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The advancement of tactile sensing in robotics and prosthetics is constrained
by the trade-off between spatial and temporal resolution in artificial tactile
sensors. To address this limitation, we propose SuperTac, a novel tactile
super-resolution framework that enhances tactile perception beyond the
sensor’s inherent resolution. Unlike existing approaches, SuperTac combines
dimensionality reduction and advanced upsampling to deliver high-resolution
tactile information without compromising the performance. Drawing inspiration
from the spatiotemporal processing of mechanoreceptors in human tactile
systems, SuperTac bridges the gap between sensor limitations and practical
applications. In this study, an in-house-built active robotic finger system
equipped with a 4 × 4 tactile sensor array was used to palpate textured
surfaces. The system, comprising a tactile sensor array mounted on a spring-
loaded robotic finger connected to a 3D printer nozzle for precise spatial
control, generated spatiotemporal tactile maps. These maps were processed
by SuperTac, which integrates a Variational Autoencoder for dimensionality
reduction and Residual-In-Residual Blocks (RIRB) for high-quality upsampling.
The framework produces super-resolved tactile images (16 × 16), achieving
a fourfold improvement in spatial resolution while maintaining computational
efficiency for real-time use. Experimental results demonstrate that texture
classification accuracy improves by 17% when using super-resolved tactile data
compared to raw sensor data. This significant enhancement in classification
accuracy highlights the potential of SuperTac for applications in robotic
manipulation, object recognition, and haptic exploration. By enabling robots to
perceive and interpret high-resolution tactile data, SuperTacmarks a step toward
bridging the gap between human and robotic tactile capabilities, advancing
robotic perception in real-world scenarios.

KEYWORDS

mechanoreceptors, robotic finger, tactile sensor, tactile super-resolution, texture,
variational autoencoder

1 Introduction

In traditional robotics, vision has been the primary sensory modality. However,
as robots are increasingly deployed in unstructured environments and tasked with
complex object manipulation, the sense of touch becomes indispensable. Tactile sensing
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is a critical component of robotic or prosthetic perception, enabling
machines to interact with their surroundings through touch. It
plays a pivotal role in applications such as object recognition,
material classification, robotic manipulation, and haptic exploration
(Pyo et al., 2021; Meribout et al., 2024). A robust sense of touch
allows robots to perform tasks that require precise interaction,
such as handling fragile objects or exploring intricate surfaces.
Despite significant advancements, artificial tactile sensing systems
remain limited in achieving the high resolution and efficiency of
human touch perception. A key challenge is the trade-off between
spatial and temporal resolution in tactile sensors. Increasing spatial
resolution often reduces temporal resolution due to hardware
constraints such as sampling rates and communication bandwidths
(Wang et al., 2023; Huang et al., 2025).

The human tactile system provides an exemplary model for
addressing this trade-off. Mechanoreceptors in human skin process
tactile information with high spatial and temporal resolution,
and the brain integrates this data to enable rapid and precise
tactile perception (Johansson and Flanagan, 2009). Remarkably,
the human tactile system achieves hyperacuity, distinguishing
tactile stimuli separated by as little as 0.3 mm (Abraira and Ginty,
2013), finer than the receptive field of any single mechanoreceptor
(approximately 2 mm). This capability arises from the population-
level encoding of tactile information, where the spatiotemporal
patterns of mechanoreceptor activation across neighborhoods are
processed synergistically. This biological inspiration underscores
the need for artificial systems capable of similar spatiotemporal
processing, bridging the gap between sensor limitations and
practical applications.

Previous research aimed at enhancing tactile resolution has
predominantly concentrated on developing specialized sensor
architectures and advanced fabrication techniques (Wang et al.,
2023). For example, Lu et al. (2024) designed a biomimetic soft
tactile sensor inspired by the Pacinian corpuscle, optimizing the
soft silicone layer for super-resolution. Li et al. (2022) utilized
a high-throughput laser manufacturing method to achieve fine
spatial resolution (0.7 mm) with minimal crosstalk. Yan Y. et al.
(2021) developed a flexible, self-powered triboelectric sensing
array via laser direct writing on laser-induced graphene, enabling
high-resolution (8 dpi) real-time sensing. Similarly, Zhang et al.
(2022) introduced a fast-photocurable solid-state conductive
ionoelastomer (SCIE) that supports high-resolution 3D printing
of robust, stretchable tactile sensors. While these approaches
have demonstrated impressive performance, they are inherently
tied to specific sensor designs and fabrication processes. While
these fabrication-centric strategies have advanced tactile sensor
performance, they are often resource-intensive, sensor-specific,
and limited in scalability. As tactile sensing applications expand
across diverse platforms, there is a growing need for algorithmic
approaches to super-resolution that can enhance tactile resolution
independent of the underlying sensor hardware.

