 5 out of 10 classes were improved by pruning
at various stages in networks trained on balanced data, while 4
classes showed improvement when pruning networks trained on
unbalanced data. However, the representation of the information
is different because not all networks prune for all five classes. No
network prunes for all five classes. All networks trained on the
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balanced data, however, improve the bicycle and van classes. Finally,
all networks trained on unbalanced data only improved classes that
were represented by a larger number (Zf training samples.

Second, not all networks CNN,; improve the same classes
homogeneously. For instance, Table 5 shows that CNN, improved
the bicycle for three consecutive pruning ratios, but no other
network improved it continuously. On the contrary, each network
improved the accuracy of classes in an almost independent manner.
However, no network improved more than four classes. Similarly, for
the networks CNNY, the improvement can be broadly divided into
two stages, one for 6 = 0.05 and the second for 6 > 0.05; since the
networks were trained on an unbalanced dataset, pruning results in
more predictable behavior.

Third, we partially achieved the original goal of distilling smaller
CNNs from larger CNNs for specific subtasks. An important result
here is the observation that when pruning for a specific class, the
improvement is not directly predictable: in other words, pruning
for a class C does not imply that the classification of class C will be
increased. For instance, when pruning CNN, at 6 = 0.05, class-wise
pruning almost all the time improves the bicycle class. One of the
reasons for this observation is that the networks are minimal, and
class-wise pruning often uses the same pruning mask. Because the
CNN only has so many resources, many classes exhibit similar filter
responses when sorting into different groups. This implies that we
can use the same filters to create the pruning masks. As a result, the
pruning method cannot select class-specific filters to prune because
such filters do not exist in the network. A second reason for this is
that the network represents class information in proportion to the
relative amount of data for each class. Therefore, pruning removes
the least active filters and, as a result, tends to remove those that
more strongly represent classes trained on smaller amounts of data.

frontiersin.org


https://doi.org/10.3389/frobt.2025.1552068
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Konyrbaev et al.

TABLE 5 Summary of the classes for which the accuracy improved after RBP with respect to the original unpruned network.
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Network
Group ‘ 0.05
Bicycle (3)
Van (5) Van (5)
CNN?
Motor (10)
Truck (6)
Pedestrian (1)
CNNYY
People (2) People (2) People (2)
Bicycle (3) Bicycle (3) Bicycle (3)
CNN,” Car (4) Car (4)
Van (5)
Motor (10) Motor (10)
CNNYY
Pedestrian (1) Pedestrian (1) Pedestrian (1)
Van (5) Van (5)
Bus (9) Bus (9) Bus (9)
CNN,?
Awning-tricycle (8)
Bicycle (3)
People (2)
CoNNY?
Car (4) Car (4) Car (4)

Consequently, the classes with the largest amount of training data
will experience an increase in their classification accuracy.

Fourth, the results point to various degrees of possible
overfitting. When removing filters from one class improves the
classification accuracy of another class by more than 95% (such as
in Figures 6A, 7B, 10), it means that the network can no longer
generalize effectively over the initial set of classes. Instead, only a
subset of specific filters is now working. It is intriguing to note that
high accuracy was found on the evaluation dataset for both CNNY
and CNN networks. The result of pruning under the experimental
conditions in this paper could, therefore, be explained as non-
targeted optimization: removing the set of least active filters, which
are highly overlapping, results in providing a single network that
improves the classification accuracy of few classes. These classes
are either represented by the largest number of training samples
(unbalanced training) or are classes represented most effectively by
the most active features.

According to studies on class representation in CNNs
(Abdiyeva et al., 2021a; Lukac and Abdiyeva, 2023), classes with
similar visual features occupy nearby locations in the feature space.
Pruning as a tool for removing certain features can have multiple
direct effects. First, it can, as expected, remove some features and
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thus effectively destroy the network’s ability to recognize certain
classes. Second, removing some features frees up the feature space
for other features to become more prominent. Third, removing
certain features allows interactions with other features to be
amplified, so even classes not related to individual features can
be suddenly recognized with higher accuracy. Thus, the classes with
classification accuracy increases of more than 95% may be partly
due to the same filters that made the pruned class perform best.
However, “infecting backgrounds” can also contribute to improved
classification. An object of class A can often lead to a mistaken
classification when it appears with a background of class B in visual
inputs. So, a high level of classification accuracy could come from
both recognizing class A features and the co-occurrence statistics
that come with class B features. Together, these statistics lead to a
higher probability of classification.

In practice, this could imply that the networks could be
potentially compressed even more. Although we consider pruning
a size reduction technique in this study, it was not implemented
as such. For that, the filters would have to be totally removed
from the network, which is possible and would entail the expected
size reduction. Considering further development, the results of
pruning and isolating filters for individual or groups of classes

frontiersin.org


https://doi.org/10.3389/frobt.2025.1552068
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Konyrbaev et al.

provide a roadmap for designing optimal object classifiers or feature
extractors. In addition, understanding which filters are important
to a given class and identifying the interfering background are also
helpful in determining the optimal size of classifiers.

Finally, the fact that only certain classes are improved by
pruning can also be observed from the point of view of pruned
filters, i.e., pruned masks. Examining the overlap of the masks for
different classes at different 6, we note that the average similarity
between binary masks is 80%. This means that due to the small
size of tested networks, the classes are represented by filters, and
their distinction is induced by a very small number of low-active
filters. Pruning these filters, thus, causes certain classes to become
completely unrecognized, while other classes become recognized at
very high accuracy.

7 Conclusion

In this paper, we show the application of neural network
pruning as a method for generating neural networks for selective
classification. The proposed method for generating specialized
CNNs from a large-scale CNN showed promise for certain classes
of objects. In addition, the class-wise RBP showed that, while being
exclusive, it also positively affects other classes. We can see this as a
side effect of the de-cluttering of the feature space where individual
object classes are located.
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