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Industrial automation is rapidly evolving, encompassing tasks from initial
assembly to final product quality inspection. Accurate anomaly detection is
crucial for ensuring the reliability and robustness of automated systems. The
intelligence of an industrial automation system is directly linked to its ability
to detect and rectify abnormalities, thereby maintaining optimal performance.
To advance intelligent manufacturing, sophisticated methods for high-quality
process inspection are indispensable. This paper presents a systematic review of
existing deep learning methodologies specifically designed for image anomaly
detection in the context of industrial manufacturing. Through a comprehensive
comparison, traditional techniques are evaluated against state-of-the-art
advancements in deep learning-based anomaly detection methodologies,
including supervised, unsupervised, and semi-supervised learning methods.
Addressing inherent challenges such as real-time processing constraints and
imbalanced datasets, this review offers a systematic analysis and mitigation
strategies. Additionally, we explore popular anomaly detection datasets for
surface defect detection and industrial anomaly detection, along with a critical
examination of common evaluation metrics used in image anomaly detection.
This review includes an analysis of the performance of current anomaly
detection methods on various datasets, elucidating strengths and limitations
across different scenarios. Moreover, we delve into the domain of drone-based,
manipulator-based and AGV-based anomaly detections using deep learning
techniques, highlighting the innovative applications of these methodologies.
Lastly, the paper offers scholarly rigor and foresight by addressing emerging
challenges and charting a course for future research opportunities, providing
valuable insights to researchers in the field of deep learning-based surface defect
detection and industrial image anomaly detection.

KEYWORDS
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1 Introduction

In the complex manufacturing environment of industrial
production, ensuring product quality is paramount. Technological
constraints and cluttered operational environments can hinder
detection of surface defects and anomalies in automation processes,
potentially leading to costly product recalls and safety risks. In
these complex industrial environments, detecting anomalies in
surfaces of industrial components and automation processes is
crucial for advancing industrial automation. Over the years, defect
detection methodologies have evolved from traditional manual
inspection practices to sophisticated automated systems, driven by
advancements in computer vision and deep learning.

The emergence of Industry 4.0, characterized by the seamless
integration of cyber-physical systems, cloud computing, and
artificial intelligence, heralds a new era of intelligent manufacturing.
Within this paradigm, the imperative for intelligent defect detection
systems becomes increasingly pronounced, poised to revolutionize
production processes, elevate product quality, and optimize resource
utilization. A key part of this transformation is visual anomaly
detection. This involves using powerful computer techniques to
examine huge amounts of visual data for small errors or unusual
patterns that human perception might miss.

Traditional and advanced defect detection methodologies
(Bhandarkar et al., 2024), spanning from manual visual inspection
to specialized non-destructive testing techniques, have long served
as the cornerstone of quality assurance practices across diverse
industrial sectors. However, the advent of machine vision systems,
driven by advancements in image processing algorithms and
cutting-edge technologies, has precipitated a paradigmatic shift in
automated defect detection. This shift has empowered industrial
processes with high precision and efficiency in detecting anomalies
within visual data streams.

The development of deep learning algorithms, especially
convolutional neural networks (CNNs) (O’Shea andNash, 2015) and
recurrent neural networks (RNNs) (Sherstinsky, 2018) has further
catalyzed advancements in industrial automation. Cheng (2023),
Radford et al. (2018), and Gao et al. (2023) used these machine
vision advancements to improve defect detection capabilities,
transcending previous limitations by discerning intricate patterns
and anomalies with remarkable accuracy. Within the domain
of anomaly detection Table 1 provides a detailed overview of
various objects that can be identified as anomalies or defects
in different application domains. A supervised, unsupervised
and semi-supervised learning methods each offer distinct yet
complementary approaches for anomaly detection, leveraging
labeled and unlabeled data to varying extents to uncover deviations
from expected norms.

This review focuses on providing a comprehensive survey of
defect detection methodologies, traversing the range of supervised,
unsupervised, and semi-supervised learning paradigms. By
meticulously dissecting the complexity of each approach, we aim to
clarify their theoretical basis, algorithmic frameworks, and practical
implications in real-world industrial settings. Through a rigorous
analysis and synthesis of existing literature, this paper seeks to distill
key insights, identify prevailing challenges, and describe future
research directions to propel the field of industrial defect detection
towards new frontiers of innovation and excellence.

TABLE 1 Object as an anomaly defect.

Reference name Objects

MVTec AD (Bergmann et al., 2021) Multiple materials

Solar Cells (Brabec et al., 2018) Electroluminescence (EL) images

Solar Cell Images (Pratt et al., 2023) Electroluminescence (EL) Images

Magnetic Tile Surface Defects
(Huang et al., 2018)

Tile

Concrete Cracks on Bridge Decks
(Dorafshan and Maguire, 2017)

Bridge Decks

Civil Structural Inspections
(Dorafshan et al., 2016)

Bridge Decks

Bridge Crack Detection (Peng et al., 2018) Bridge crack

In the ensuing sections, we embark on a systematic exploration
of defect detection methodologies, navigating through traditional
machine vision techniques to cutting-edge deep learning-based
approaches. We scrutinize the efficacy of supervised, unsupervised,
and semi-supervised learning paradigms in anomaly detection,
unraveling their intricacies and applicability across diverse
industrial domains. Furthermore, we delve into the complexities
of dataset curation, model evaluation metrics, and real-world
challenges encountered in industrial defect detection. By furnishing
a comprehensive understanding of defect detection methodologies,
this review endeavors to empower researchers, practitioners, and
industry stakeholders to navigate the complex terrain of industrial
quality assurance with precision and confidence.

1.1 Research relevance

This research highlights the significance of image anomaly
detection, focusing on supervised, unsupervised and semi-
supervised approaches. Table 2 Lists the keywords used for
paper searching. Methodologies such as density estimation, one-
class classification, image reconstruction, and self-supervised
classification are explored for image-level anomaly detection.
In pixel-level anomaly detection, image reconstruction methods
using convolutional autoencoders and deep generative models like
VAEs and GANs, as well as feature modeling methods utilizing
pre-trained deep convolutional features, are investigated. Recent
advancements include gradient-based attention mechanisms and
interpretable deep generative models, prompted by the need for
improved detection algorithms highlighted by benchmark datasets
like MVtec AD.These approaches contribute to enhancing anomaly
detection’s efficiency and effectiveness in identifying anomalies in
images. The survey provides a holistic view of the evolution of
image anomaly detection techniques, from early methods to the
most recent state-of-the-art approaches. This review focuses on the
industrial applications of anomaly detection techniques. Overall,
this review provides in-depth information on anomaly detection
techniques using drones for outdoor industrial inspections and
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TABLE 2 Keywords used for paper searching [Acronym AD: Anomaly
Detection].