More recently, a new wave of tactile sensing strategies has
focused on integrating various tactile super-resolution algorithms
with existing or custom-made tactile sensors to address the
limitation of traditional tactile sensors sensing (Yu and Liu,
2025). Few studies mimicked the tactile sensing and encoding
strategy used by human mechanoreceptors (neuromorphic tactile
sensing) to achieve high-resolution tactile sensing and showed

applications in texture classification, edge detection and slip
detection (Kumar et al., 2020; Sankar et al., 2019; Parvizi-Fard et al.,
2021). Other studies used various machine learning based approach
for tactile super-resolution. For instance, a deep neural network-
based reconstruction framework, EIT-NN, was proposed to
enhance the performance of electrical impedance tomography
(EIT)-based sensors, improving spatial resolution and sensitivity
while maintaining simplicity in sensor design (Park et al., 2021).
Similarly, the Local Message Passing Network (LoMP) enabled
high-resolution calibration of piezoresistive sensor arrays using
limited single-touchdata, addressing calibration challenges inmulti-
touch scenarios (Kim et al., 2021). Another significant development
involves the use of soft magnetic skin for tactile sensing, which
decouples normal and shear forces and achieves super-resolution
through deep learning algorithms (Yan Z. et al., 2021). Another
approach by Wu et al. (2022) introduces TactileSRCNN and
TactileSRGAN, which adapt image super-resolution techniques
such as CNNs and GANs to upscale low-resolution tactile patterns
from taxel-based sensors by a factor of 100, enabling multi-point
contact detection from a single tap. Another method (Oller et al.,
2023) focuses on modeling the dynamics of deformable tactile
membranes by combining 3D geometric data and proprioceptive
feedback to predict sensor deformation and improve manipulation
control. Similarly, (Ouyang et al., 2024) presents a high-resolution
piezoresistive sensor array integrated with machine learning
algorithms, achieving fine spatial and temporal resolution and
demonstrating 98.9% accuracy in shape recognition. These studies
collectively highlight the growing role of machine learning in
achieving tactile super-resolution and precise pattern recognition.
These advancements have enabled precise tactile feedback for
tasks such as adaptive grasping and teleoperation, emphasizing
the potential of combining advanced sensor designs with
computational models.

Despite these innovations, a generalized approach to achieving
tactile super-resolution using standard low-resolution sensors
remains a challenging task. Existing methods often require
specialized hardware or extensive calibration, limiting their
scalability. To address these limitations, we propose SuperTac, a
real-time, hardware-efficient tactile super-resolution framework
that operates using standard low-resolution tactile sensors.
By combining dimensionality reduction using a Variational
Autoencoder (VAE) and advanced upsampling using Residual-
In-Residual Blocks (RIRB), our method delivers fourfold spatial
resolution improvement while maintaining over 50 frames per
second (FPS) throughput. This makes SuperTac a promising step
toward a generalizable framework for real-time tactile super-
resolution, offering high performance without relying on complex
hardware or visual sensors.

To validate the SuperTac framework, we designed an
experimental setup featuring an in-house-built active robotic finger
system equipped with a 4 × 4 tactile sensor array. This system
palpated textured surfaces to generate spatiotemporal tactile maps
as input data for the SuperTac network. We experimented with
super-resolution outputs of 8 × 8, 16 × 16 and 32 × 32. Among
these, the 16 × 16 resolution offered the best trade-off between
the image detail and reconstruction quality, leading to significantly
improved tactile representation. The results demonstrate a fourfold
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improvement in spatial resolution, producing 16 × 16 super-resolved
(SR) tactile images.

While this study uses a tactile sensor similar in design to
the one employed by Kumar et al. (2020), our objective and
methodological approach are fundamentally different. Kumar et al.
focused on encoding spatiotemporal features from low-resolution
tactile data for classification tasks using standard neural networks.
In contrast, our work introduces SuperTac, a novel framework that
integrates dimensionality reduction via a Variational Autoencoder
with Residual-In-Residual Blocks to achieve real-time super-
resolution of tactile data. This enables multifold increase in spatial
resolution, leading to significantly improved texture classification
performance and enabling broader applications in high-resolution
tactile perception. Additionally, SuperTac is designed to be sensor-
agnostic and operates in real time, offering scalability that was not
addressed in Kumar et al.‘s work.