Type Keywords

AD Image Anomaly Detection

Defect types defects, surface, crack

Application civil structure, building, bridge, pipe

Domains Inspection, Industries, Infrastructure

Algorithms Deep Learning, CNN, Supervised

Unsupervised

extending these techniques to indoor industrial inspections using
automatic guided vehicles andmanipulators.This broad perspective
helps researchers understand the historical development of anomaly
detection ideas in real-world applications.

1.2 Contribution

This review provides unique contributions that set it apart
from others in the field. Given the critical importance of anomaly
detection across various industrial domains for inspection purposes.
Our distinct contributions can be outlined as follows:

1. Synthesize prior research in the field, encompassing existing
algorithms.

2. Offer a concise overview of the contributionsmade by previous
surveys and reviews.

3. The review delves into research methodologies, covering
supervised, unsupervised, and semi-supervised approaches.
An extensive examination of deep learning-based methods for
image anomaly detection is provided.

4. Prominent anomaly detection datasets such as surface defect
detection and industrial anomaly detection are introduced.

5. The review includes an in-depth evaluation of the performance
of current anomaly detection methods across diverse datasets.

6. This review explores the industrial applications of robotic
inspection, including drones, AGVs, and manipulators, to
detect anomalies, enhance precision, and improve adaptability
in real-world settings.

7. Addressing the limitations of existing approaches,
recommendations and future research directions are offered to
overcome challenges in the field.

1.3 Research structure

The structure of this article unfolds as shown in Figure 1,
Section 2 presents the summary of explored methodologies, while
Section 3 delves into the popular anomaly detection datasets and
their source and evaluation of their performance and comparative
analysis of methods, followed by Industrial Application Context
and outlined the challenges, recommendations in Section 4. In

Section 4, we explore Unmanned Aerial Vehicle-based anomaly
detection using deep learning and explored AGV(Automated
Guided Vehicle) and manipulator based anomaly detection
applications. Finally, Section 5 draws conclusions and future
directions of existing approaches.

2 Explored methodologies in this
review

2.1 Prior investigations

In the realm of anomaly detection within industrial images,
we delve into the remarkable strides made, particularly excluding
domains like action recognition and video anomaly detection
(Yang Z. et al., 2023; Qasim and Verdu, 2023). Initially, statistical
methods dominated, assessing pixel value distributions through
techniques such as histogram analysis (Bansod, 2020), co-
occurrence matrices (Pastor-López et al., 2019; Krishnand et al.,
2022; Ishida et al., 2023), and local binary patterns. Subsequently,
structural methods emerged, focusing on texture element
characterization to represent defect spatial placement rules.
Meanwhile, filter-dependent approaches applied filter banks and
operators like sobel, canny, and gabor to compute energy responses,
proving useful in cross-domain extraction but less adept with
random textured images. In the era of neural networks and
machine learning, supervised algorithms gained traction, including
Neural Networks, Support Vector Machines (SVM) and k-Nearest
Neighbors (k-NN). With a recent surge in deep learning-based
approaches, data-driven models, whether through image-level
classification or refined object localization, offer promise in anomaly
detection. However, these models are challenged by limited training
data coverage and labeling errors (Li et al., 2023).

In the domain of industrial anomaly detection, previous
investigations have explored various methodologies, each with
distinct focuses and approaches. Existing surveys have covered
a wide range of topics, as summarized in Table 3, ranging
from classical algorithms to deep learning-based methods,
hardware and software devices, specific solutions for visual
processing methods, and surface defect detection systems
(Huang et al., 2018) for different materials. These surveys have
categorized methods based on underlying principles, detection
materials used, and defect detection techniques, including
histogram-based, color-based, segmentation-based, frequency
domain operations, texture-based detection, sparse feature-based
operations, and image morphology operations. Notably, while
some methods like (Carrara et al., 2021) have emphasized GAN-
based algorithms and unsupervised methods, comprehensive
summaries of recently emerged unsupervised approaches are
lacking. To bridge this gap, this review aims to provide a systematic
categorization of state-of-the-art algorithms for visual industrial
anomaly detection, covering reconstruction-based, normalizing
flow (NF)-based, representation-based, data augmentation-based,
algorithm enhancement, transfer learning, feature engineering, and
data augmentation approaches. Supervised, semi-supervised, and
unsupervised deep learning algorithms have been investigated, with
attention to different network architectures and methodological
intersections.
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FIGURE 1
Framework of this survey.

TABLE 3 Review papers on image-based anomaly detection.

Paper title

Survey on Deep Industrial Image Anomaly Detection (Liu et al., 2024)

Survey on Deep Learning-Based Crowd Anomaly Detection (Rezaee et al., 2021)

Literature Review on Deep CNN-Based Visual Defect Detection (Jha and
Babiceanu, 2023)

Review of GAN-Based Anomaly Detection (Xia et al., 2022)

Survey on Surface Defect Detection Methods for Industrial Products (Bai et al.,
2024)

Review of CNN-Based Surface Defect Detection (Cumbajin et al., 2023)

Survey on Visual-Based Defect Detection for Industrial Applications
(Czimmermann et al., 2020)

Surface Defect Detection in Civil Structures: A Review (Guo et al., 2024)

2.1.1 Supervised based
Supervised learning constitutes the foundational approach

where labeled data is utilized to train predictivemodels.Thismethod
involves the use of annotated datasets, where each data point is
associated with a corresponding target label as shown in Figure 2.