The major contributions of this work include.

1. Development of a novel tactile super-resolution framework
that integrates dimensionality reduction and advanced
upsampling.

2. Demonstration of a fourfold improvement in tactile sensor
resolution with computational efficiency suitable for online
deployment.

3. Validation of the framework through an active robotic finger
system for tactile data collection.

4. Significant improvement in texture classification accuracy
using super-resolved tactile data.

This paper is organized as follows: Section 2 describes the
materials and methods used in this study. Section 3 details the
SuperTac framework, including its architectural components and
training methodology. Section 4 presents the results and Section 5
discusses the findings. Finally, Section 5 concludes the paper with
insights and future directions.

2 Materials and methods

2.1 Tactile sensor array

This study uses a fabric-based piezoresistive tactile sensor for
the robotic palpation experiment. We use a similar tactile sensor
previously used by Kumar et al. (2020). It is a 2D array of 16 tactile
sensing elements (taxels) arranged in a 4 × 4 grid, within an area
of 13 × 13 mm (Figure 1). A piezoresistive cloth is sandwiched
between conductive traces arranged as rows and columns.Thewidth
of traces is 2 mm with a 1 mm spacing between consecutive traces,
and therefore each taxel has a size of 2 mm × 2 mm.The tactile data
were recorded at the sampling rate of 300 Hz per taxel.

2.2 Tactile stimuli and robotic palpation

2.2.1 Design of tactile stimuli
We used two categories of graded textures for our experiments,

i.e., ridges and bumps. These textures were fabricated using
a 3D printer and PLA plastic as the printing material.
As shown in Figure 2, ridges are triangular protrusions, and bumps

are semi-circular protrusions. The three textures of each type have a
12 mm, 6 mm, and 4 mmdistance between each protrusion.Varying
the distance between subsequent protrusions allows the dataset to be
diverse, and the proposed network would learn to generate output
as a convex combination of the known bumps and ridges.

2.2.2 Design of robotic finger
The tactile sensor is integrated into an in-house-built robotic

finger system (Figure 3a). The finger consists of three components:
the main body, mid-piece, and tactile fingertip (Figure 3b). A
helical spring is incorporated into the design to function as a
suspension system, enabling the finger to bend passively in response
to external forces. This passive compliance allows the finger to
conform smoothly to various terrains and surfaces. The stiffness of
the spring ensures that the bending occurs in a controlled manner,
providing stability during operation. To achieve precise spatial
movement, the main body of the robotic finger is securely mounted
onto the nozzle of a 3D printer.

2.3 Experimental protocol

The entire experimental setup and data acquisition system has
4 phases. The phases are categorized according to the rectangular
movement of the finger to palpate over textured plates. Figure 4
shows the four phases; onset, sliding, release, and re-position.

For each texture plate, eight sliding actions are performed to
cover the width of the textured plate. Two trials were performed for
each of eight sliding actions for each texture.The texture plates were
fixed on the 3D printer base and the robotic finger palpated over the
textured plates during the palpation. The tactile data were collected
for sliding speeds at 5 mm/s and 10 mm/s.

2.4 Super-Tac algorithm

The proposed approach for tactile data super-resolution stems
from the idea that points on an image depict their positions with
respect to each other, and extracting these features helps capture
information about the point and its surrounding. Along with the
spatial component, the temporal features give us an idea about the
context of the data in the current time step and use information
frompreceding time steps to extract underlying features. Combining
both spatial and temporal feature extractors enable the extraction
of rich features from the input sequence (Kumar et al., 2020).
To capture the temporal features, a vast percentage of methods
employ a sliding frames window along with neural network
architectures like bidirectional recurrent convolutional networks
(BRCN) (Jo et al., 2018) and long short-term memory networks
(LSTM) (Huang et al., 2015). Our methodology combines the
aspects of tactile sensing with image processing to generate super-
resolution data.We have visualized tactile data in the form of images
and used deep learning-based algorithms to achieve tactile super-
resolution. We take inspiration from VAE to capture the latent
features, which are simpler to process, and we modify the residual
blocks presented in Zhang et al. (2018) as our upsampler. Thus, we
intend to reduce the dimensions of the input data and then use the
dimensionally reduced latent parameters to fabricate the SR image.

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2025.1552922
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Patel et al. 10.3389/frobt.2025.1552922

FIGURE 1
An exploded view of the tactile sensor array used in the experiment.