Automated visual inspection of manufactured parts has
significantly benefited from supervised learning techniques
(Weiher et al., 2023), variational autoencoder based supervised
technique (Kawachi et al., 2018), specifically employing Faster
R-CNN methods for smart surface inspection, as referenced in

FIGURE 2
Comparison of Architectural Diagram of supervised represented in (a)
and unsupervised algorithms represented in (b).

studies Wang Y. et al. (2020) and Bhatt et al. (2021). These advanced
techniques have also been effectively utilized in various other
applications, including the automatic detection of defects in sewer
pipes, as well as in the identification of cracks in masonry walls
(Loverdos and Sarhosis, 2022) and defects in steel products (Ibrahim
and Tapamo, 2024). By leveraging the capabilities of supervised
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FIGURE 3
Anomaly detection autoencoder method (reprinted with permission from Saeedi and Giusti, 2023, licensed under CC-BY-NC-ND).

learning, these applications demonstrate the potential for enhanced
accuracy and efficiency in defect detection and quality control
processes across different industries (Brasington et al., 2021).

2.1.2 Unsupervised based
Unsupervised Figure 2, visual anomaly detection algorithms

have garnered significant attention due to their ability to construct
detection models without requiring annotated samples as shown
in Lee and Kang (2022), Sun (2024), Tan and Wong (2024), and
Zipfel et al. (2023).This characteristic makes them particularly well-
suited for various practical applications where the collection of
normal images is considerably easier and less costly compared to
anomalous images. The primary advantage of these models lies in
their capacity to detect a broad spectrum of anomalies by analyzing
the deviations from normal samples. This enables the detection of
new and unforeseen types of defects, enhancing the robustness and
versatility of the detection systems (Pinon et al., 2024; Zhang F. et al.,
2023; Kascenas et al., 2022). Reconstruction Based methods rely on
the premise that anomalies cannot be effectively reconstructed by
models trained only on normal data techniques like autoencoders
(Kawachi et al., 2018; Jiang et al., 2023; Jia, 2023) as shown
in Figure 3, variational autoencoders(VAEs) (Lu et al., 2024a;
Lu et al., 2024b; Wang et al., 2022; Chen T. et al., 2023; Angiulli,
2023; Moon et al., 2023; Maggipinto et al., 2022; Lee and Kang,
2022; Faber et al., 2023; Zhang, 2022; González-Muñiz et al.,
2022; Tao et al., 2022; Zhou et al., 2021; Ulger et al., 2021;
Marimont and Tarroni, 2021; Wang X. et al., 2020) and generative
adversarial networks (GANs) are commonly used (Kim, 2020;
Tang et al., 2020; Han et al., 2021; Kolte, 2023; Liu R. et al., 2023;
Králik et al., 2024; Ivanovska and Å truc, 2024). The reconstruction
error is utilized to distinguish between normal and anomalous
samples (Lin, 2023). Normalizing Flow (NF)-based methods use
invertible neural networks to model the data distribution of normal
samples. By transforming normal data into a simpler distribution
(e.g., a standard Gaussian), anomalies can be detected based
on the likelihood under the learned distribution (Hirschorn and
Avidan, 2023; Gudovskiy et al., 2021).

Representation-based methods focus on learning feature
representations that effectively capture the essence of normal data.
Anomalies are identified by their deviation from these learned
representations, methods such as deep metric learning and self-
supervised learning fall under this category (Zingman et al.,
2024). Data augmentation-based method used by augmenting the
normal data with various transformations, these methods enhance
the robustness of the detection model techniques like synthetic
data generation and adversarial training are used to simulate
potential anomalies and improve the model’s ability to detect real
anomalies (Oyelade and Ezugwu, 2021; Motamed et al., 2021;
Jain, 2022).

2.1.3 Semi- supervised based
The professional process and commonly used methodologies

in semi-supervised learning-based anomaly detection for
images has been discussed. Semi-supervised visual anomaly
detection methods leverage both labeled and unlabeled data to
enhance detection performance. By using a small amount of
labeled data along with a large pool of unlabeled data, these
methods improve accuracy while reducing the need for extensive
labeling. Key approaches include self-training, where the model
iteratively labels and retrains on unlabeled data, consistency
regularization, which ensures stable predictions under data
perturbations, graph-based methods, which propagate labels
through data similarities and generative models, which enhance
detection by improving data generation processes. This hybrid
approach effectively balances the benefits of supervised and
unsupervised methods, making it suitable for scenarios with
limited labeled data (Saheel et al., 2024; Saeedi and Giusti, 2023;
Akcay et al., 2018; Rudolph et al., 2020).

An overview of the most recent techniques for detecting
image anomalies is provided in Table 4 using denoising diffusion
(Li et al., 2024), diffusion model (Xu H. et al., 2023; Hu and Wang,
2023) This comprehensive summary seeks to inform and advance
implementation and practice within the industrial field.
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TABLE 4 A summary of latest methodologies used for image anomaly detection.

Task Model Remarks

AD Transformer (Lin et al., 2022) The model relies on diverse pretraining and augmentation, limited
coverage hampers generalization

AD Transformaly (Cohen and Avidan, 2022) The dual feature space approach increases memory and
computation, hindering real-time deployment

AD Localization Vision Transformers (Smith et al., 2023) Limited data may reduce generalization and cause overfitting

Multi-class AD Plain ViT (Zhang et al., 2024) Struggles with subtle defects, as the model may reconstruct
anomalies too well, reducing detection effectiveness

Anomaly on Textured Surfaces ViTALnet (Tao et al., 2023) Model performance may degrade when applied to unseen defect
types or new materials

Highway vehicle AD Attention-Based VAE (Chakraborty et al., 2023) The model may struggle with anomalies that do not follow clear
temporal dependencies

Multi-Class Industrial AD Mixed-Attention AE (Liu and Wang, 2024) Performance may degrade on unseen anomaly types due to
reliance on learned attention patterns

Unsupervised AD Diffusion Models (Behrendt et al., 2024) Anomaly scoring with ensembles can introduce variability, making
it hard to set optimal detection thresholds

Unsupervised Surface AD Diffusion Probabilistic Model (Zhang et al., 2023c) Anomaly detection relies on high-quality reconstructions, but
current models often fail to achieve the necessary reconstruction
fidelity

Diffusion AD Diffusionad (Zhang et al., 2023b) The model struggles with unforeseen or diverse anomalies

Industrial Visual AD Dual-Attention Transformer (Yao et al., 2023) The model’s reliance on MVTec AD and LOCO ADmay limit its
adaptability to diverse, unseen industrial anomalies

Unsupervised AD A Graph-Based Model (Zhang et al., 2023a) The integration of graph modeling with multiscale feature fitting
can lead to increased computational demands

Semi-Supervised Method MemSeg (Yang et al., 2023a) MemSeg’s simulated anomalies may not fully represent real-world
defect diversity, limiting its practical effectiveness

Image Anomaly Detection Simplenet (Liu et al., 2023c) SimpleNet’s reliance on pre-trained extractors may cause domain
bias, leading to mismatches with target-specific data

AD Conditioned Denoising Diffusion (Mousakhan et al., 2023) The iterative denoising process is computationally intensive,
limiting real-time use

Industrial Surface AD Reconstruction Algorithm (Peng et al., 2024b) Reconstruction-based methods may perfectly recreate defects due
to a lack of defect samples, leading to missed anomalies

Fabric Anomaly AD Reverse Knowledge-Distillation (ThomineS, 2024) The dataset, though diverse, may not cover all real-world
variations, limiting the model’s robustness and generalization

Surface Defect Detection LCG-YOLO (Yu et al., 2024) The model may face challenges in accurately identifying
small-sized defects due to their subtle nature

Surface Defect Detection Autoencoder (Getachew Shiferaw and Yao, 2024) The two-stage training process, combined with the use of
AW-SSIM and learned Perceptual Image Patch Similarity (LPIPS)
losses, may introduce additional computational overhead

PCB Defect Detection YOLO-HMC (Yuan et al., 2024) The model becomes more complex with the incorporation of
modules like HorNet, MCBAM, and CARAFE, which could raise
computing requirements and have an impact on real-time
processing capabilities

Industrial Defect Detection GANomaly (Peng et al., 2024a) Defects may be obscured by backgrounds with complex patterns,
making it difficult for the model to discriminate between typical
textures and abnormalities
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TABLE 5 Popular anomaly detection dataset links.

Reference Link Remarks

Grishin et al. (2019) Severstal: Steel Defect Detection • Pro: High-res steel defect images with precise segmentation. Con: Severe class imbalance

Bergmann et al. (2019) MVTecAD • Pro: Diverse industrial objects with multiple anomaly types. Con: Limited samples with staged defects

Tao et al. (2018) CPLID • Pro: Comprehensive power line insulator images with detailed annotations. Con: Inconsistent image quality

Deitsch et al. (2019) Elpv-dataset • Pro: Electroluminescence images of solar cells with defect annotations. Con: Limited defect diversity

Huang et al. (2018) Tile-surface-defects • Pro: 6 common defect types on magnetic tiles with consistent lighting. Con: Limited viewpoint variation

Dorafshan (2018) Concrete-crackimages • Pro: 56,000+ diverse real-world concrete structure images. Con: Binary classification lacks severity grading

Mundt et al. (2019) Bridge crack image data • Pro: Purpose-built for bridge crack detection with high-res images. Con: Limited geographical diversity

Shi et al. (2016) CrackForest-dataset • Pro: 118 images with pixel-level crack annotations. Con: Small dataset focused on pavement cracks

3 Popular anomaly detection datasets:
data links, performance evaluation,
and comparative analysis

We are providing links to a diverse range of popular
anomaly detection datasets, encompassing domains such as civil
infrastructure with bridge crack image data and crack forest data,
as well as material science with concrete crack images, tile surface
defects, and steel defects. The links to popular anomaly detection
datasets are provided in Table 5.

The discussed Figure 4 provide visual examples of anomalous
industrial images. (a) Illustrates examples of anomalous and anomaly-
freeobjects(hazelnut,metalnut)andtextures(carpet)fromtheMVTec
Industrial Inspection Anomaly Detection dataset. (b) Showcases
various industrial steel surface defects, including patches, crazing,
pitted surfaces, scratches, and (c) illustrates the various types of
defects found in different materials within the dataset. These include
flaws found in photovoltaic cells, magnetic tiles, and fabric. While
imperfections in photovoltaic cells may impact energy conversion
efficiency, errors in magnetic tiles can jeopardize their structural
integrity and magnetic qualities. Similar to this, flaws in fabric may
affect its feel, longevity, or visual attractiveness. It is essential to
comprehend and classify these flaws in order to maintain quality
control and enhance material performances.

Algorithm Enhancement includes improvements and
modifications to existing algorithms to boost their performance.
Several methodologies explore innovative techniques to optimize
the performance of algorithms, with a specific emphasis on
improving metrics such as AUC, as illustrated in Table 6. The
model enhancements might involve better loss functions, advanced
training techniques, or hybrid approaches that combine multiple
methods on different industrial datasets.

4 Industrial application context,
challenges and recommendation

Anomaly detection has a wide range of significant industrial
manufacturing applications (Xie et al., 2024), for instance Figure 5,

highlights the detection of defects in depth images of composite
carbon fiber surfaces in Automated Fiber Placement (AFP)
industry. This demonstrates the potential of anomaly detection
techniques to improve manufacturing efficiency and quality control
in real-world maintenance and inspection scenarios. For example,
identifying defects in metal welding for oil pipelines, assessing
photovoltaic modules in solar power plants, and inspecting
wind turbine blades in wind farms. Furthermore, they play a
critical role in monitoring components like catenary droppers in
overhead catenary systems, electrical insulators, nuts, bolts, and
witness marks used in power transmission lines and catenary
support devices.

Image-based anomaly detection faces several challenges that
need to be addressed for effective and efficient implementation.
These challenges include real-time processing, handling small
sample sizes and texture differences, detecting small targets,
and managing unbalanced sample identification. Figure 6
highlights the data-level challenges in surface defect detection
below, we explore these issues and provide recommendations
for each.

4.1 Real-time problem challenge

Real-time anomaly detection requires rapid processing and
analysis of image data, which can be computationally intensive and
demanding.

4.1.1 Recommendation
Han and Yan (2023) introduced Collaborative Representation

Distance (CRD), an approach designed for practical anomaly
detection, demonstrating the importance of optimized
computational frameworks to achieve real-time performance.

In addition to hardware acceleration, implementing lightweight
models like MobileNet can substantially improve inference speed
while maintaining detection accuracy. Feng and Wang (2024)
proposed an efficient object tracking algorithm based on lightweight
Siamese networks, which highlights the benefits of compact
architectures in real-time applications.