FIGURE 2
A schematic of the tactile stimulus. The height of each of the
protrusion is 2.5 mm and the base width of the protrusion are 2.5 mm.

2.4.1 Data visualization and pre-processing
The tactile sensor used in this study has 16 tactile sensing

elements stacked in a grid manner, and therefore we visualize the
data in 2 forms. The 16 channels are flattened along with the
columns and rows, denoting the finger’s movement in the direction
of columns and rows, respectively. “N” such flattened row-vectors
are stacked over each other; N is the number of timesteps (Ts). Each
row in the visualization corresponds to a particular timestep, and
each cell in a row corresponds to tactile data from the 16 taxels.

The movement of the 3D printer nozzle is constrained to the
horizontal plane only. The tactile sensor provided the output data
in the range of 0 V–2.5 V, which was linearly mapped to a scale of
[0–255], corresponding to an 8-bit resolution commonly used in
image processing. We try to visualize the obtained tactile data in the
form of 4 × 4 images, enabling us to apply the concepts from image
processing in our analysis.

2.4.2 Variational autoencoders
A Variational Autoencoder (VAE) (Kingma and Welling, 2014)

provides a probabilistic manner for describing an observation
in latent space. It has two main components; the encoder and
the decoder. The latent parameters are sampled from the normal
distribution using the mean and variance of the output of the
encoder network. VAE is suited for dimensionality reduction of
tactile sensors into latent features. Biological neurons pass the latent
information in the form of neuronal spikes. Sorting the neuronal
spikes based on a gaussian mixture model (GMM) (Souza et al.,
2019) is well known and practiced. This suggests that the latent
features can be represented by Gaussian curves or sampled from
normal distributions. This is what VAE exactly does; proper
training of VAE using Kullback–Leibler divergence Loss (KLD)
loss ensures that latent features are sampled from the standard
normal distribution (a particular case of a gaussian curve). Thus,
VAE’s functionality of representing information is similar to the
way actual biological neurons do and thus is a good fit for our
network.

x = x1,x2,x3,x4

f(x1) + h1(xi) = μi, f(xi) + h2(xi) = σi
lri ∼Ɲ(μi,σi) => lri = μi + ϵiσi
LR = [lr1 , lr2 , lr3 , lr4]

Output = [g(lr1),g(lr2),g(lr3),g(lr4)]

}}}}}}}}}}
}}}}}}}}}}
}

(1)

The Equation 1 is a simplified mathematical model for
our context, f is the encoder network with input from the
VAE stack xi|i ∈ {1,2,3,4} , and h1 and h2 are identical but
disjoint functions added to the final layer of the encoder
function, whose weights and gradients are calculated separately
to obtain the mean and variance. We sample from a normal
distribution to obtain the latent representation lri. Finally,
g is the decoder network that takes the latent data as
input.

We hypothesize that the input image of the tactile data can be
reduced to latent representations. Using VAE, the N × 16 input
data can be expressed by n × 4 data array, where N is the total
time steps (temporal component) of the input sequence, and n
is the dimensions of the latent parameter. The 16 columns are
separated into groups of four based on horizontal visualization
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FIGURE 3
(a) The experimental setup with the finger attached to the 3D printer. (b) An enlarged view of the finger containing three parts; Main body, Mid-Piece
and the finger. The suspension system is attached to points (A, B).

FIGURE 4
The tactile finger traverses on the tactile stimuli in 4 phases; Onset:
Positioning the finger above the initial point. Sliding: Palpating the
finger over the texture stimuli. Release: Breaking the contact of the
finger and the stimuli and offsetting the finger for the next sliding
action. Reposition: Bringing the finger to the next initial point which is
at a horizontal offset to the previous initial point.

or vertical visualization (Figure 5). Each of the N × 4 data is
down-sampled to an n x 1 array using a separate VAE network.
We concatenate the down-sampled arrays to get an encoding
with the shape n × 4. The temporal nature of the data (as
discussed in Section 2.4.1) ensures that the VAE extracts spatio-
temporal
features.

We chose a VAE for dimensionality reduction because it learns a
smooth, structured latent space that helps generalize tactile features.
While VAEs can sometimes produce slightly blurrier outputs

than standard autoencoders, we found the trade-off acceptable
for our task.