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2025.1554196
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Shukla et al. 10.3389/frobt.2025.1554196

FIGURE 4
(a) Represents two objects (hazelnut and metal nut) and one texture (carpet) from the MVTec industrial inspection anomaly detection dataset
(reproduced with permission from Bergmann et al., 2021, licensed under CC BY), (b) shows the examples of industrial steel surface defect (© 2018
International Federation of Automatic Control. Reproduced with the permission of IFAC from Li et al., 2018) and (c) shows defects of various materials
in datasets (reproduced with permission from Cui et al., 2023, licensed under CC-BY-NC-ND). ELPV originally published and reproduced with
permission from Deitsch et al. (2019). MTD originally published and reproduced with permission from https://github.com/abin24/Magnetic-tile-defect-
datasets. (Huang et al., 2018). AITEX originally published and reproduced with permission from https://www.aitex.es/afid/ (Silvestre-Blanes et al., 2019).
MVTec originally published and reproduced with permission from Bergmann et al. (2019) Copyright © 2019, IEEE.

Further performance gains can be achieved through pruning
and quantization techniques, which reduce model size and
computational requirements without significantly degrading
accuracy. Liang et al. (2021) provided a comprehensive
survey on pruning and quantization for deep neural
network acceleration, demonstrating how these techniques
enhance model efficiency, particularly in resource-constrained
environments.

By integrating efficient network architectures, hardware
acceleration, and model compression techniques, real-time
anomaly detection systems can achieve faster inference while
maintaining high accuracy. These optimizations make real-
time anomaly detection feasible for applications in industrial
inspection, autonomous systems, and surveillance, where rapid
decision-making is crucial.

To address this, optimizing the network structure for
efficiency and deploying hardware acceleration techniques
such as GPUs or TPUs can significantly improve processing
speed (Han and Yan, 2023). Implementing lightweight
models like MobileNet or using pruning and quantization
techniques can also enhance real-time performance
(Liang et al., 2021).

4.2 Small sample problem and texture
difference challenge

Limited sample sizes and texture variations pose significant
hurdles in accurately detecting anomalies, as models might not
generalize well from sparse data.

4.2.1 Combination of data distribution learning
and data augmentation recommendation

Leveraging advanced data distribution learning methods
and data augmentation techniques can mitigate these issues.
By augmenting the existing dataset with synthetic variations
(e.g., rotations, flips, color adjustments), the model can be
exposed to a broader range of scenarios, enhancing its robustness.
Studies have shown that combining these approaches can
significantly improve detection accuracy (Fullington et al., 2024;
Xu M. et al., 2023).

4.2.2 Transfer learning recommendation
Transfer learning involves using pre-trained models on related

tasks and fine-tuning them on the target anomaly detection task.
This approach can overcome small sample problems by utilizing
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TABLE 6 Auroc average performance on different datasets.

Methods Auroc on MVTec AD data Dataset name

GANomaly: Semi-Supervised Anomaly Detection via
Adversarial Training (Akcay, 2019)

— MNIST, CIFAR10, X-ray security screening Data
(UBA)

Natural Synthetic Anomalies for Self-Supervised
Anomaly Detection and Localization (Schlüter et al.,
2022)

0.972 MVTec AD

Towards Total Recall in Industrial Anomaly Detection
(Roth et al., 2022a)

0.996 MVTec AD

Focus Your Distribution: Coarse-to-Fine
Non-Contrastive Learning for Anomaly Detection and
Localization (Zheng et al., 2022)

97.7 ± 0.4 MVTec AD, BenTech AD

Semi-orthogonal Embedding for Efficient
Unsupervised Anomaly Segmentation (Kim et al.,
2021)

0.982 MVTec AD, KolektorSDD, KolektorSDD2, mSTC

Transfer representation-learning for anomaly
detection (Andrews et al., 2016)

— X-ray transmission images, CASIA, MNIST

Puzzle-AE: Novelty Detection in Images through
Solving Puzzles (Salehi et al., 2022)

0.776 MVTec AD

Learning and Evaluating Representations for Deep
One-class Classification (Sohn et al., 2021)

0.70 MVTec AD, CIFAR10/100, Fashion MNIST,
Cat-vs-Dog, CelebA

Uninformed Students: Student-Teacher Anomaly
Detection with Discriminative Latent Embeddings
(Bergmann et al., 2020)

0.857 MVTec AD

Towards Total Recall in Industrial Anomaly Detection
(Roth et al., 2022b)

0.991 (PatchCore-25%), 0.99(PatchCore-10%), 0.99
(PatchCore-1%)

MVTec AD

Same Same But DifferNet: Semi-Supervised Defect
Detection with Normalizing Flows (Rudolph et al.,
2019)

0.96 MVTec AD

CSI: Novelty Detection via Contrastive Learning on
Distributionally Shifted Instances (Tack et al., 2020)

— CIFAR-10, ImageNet

Catching Both Gray and Black Swans: Open-set
Supervised Anomaly Detection (Ding et al., 2022)

0.883 ± 0.008 MVTec AD

Explainable Deep Few-shot Anomaly Detection with
Deviation Networks (Pang et al., 2021)

0.945 ± 0.004 MVTec AD

the knowledge embedded in models trained on large datasets, thus
improving performance on smaller, specific datasets.

Limited sample sizes and texture variations pose significant
hurdles in accurately detecting anomalies, as models might struggle
to generalize from sparse data. When trained on small datasets,
deep learning models often suffer from overfitting, leading to poor
performance in real-world applications.

To address this challenge, transfer learning has emerged
as a powerful technique. By leveraging knowledge embedded
in models pre-trained on large-scale datasets, transfer learning
enables effective feature extraction, improving performance on
smaller, domain-specific datasets (Chen et al., 2023b). demonstrated
its effectiveness in multimode process monitoring and anomaly
detection for steam turbines, showing that adaptive transfer

learning enhances model generalization across different operating
conditions.

Similarly, Liu et al. (2023d) introduced SimpleNet, an
efficient network designed for image anomaly detection and
localization, utilizing transfer learning to mitigate the impact of
limited training samples. Maray et al. (2023) further validated
this approach in healthcare applications, showing that transfer
learning significantly improves fall detection accuracy even with
small datasets.