2.4.3 Residual upsampler
A study byCheng et al. (2019) introduced amethod to effectively

use an encoder-decoder network with residual skip connections to
obtain SR images from input blurred images.The up-sampling block
contains the Residual In Residual Block (RIRB), which combines
the data from the previous layers and concatenates it with the
processed data.The input to the first RIRB block is the latent features
from the encoder network. Subsequent RIRB blocks are connected
to each other in a sequential manner. RIRB contains several
Residual Channel-wise Attention Blocks (RCAB) (Zhang et al.,
2018), a convolution layer, and a skip connection. RCAB adopts
channel-wise attention mechanism to adaptively distinguish the
significance of the channels of the input data to the RCAB Block.
It gives more significance to some of the extracted features among
the input channels. In our case, given that we are dealing with
latent features of the tactile data, not all the features are equally
important. RCAB helps in giving significance to certain features,
unlike commonly used residual blocks wherein the features are
treated fairly. In our implementation, we use similar blocks but use
them as our up-sampler block (by adding a transpose convolution
layer) to selectively extract features and get SR output. Thus, the
RIRB block in our case works both as a selective feature extractor
and a upsampler to decode the latent features to super-resolution
outputs.

For upsampling, we used RIRB, which are effective at preserving
fine details in super-resolution. Though alternatives like sub-pixel
convolution or UNet could also work, the proposed setup is chosen
to achieve good balance between performance and efficiency for
real-time use.
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FIGURE 5
The tactile sensor comprises 16 taxels, numbered from 1 to 16. The data from these taxels can be flattened and vectorized either along rows or
columns. Time series corresponding to each row or column are then stacked over time to form a spatio-temporal representation. The right panel
illustrates both horizontal and vertical vectorization strategies, where each row or column's temporal dynamics are encoded as image-like patterns.

2.5 Synthetic dataset generation

Asmentioned earlier, we converted the raw tactile data obtained
from robotic palpation over textured surfaces into a 4 × 4 tactile
images by linearly interpolating the voltage data, from the tactile
sensor to grayscale. This 4 × 4 images are then passed through the
SuperTac network to obtain 16 × 16 super-resolved tactile images.
However, to assess the quality of obtained 16 × 16 tactile images,
we needed an ideal representation of the textured surface in the
form of 16 × 16 image within the same 13 mm × 13 mm of tactile
sensing area. Therefore, we created synthetic dataset of 16 × 16
image for each timestep. Knowing the speed of the of the finger
palpation and geometry of the texture enabled us in generating
the ideal 16 × 16 tactile image, with each pixel denoting 1/16th of
the 3 mm × 3 mm tactile sensor. For each time-step, the location
of the finger on the textured plate is known and thus accordingly
the location of the centre points of the 256 pixels (16 × 16) is
calculated and the height of the texture at the any position is taken
from the 3D design file of the texture. The height is then linearly-
interpolated to grayscale. Also, to make the ground truth more
realistic, we have added certain noises like mechanical vibration
noise as minor sensor or object movements can create wavy
distortions in the readings. Also, pressure can also be inconsistent
at some points while palpating over textures. Hence, mechanical
vibration noise will incorporate those factors in the ground truth
dataset. Further, we added thermal drift, EMI noise, quantization
artifacts, and sensor crosstalk noises. It is to be noted that the
time interval between subsequent data is taken to be constant
i.e., 1/300 s.

3 Training pipeline

The whole training pipeline, as shown in Figure 6 consists
mainly of two parts, the VAE Stack and the Upsampling Network.
We use an end-to-end approach to train the encodings and the
super-resolution networks together. For the VAE stack, we use
Kullback–Leibler divergence Loss (KLD Loss) and L2 loss for each
VAE network of the stack. L2 Loss penalizes the model based on
the Cartesian distance between the input and decoded images. KL
divergence term in the loss function makes the distribution of the
encoder output as close as possible to the standard multivariate
normal distribution.

For the upsampling stack, we use L2 Loss and SSIM (Structural
Similarity Index). L2 loss takes care of the Cartesian distance
between the super-resolution output and the high-resolution ground
truth data. The SSIM is a perceptual image measure, widely used for
measuring performance of super-resolution networks. The overall
loss of the network is a convex combination of losses fromVAE stack
and Upsampling network.

The Optimizer used in the process is the Adam optimizer.
Our dataset consists of two main textures with a varying number
of protrusions; bumps and ridges. The distances between the
protrusions have been varied, as stated in Section 2.2.1. The dataset
is split evenly between bumps and ridges. The tactile sensor has
a sampling rate of 300 samples per second. We collected data
over the 6 tactile stimuli (Figure 2) over two speeds of the robotic
palpation; 5 mm/s and 10 mm/s. For each stimulus and speed pair,
we performed eight sliding actions. This yielded us approximately
466000 numbers of 4 × 4 images.
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FIGURE 6
A schematic of the overall training pipeline of the Super-Tac network. As shown VAE stack is a stack of four identical VAE networks. The latent
parameters (LP) of each from the four networks are the inputs to the upsampling network. The upsampling enlarges the latent features into super
resolution data. FC -Fully connected layers.

4 Results

Figure 7 shows output of Super-Tac network. The input to the
network is the tactile data of shape 4 × 4 (first column). The low-
resolution data is upsampled to obtain super-resolution outputs
denoted by the final column. Each of the output has a size of 16 × 16.
The middle column is the simulated ground truth data. The texture
plate used in this case consists of both bumps and ridges at varying
distances from each-other.

In order to quantify our results, we use SSIM (Structural
Similarity Index), PSNR (Peak Signal to Noise Ratio), and
Phase Correlation as our metrics. These metrics are used
to measure the performance of the SR tactile images to
the simulated ideal high resolution tactile images. We also
report the frames per second (FPS) of output SR images for
the suitability of real-time usage of the proposed SuperTac
algorithm.

4.1 SSIM and PSNR

Calculating the SSIM (Wang et al., 2004) and PSNR scores as
a metric to determine the performance of super-resolution is a
common practice (Wang et al., 2018; Ledig et al., 2017). Since our
method involves visualizing the tactile data in an image-like format,
we use the SSIM and PSNR metrics for our analysis.

PSNR = 20 log10(MAX) − 10 log10(MSE) (2)

SSIM(x,y) =
(2μxμy +C1)(2σcy +C2)

(μ2x + μ
2
y + 1)(σ

2
x + σ2y +C2)

(3)

In Equation 2, the MAX term represents the maximum possible
value of each unit cell, while MSE denotes the mean squared error
between the reconstructed and reference images. In Equation 3, the
μ terms correspond to luminance (mean pixel intensity), and the
σ terms capture contrast (standard deviation of pixel values). The
constants C1 and C2 are introduced to ensure numerical stability,
particularly when the luminance or contrast values approach
zero. We plot (Figure 8) the average PSNR and SSIM by varying
the latent dimensions. Each plotline in the graph is drawn, keeping
the number of timesteps constant. We can see that both SSIM and
PSNR score gradually ingresses. For the instant when the number of
timesteps is 256, the SSIM increased from 0.749 to 0.856 Gradual
increase in the SSIM score is due to larger, better, and richer
encoding of the input image.

4.2 Frames per seconds (FPS)

The FPS is calculated by considering the data input (n x 16
image) as a frame at a particular time step. We calculate the FPS for
all the cases by varying the number of latent dimensions (LD) and
the number of timesteps to the network. We observe a gradual but
minor increase in the inference speed with a decrease in the number
of timesteps (Ts). Super-Tac processes all the data points in the range
of 47.1–53.2 FPS (47.1 FPS for 512 Ts and 30 LD and 53.2 FPS for
30Ts and 3 LD), which suggests that the SR image of the input data
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FIGURE 7
Results from the Super-Tac network. The left column denotes the 4 ×
4 low resolution tactile data. The middle column indicates the
simulated ground truth 16 × 16 high resolution image. The last column
is the super- resolved output from the Super-Tac Network.

can be generated in real-time given the FPS achieved are greater than
20 FPS. Therefore, we get the super-resolution output of the input
image in real-time and can thus be used as a live feed when the
network is employed on a prosthetic finger or a manipulator hand
of an exploration robot. This also gives us almost 20 FPS overhead
and thus allows further processing of the super-resolution output
if needed and still makes the process real-time. FPS decreases, and
PSNR values increase with the increase in latent dimensions, as
shown in Table 1 and Figure 5, thus creating a tradeoff of speed
v/s performance. This prompts us to consider the number of latent
dimensions to be 10 for further analysis. This ensures that we get
inference speeds almost close to the case of three latent dimensions
but with performance closer to the case of 30 latent dimensions.

4.3 Phase correlation

In some cases, despite achieving accurate inferencing, the PSNR
and SSIM values remain low due to the construction of the SR
tactile images and ground truth tactile images using binned data
samples over fixed time periods.While generating the ground truth,
we assume that the time interval between consecutive data points
is constant. However, during palpation, there is an inherent margin
of error in these intervals, causing them to vary (Figure 9). This
variability introduces cumulative errors during data collection. Since
SR images are generated from the collected data, which includes
this time interval variability, whereas the ground truth relies on an
idealized constant interval assumption, the PSNR and SSIM values
are influenced by the duration of the binning period. This issue led
us to adopt phase correlation as an alternative metric, as it is more
robust to shifts between similar images.