Iman et al. (2023) provided a comprehensive review of deep
transfer learning, highlighting recent advancements and techniques
that enhance model adaptability to new domains. Zhao et al.
(2024) extended this concept to industrial applications, employing
contrastive and transfer learning-based methods for small

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2025.1554196
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Shukla et al. 10.3389/frobt.2025.1554196

FIGURE 5
(a) Depicts depth images of composite carbon fiber surfaces, showcasing anomaly detection in the Automated Fiber Placement (AFP) industry
(reprinted with permission from Ghamisi et al., 2024, licensed under CC BY 4.0). (b) Presents example images from the MIAD dataset, covering seven
maintenance inspection scenarios. The test set for each scenario includes non-defective images (top row) and defective images (bottom row). The first
four scenarios focus on surface anomalies, while the remaining three involve logical anomalies. Pixel-precise annotations are provided for all detected
anomalies (reprinted with permission from Bao et al., 2023, Copyright © 2023 by The Institute of Electrical and Electronics Engineers, Inc.).

component inspection in assembly lines, demonstrating that prior
knowledge can aid in detecting fine-grained defects.

In manufacturing, Shin (2024) introduced a material-
adaptive anomaly detection framework, where property-
concatenated transfer learning proved beneficial in wire arc additive
manufacturing. Similarly, Cheng et al. (2022) applied transfer
learning to defect detection in fabrics using a specialized U-
Net architecture, improving segmentation accuracy with limited
annotated data.

Medical applications have also benefited significantly from
transfer learning. Lanjewar et al. (2024) fused transfer learning
models with LSTMs to enhance breast cancer detection using
ultrasound images, while Ani et al. (2024) explored multi-
class classification of breast cancer abnormalities, proving the
effectiveness of transfer learning in medical imaging scenarios.

By leveraging pre-trained models and adapting them to
specific anomaly detection tasks, transfer learning provides a
robust solution to the challenges posed by limited sample sizes
and texture variations. It enables models to generalize better,

reducing the need for extensive labeled data while maintaining high
detection accuracy.

4.2.3 Optimize network structure
recommendation

Optimizing the network architecture to suit the specific
characteristics of the anomaly detection task is crucial for improving
performance. A well-structured model can better capture the
nuances of small sample data and texture variations, ensuring robust
detection across different scenarios.

One approach to achieving this is Neural Architecture Search
(NAS), which automates the design of optimal network structures
by exploring various architectures to find the most efficient
model for a given anomaly detection task. Alternatively, manually
designing lightweight yet effective models can also lead to
significant improvements by tailoring architectures to specific
dataset constraints.

Cao Y. et al. (2023) introduced a Collaborative Discrepancy
Optimization framework for reliable image anomaly localization,
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FIGURE 6
Data level challenge in surface defect detection (reprinted from Guo et al., 2024, Copyright 2023, with permission from Elsevier).

demonstrating that optimizing network structures can enhance
detection accuracy and robustness. Their approach highlights
the importance of fine-tuning architectures to maximize
sensitivity to abnormal patterns while maintaining computational
efficiency.

Wan et al. (2024) further advanced this idea by integrating
Singular Spectrum Analysis (SSA) with an optimized ResNet50-
BiGRU model for image anomaly detection and prediction. Their
work shows that fusing convolutional networks (ResNet50) with
recurrent architectures (BiGRU) can effectively capture spatial and
sequential anomaly patterns, making the detection process more
precise and adaptive.

By leveraging structured network optimization techniques,
either throughNASormanualmodel refinement, anomaly detection
systems can achieve higher accuracy while remaining lightweight.
This is particularly beneficial for real-time and resource-constrained
applications, where both computational efficiency and detection
reliability are essential.

4.3 Small target detection problem
challenge

Detecting small anomalies or targets within images is
challenging due to their minimal pixel footprint, making them
difficult to distinguish from noise. Detecting small targets in images
presents significant challenges due to low resolution, background
noise, and scale variations. Small objects often lack distinguishable
features, making it difficult for deep learning models to differentiate
them from their surroundings.

4.3.1 Recommendation
To address this, enhancing image resolution, leveraging multi-

scale feature extraction techniques, and implementing attention
mechanisms can significantly improve detection accuracy.

Multi-scale feature extraction allowsmodels to capture finedetails
across different resolutions. Feature Pyramid Networks (FPN) and
YOLO (You Only Look Once) are widely used architectures that
enhancesmall targetdetectionby leveraginghierarchical featuremaps.
Additionally, attentionmechanisms improve focusonrelevant features
while suppressing background noise, thereby enhancing detection
reliability. Chen et al. (2021) introduced MAMA-Net (Multi-Scale
Attention Memory Autoencoder Network) for anomaly detection,
demonstrating that combining attention with multi-scale memory
networks enhances small target recognition in medical imaging.
Their approach highlights the benefits of multi-scale learning for
capturing subtle anomalies.

Xiang et al. (2023) extended this concept by proposing a Multi-
Scale Attention and Dilation Network for small defect detection. By
integrating dilated convolutions with attention mechanisms, their
model effectively extracts fine-grained features, improving defect
localization on industrial surfaces.

Xiao et al. (2022) developed a feature fusion-enhanced
multiscale CNN with an attention mechanism for spot-welding
surface appearance recognition. Their work demonstrated that
fusing multi-resolution features allows the network to better
differentiate between normal and defective welds.

Yang et al. (2020) further improved unsupervised anomaly
localization by incorporating multi-scale memory modules into
autoencoders, enhancing the model’s ability to detect small
deviations in structured environments.
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TABLE 7 Challenges in AD: Different datasets illustrate the challenges in the IAD field (Acronym Y: Yes).

Challenge BTAD ELPV Aitex MTD-surface KolektorSDD DAGM MVTecAD

Small Anomalous Data Y Y Y Y Y Y

Tiny Defects Y Y Y Y Y

Appearance Inconsistency Y Y Y Y Y Y Y

Textural Divergence Y Y Y Y Y Y

More recently, Tao et al. (2024) introduced amethod for learning
multi-resolution features for unsupervised anomaly localization
on industrial textured surfaces. Their approach leverages
multi-scale representations to detect subtle texture differences,
significantly improving performance in real-world manufacturing
applications.