We trained separate networks with varying timesteps: 512, 256,
128, 64, and 32, and analyzed the phase correlation (PC) values,
which are presented in Table 1.We can see a bell-shaped relationship
between timesteps and phase correlation in Table 1, with the
highest performance observed at 256 timesteps (94.325 PC). This
optimal performance strikes a balance between data resolution and
smoothing, leading to the best accuracy in tactile data interpretation.

The above discussed results were obtained using a fourfold
super-resolution (16 × 16) of the 4 × 4 input tactile image.
To evaluate the effect of varying the super-resolution factor, we
extended the analysis to include twofold (8 × 8) and eightfold
(32 × 32) super-resolutions by modifying the SuperTac network
accordingly. Figure 10 presents the qualitative results for these
output resolutions. We noticed that 8 × 8 super-resolved output has
less details i.e., it is limited in spatial resolution and 32 × 32 super-
resolved image can introduce more artifacts, as the upscaling factor
increases, small errors in estimation or interpolation get amplified,
leading to artifacts like blurring, ringing or unrealistic patterns.
Quantitative evaluation using SSIM and PSNR metrics, computed
over 256-timesteps, is summarized in Table 2. The results indicate
that both SSIM and PSNR peak at the 16 × 16 resolution, suggesting
that a fourfold super-resolution offers the optimal balance between
detail reconstruction and fidelity for the 4 × 4 input tactile data.

4.4 Texture classification

In order to show the physical significance of super-resolved data
from the SuperTac Network, we perform a comparative analysis of
texture classification when the original 4 × 4 tactile data was used
for classification compared to super-resolved 16 × 16 tactile data.We
used a CNN based classifier network consisting of two convolution
blocks and a softmax layer to classify different types of texture data.
We varied the protrusions between bumps and ridges by 3,4, and
6 to create variation in textured plates. As shown in Figure 11, the
classification network yields an accuracy of 76.3% when the 4 × 4
tactile data was used as input to the classifier, whereas using super-
resolved 16 × 16 tactile data provided a classification accuracy of
93.1%.The 17% jump in texture classification accuracy when super-
resolved tactile data was used for classification indicates the ability
to capture fine details of textures by the SR tactile data obtained from
the SuperTac network.

5 Discussion

The SuperTac framework presents an algorithmic approach to
enhancing tactile resolution by leveraging spatiotemporal features of
tactile data, enabling the reconstruction of high-resolution outputs
from low-resolution inputs. Experimental results demonstrate
improvements across multiple metrics, including SSIM, PSNR, and
texture classification accuracywhilemaintaining real-time inference
speeds. Unlike conventional approaches that rely on hardware-level
enhancements, SuperTac achieves resolution enhancement through
software-based processing. Although this introduces a marginal
increase in energy consumption due to added computational
load, it remains significantly lower than that of hardware-based
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FIGURE 8
Reconstruction quality across latent dimensions and timesteps.(a) SSIM scores and (b) PSNR scores plotted against latent dimensions (LD) for different
numbers of timesteps (Ts). Each curve corresponds to a fixed timestep setting, as indicated in the legend.

TABLE 1 Keeping the latent dimensions as 10, calculating the metrics
SSIM, FPS and Phase Correlation (PC) by varying the timesteps.

Timesteps SSIM FPS PC

512 0.84 48.89 88.76

256 0.80 50.79 94.32

128 0.76 51.24 93.32

64 0.70 51.83 86.27

32 0.70 52.76 85.38

FIGURE 9
The spatial shift due to temporal inconsistencies in the simulated data
and super-resolved output.

solutions. This software-centric design offers a scalable and cost-
effective alternative without modifying sensor hardware, making
SuperTac particularly appealing for industrial applications in
robotics, prosthetics, and haptic interfaces.

FIGURE 10
Result comparison for 2-fold (top row) and 8-fold (bottom row)
super-resolution output. The first column represents input 4 × 4
low-resolution tactile data. The middle column indicates
super-resolved output from the SuperTac network, and the last
column represent the ground truth.

TABLE 2 Average PSNR and SSIM metric comparison for different
resolution and constant timestep of 256.

Resolution PSNR SSIM

8 × 8 ∼24.02 ∼0.77

16 × 16 ∼27.3 ∼0.81

32 × 32 ∼23.09 ∼0.74

Compared to Wu et al. (2022), who adapted image-based
CNNs and GANs for tactile super-resolution (TactileSRCNN
and TactileSRGAN), SuperTac achieves comparable resolution
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FIGURE 11
Confusion matrix for classification of artificial textures using 4 × 4 (Left panel) and 16 × 16 (Right panel) tactile data using CNN classifier.

enhancement while maintaining real-time processing speeds
exceeding 50FPS, which is crucial for online deployment. WhileWu
et al.’s GAN-based methods provide high perceptual quality, their
computational demands are significantly higher, making them less
suitable for low-power embedded applications. Similarly, Park et al.
(2021) presented EIT-NN, a neural reconstruction framework
for EIT-based sensors. Unlike EIT-NN, which is tailored for a
specific sensing modality, SuperTac is sensor-agnostic and does
not require specialized hardware or calibration procedures, thus
offering broader applicability across tactile platforms.

A key factor influencing the performance of the proposed
algorithm is the interplay between the latent dimension and
the choice of timestep, both of which govern the tradeoff
between computational efficiency and output quality. The empirical
results show that a latent dimension of 10 provides an effective
balance offering near-optimal performance while maintaining high
inference speeds suitable for real-time applications. Similarly, the
relationship between timesteps and phase correlation (PC) follows
a bell-shaped trend rather than a linear one. This can be explained
by two competing factors. First, as the timestep decreases (e.g.,
from 256 to 32), the data resolution decreases, leading to less
precise SR image construction, which increases positional error and
decreases phase correlation. On the other hand, as the timestep
increases (e.g., from 256 to 512), the binned data becomes overly
smoothed, losing critical temporal variations needed to accurately
capture tactile information, thus also reducing phase correlation.
The optimal performance occurs at 256 timesteps, where the balance
between data resolution and smoothing leads to the highest phase
correlation value (94.325).This corresponds to an average positional
error of 0.8 pixels (±0.65 mm) with respect to the desired high-
resolution output. The results in Table 1 illustrate this relationship,
emphasizing the importance of selecting an appropriate timestep to
optimize the trade-off between resolution and error in tactile data
processing.

In this study, we achieved 4 times super-resolution while
maintaining the high degree of SSIM and PSNR, there remains
potential to further improve performance through a broader and
more diverse dataset or by incorporating a denser upsampling
network. However, care must be taken to avoid overfitting,
particularly as model capacity increases. Therefore, a well-balanced
approach to model complexity and dataset diversity, ensuring
generalization across various tactile scenarios is necessary.

The performance metrics used in this study are based on
empirical evaluations using metrics such as SSIM, PSNR, and
texture classification accuracy. To further strengthen the findings,
incorporating statistical methods like hypothesis testing (e.g., t-
tests or ANOVA) could be beneficial. Although not included in the
current study, suchmethods represent a valuable direction for future
work to enhance the statistical rigor and reproducibility of results.

The proposed SuperTac framework is designed to be sensor-
agnostic and can, in principle, be applied to different types of
tactile sensors. However, certain modifications may be necessary
depending on the nature of the sensor data. For example, sensors
with higher native resolution or different spatial layouts may
require changes in the input encoding or network architecture.
Similarly, sensors that capture multi-dimensional data (e.g., force
vectors or shear) may benefit from a more complex feature
extraction module. Despite these differences, the core idea of
using dimensionality reduction to capture spatiotemporal features
followed by learned upsampling remains applicable across sensor
modalities.

6 Conclusion

In this study, we demonstrated the ability of the SuperTac
framework to enhance tactile resolution through a dimensionality
reduction network combined with residual upsamplers. The
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framework processes spatiotemporal information and generates
high-resolution tactile images, as indicated by improved SSIM,
PSNR, and FPS metrics. The ability to achieve super-resolution in
real-time opens up significant potential for applications in robotics
and prosthetics, where high-resolution tactile feedback is crucial
for tasks like manipulation and exploration. Despite the promising
results, real-world deployment may present additional challenges,
including sensor noise, calibration issues, and environmental factors
that could affect system performance. These challenges need to
be addressed for robust operation in real-world scenarios. The
SuperTac framework offers a scalable software-based solution
for tactile super-resolution, distinguishing itself from hardware-
based approaches used in commercial tactile sensors. This makes
it a promising candidate for industry applications in robotics,
prosthetics, and other areas requiring enhanced tactile perception.
In future work, we plan to explore more diverse datasets and
denser upsampling networks to further improve performance.
Additionally, real-world validation and statistical analysis could
provide deeper insights into the framework’s capabilities and
potential for broader adoption.
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