By integrating multi-scale feature extraction, attention
mechanisms, and resolution-enhancing techniques, small target
detection models can achieve higher precision, making them
applicable to areas such as medical imaging, industrial inspection,
and remote sensing. These advancements ensure that even the
smallest anomalies or defects are accurately identified, improving
overall system reliability.

4.4 Data level challenges

Imbalanced datasets, where normal samples significantly
outnumber anomalous ones, can bias the model towards the
majority class, reducing the effectiveness of anomaly detection. A
variety of datasets have been used to explore the challenges inherent
in Industrial Anomaly Detection.

4.4.1 Recommendation
Table 7 Provides a detailed overview of these datasets

and their specific characteristics. Addressing this issue at the
data level can involve techniques such as oversampling the
minority class (anomalies) or undersampling the majority
class (normal samples). Additionally, synthetic data generation
methods, such as using GANs (Generative Adversarial Networks)
to create realistic anomalous samples, can help balance the
dataset. Implementing these strategies ensures that the model
receives sufficient training on anomalies, improving its detection
capabilities.

Zeiser et al. (2023) provided a detailed evaluation of deep
unsupervised anomaly detection methods, emphasizing a data-
centric approach for online inspection. Their work highlights how
dataset characteristics significantly impact model performance,
reinforcing the need for effective data-balancing techniques.

Yang Y. et al. (2023) proposed a deep learning-based anomaly
detection approach that extracts representative latent features to
handle cases where anomalies are low-discriminative or insufficient
in quantity.Theirmethod improves anomaly detection by enhancing
feature extraction from limited abnormal data.

Mun et al. (2024) tackled data imbalance in AI-driven
Clinical Decision Support Systems (AI-CDSS) by introducing U-
AnoGAN, a GAN-based anomaly detection framework. Their
study demonstrated that synthetically generated anomalies can
significantly enhance model robustness, especially in medical
applications where real abnormal samples are scarce.

Liu D. et al. (2023) introduced Deep Attention SMOTE, a data
augmentation method that uses a learnable interpolation factor
to generate synthetic samples for imbalanced anomaly detection
in gas turbines. This approach improves detection capabilities by
creating diverse training samples that prevent model bias toward the
majority class.

Beyond simple resampling techniques, Cao T. et al. (2023)
explored anomaly detection under distribution shift, addressing
the challenge where real-world data distributions differ from those
seen during training. Their findings suggest that models trained on
balanced datasets must also be adaptable to dynamic, evolving data
distributions to maintain high anomaly detection accuracy.

By integrating oversampling, undersampling, synthetic
data generation, and distribution-aware anomaly detection
methods, data-level challenges in anomaly detection can be
effectively mitigated. These techniques enhance model robustness,
improve generalization on rare anomalies, and ensure better
real-world applicability across diverse domains, including
industrial inspection, medical diagnostics, and predictive
maintenance.

4.5 UAV based anomaly detection
applications

Unmanned Aerial Vehicle (UAV)-based anomaly detection
is advancing real-time monitoring across various fields by
leveraging deep learning as shown in Figure 7, a drone-based
anomaly detection pipeline. Unmanned Sensing Vehicles (USVs),
including UAVs, are used in environmental monitoring (Gupta,
2022; Pandya et al., 2024; Roos-Hoefgeest et al., 2023). A
vision-based approach for UAVs is proposed for tracking and
inspecting industrial pipelines. This system focuses on oil and gas
refineries, where long pipelines at high altitudes pose challenges
to human safety and operational costs. The UAV autonomously
navigates the pipeline’s centerline using a depth sensor to
generate control data and detect defects. Simulated and real
experiments in GPS-denied environments validate the system’s
effectiveness. Figure. 8 highlights anomalies detected during
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FIGURE 7
Drone based anomaly detection pipeline.

pipeline inspections in industrial contexts.Demonstrated inspection
of vertical and horizontal structures for structural healthmonitoring
and defect detection using UAV in contact and non-contact
methods.

Precision agriculture is one main field, apart from industries,
where image-based anomaly detection can be extended to simplify
complex traditional methods (Subramanian et al., 2021; Mendoza-
Bernal et al., 2024). Used UAVs equipped with IR camera
for collecting thermal imagery from agriculture fields. Further
analyzed leaf health and field water distributions from recognizing
pattern from thermal imagery and CNNs. A novel adaptive
sampling strategy for USVs uses spatio-temporal sequential
tensor decomposition to optimize deployment for effective change
detection.

For photovoltaic (PV) plant maintenance, UAVs with thermal
imagers detect module defects using infrared (IR) and RGB
images. The system employs SIFT for feature detection and
CNNs for defect classification, achieving high accuracy and
supporting real-time detection, significantly aiding PV plant
maintenance (Jeffrey Kuo et al., 2023).

In traffic surveillance, UAVs address the challenges of rare
events and complex backgrounds. A transformer-based future
frame prediction network detects anomalies in drone videography
by capturing spatial and temporal representations, demonstrating
superior performance on datasets like UIT-ADrone and Drone-
Anomaly (Tran et al., 2024).

These developments highlight the effectiveness of UAV-based
anomaly detection systems, leveraging deep learning to enhance
real-time monitoring and operational efficiency across various
applications. Figure 9 explores emerging trends and opportunities in
industrial applications, highlighting potential future developments.
While UAVs are the best platform for outdoor and high-roof
industrial inspections, AGVs (Autonomous Ground Vehicles) and
robotic arms (manipulators) are best suited for indoor and assembly
line inspections.

4.6 AGV and manipulator based anomaly
detection applications

AGVs and robotic arms are well-suited for inspection tasks
in cluttered factory and assembly line environments due to their
mobility (Pérez et al., 2016). Highlights the significance of 3D vision
systems in enhancing the capabilities of robotic arms for tasks
such as navigation, object detection, and precise positioning. By
carefully selecting appropriate vision techniques, like laser range
finders or stereo imaging, based on specific task requirements
and factory environments, robotic arms can be better adapted to
real-world industrial settings. This enables collaborative tasks and
real-time decision-making, ultimately improving overall operational
efficiency. Manipulator mounted with high resolution multi-view
camera can collect the images of industrial components from
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FIGURE 8
Industrial pipeline anomaly detection (reprinted with permission from Roos-Hoefgeest et al., 2023 Copyright © 2023, IEEE). (a–d, green border) Pipeline
tracking: pink line marks the central axis, green guides the drone. (a–d, orange border) Corrosion detection on RGB pipeline images, defects in blue.

FIGURE 9
Future-Forward industrial applications.

different views to inspect them (Galdelli et al., 2019). Khan et al.
(2021) presented an automated vision-based ultrasonic Non-
Destructive Testing (NDT) inspection system for manufacturing
industries. To improve inspection efficiency, a practical method
for accurate 3D reconstruction is proposed. Structure from
Motion (SfM) techniques are utilized to generate precise 3D

models of objects of interest with sub-millimeter accuracy. The
paraboloid spiral tool path by robot arm has demonstrated the
best accuracy of 0.43 mm (Ali et al., 2018; Surya Prakash et al.,
2024a; Surya Prakash et al., 2024b). The factory setup comprises
industrial components and a globally fixed camera to observe
objects.The proposedmethodology employs a hybrid approach that
integrates classical vision techniques with deep learning algorithms.
This hybrid approach enables the detection and size estimation
of industrial components, facilitating subsequent actions by a 6-
DOFmanipulator. Inspection of objects in hazardous environments,
such as high-temperature or toxic gas areas, necessitates the use of
robotic manipulators controlled remotely through teleoperation.
This approach provides visual and haptic feedback to operators,
enabling them to safely perform intricate tasks in these challenging
conditions (Naceri et al., 2019). For spacious environments, such as
warehouses or large manufacturing facilities, Autonomous Guided
Vehicles (AGVs) equipped with sensors are an ideal choice. Their
mobility allows them to navigate complex and cluttered factory
layouts efficiently. Sanchez-Cubillo et al. (2024) investigated the
application of deep learning techniques to enhance the performance
of Autonomous Mobile Robots (AMRs) and Autonomous Guided
Vehicles (AGVs) in wide-area inspections, such as railway track and
wagon loading/unloading inspections. Bao et al. (2022) presents
a computer vision-based mobile robot system for inspection
and maintenance of industrial pipe work, mainly focusing on
colorless objects like water which are difficult to detect in cluttered
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environments. System leverages the reflective properties of lower
temperature effusion relative to their surroundings, using dual
source imaging and contour feature algorithm.

Further combinations of AGVs and robotic arms can be
explored for inspection and taking appropriate actions to resolve
anomalies or tag them by highlighting the defective area.
Researchers can focus their efforts on factory inspections.

5 Conclusion and future directions

This review paper discusses the use of deep learning techniques
for detecting image anomalies. It compares traditional methods
with advanced deep learning approaches, including supervised,
unsupervised, and semi-supervised paradigms, and addresses
challenges such as real-time processing and sample imbalance,
providing strategies for mitigation.

The paper surveys existing algorithms, examines different
learning paradigms, and analyzes various anomaly detection
methods. It highlights popular datasets, evaluation metrics, and
evaluates current methods across diverse datasets, with a focus on
deep learning applications in UAV,AGV,robotic manipulator-based
anomaly detection. Additionally, it suggests future directions for
overcoming current challenges.

Key industrial applications include few-shot anomaly detection
to reduce data collection costs, enhancing robustness against
labeling errors, utilizing spatial information for 3D anomaly
detection, and improving model performance through synthetic
data generation.

The review introduces several anomalies in different data
applications like MVTec AD, Severstal Steel Defect, and Magnetic
Tile Surface Defects, yarn-dyed fabric defect detection and discusses
challenges such as real-time processing, small sample sizes, texture
differences, small target detection, data limitation, and unbalanced
sample identification. Proposed solutions include optimizing
network structures, data augmentation, transfer learning, enhancing
image resolution, and synthetic data generation.

In summary, this review systematically explores defect
detection methodologies, aiming to help researchers and industry
stakeholders enhance quality assurance in manufacturing through
advanced image anomaly detection techniques.

5.1 Anomaly detection based future project
directions

1. Crack Detection in Railway Tracks - Using drone-based image
processing to identify cracks and fractures in railway tracks to
help prevent accidents.

2. Surface Defect Detection in Manufacturing - Automatically
detecting scratches, dents, and misalignments in industrial
components to ensure quality control.

3. Underwater Crack Detection in Dams and Pipelines
- Monitoring the structural integrity of underwater
infrastructure using AI-powered autonomous underwater
vehicles (AUVs).

4. Anomaly Detection in PCB (Printed Circuit Board) Inspection
- Identifying missing components, soldering defects, and
misaligned circuits in printed circuit boards.

5. Predictive Maintenance in Industrial Machinery Using
Thermal/Visual Imaging - Detecting wear and tear in rotating
machinery through deep learning analysis of infrared and
RGB images.

6. Surface Corrosion and Rust Detection on Metal Structures
- Identifying early signs of corrosion and rust on bridges,
pipelines, and marine structures.

7. Food Quality Inspection in Factories - Using AI-based visual
inspection to detect contamination, bruises, and deformities in
food products.

8. X-ray and CT Image Anomaly Detection for Cargo and
Security - Identifying concealedweapons, drugs, and smuggled
items in security scans using advanced imaging techniques.

9. Optical Inspection for Textiles and Fabric Defect Detection -
Detecting weaving defects, misprints, and other irregularities
in textile manufacturing.

10. AI-Powered Glass Surface Defect Detection - Identifying
scratches, cracks, and contamination on glass surfaces used in
construction and electronics.

11. Leakage Detection in Oil and Gas Pipelines - Using thermal
and hyperspectral imaging to detect small leaks in oil and gas
pipelines.

12. Automated Inspection of Weld Defects - Identifying cracks,
porosity, and misalignment in welds using deep learning
algorithms.

13. Battery Cell Anomaly Detection in EV Manufacturing -
Detecting defects in lithium-ion battery cells using thermal
imaging technology.

14. Structural HealthMonitoring of Bridges andHighways - Using
UAV-based vision systems to identify structural anomalies and
cracks in large-scale infrastructure like bridges and highways.

15. Automated Defect Inspection in Aerospace Components -
Detecting defects in aerospace components to ensure safety
and reliability in the aviation industry

Further research is needed on foundational models, which, as
pre-trained models, show great potential in anomaly detection due
to their ability to capture broad patterns and quickly adapt to
new domains with high-quality representation. Their application in
industrial anomaly detection is promising but still requires further
exploration.
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