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Self-assessment in machines
boosts human Trust

Dana Warmsley*, Krishna Choudhary , Jocelyn Rego ,
Emma Viani and Praveen K. Pilly

Intelligent Systems Center, HRL Laboratories, Malibu, CA, United States

Low trust in autonomous systems remains a significant barrier to adoption and
performance. To effectively increase trust in these systems, machines must
perform actions to calibrate human trust based on an accurate assessment of
both their capability and human trust in real time. Existing efforts demonstrate
the value of trust calibration in improving team performance but overlook
the importance of machine self-assessment capabilities in the trust calibration
process. In our work, we develop a closed-loop trust calibration system for a
human-machine collaboration task to classify images and demonstrate about
40% improvement in human trust and 5% improvement in team performance
with trained machine self-assessment compared to the baseline, despite
the same machine performance level between them. Our trust calibration
system applies to any semi-autonomous application requiring human-machine
collaboration.

KEYWORDS

machine self-assessment, trust calibration, trust in AI, autonomous systems, human-
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1 Introduction

A lack of trust in autonomous systems continues to hinder their adoption and
effectiveness, particularly in safety-critical, high-stakes applications. A clear signal of this
problem is the high frequency of human takeover events when the system’s behavior
does not match human expectations, or the human is insufficiently confident in its
situational understanding. In this work, we develop a closed-loop trust calibration system
that improves trust over time via reliable machine self-assessment. The system first
assesses its own capability, or ability to complete a given task successfully, in real time.
It then estimates the human’s trust and determines if there is a miscalibration between
human trust and machine capability. If so, it takes some action to proactively align
human trust with machine capability in real time, for example, by requesting human
intervention or showing a confidence score as a signal of its capability for the human.
In doing so, the system can reduce instances of over-reliance that occur when the
human trusts the machine to perform a task it is not capable of, and instances of
under-reliance when the human does not trust the machine to perform tasks that it is
capable of.

The contributions of this work are three-fold: (1) Developed a closed-loop
trust calibration system that leverages real-time trust prediction, machine self-
assessment, and a dynamic reasoning model that determines the best machine
action to encourage trust calibration. (2) Empirically compared the cumulative
trust of human participants in machines with learned self-assessment to that in
machines without it. (3) Developed a paradigm to rigorously assess the effects of
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trust modeling and self-assessment in machines on human trust for
operationally relevant contexts.

2 Prior work

Early work in trust calibration focused on transparency, which
involved consistently offering uncertainty information, confidence
estimates, or system reliability to encourage appropriate trust in the
machine (Mercado et al., 2016; Yang et al., 2017). More recently,
efforts shifted to adaptive trust calibration, where the system either
selectively determines when to provide these information cues
to calibrate trust or adapts its behavior to the human. Adaptive
trust calibration efforts are of wide interest since having the
human continuallymonitor information cues can increase workload
(Kunze et al., 2019; Akash et al., 2020), and adaptation allows for
personalization to the individual. See Wischnewski et al. (2023)
for a pertinent survey on trust calibration. Here, we highlight
some recently developed adaptive trust calibration systems relevant
to our study.

Okamura and Yamada (2020) developed a framework for
offering trust calibration cues when over- and under-trust were
detected. Over-trust occurs when the human incorrectly believes
the machine will perform the task better, and under-trust happens
when the human incorrectly believes the machine will perform
worse. They found that adaptively offering the cues improved trust
and team performance. Fukuchi and Yamada (2023) presented
the Predictive Reliance Calibrator (Pred-RC) method to adaptively
decide when to provide reliance calibration cues (confidence
information), where reliance is considered an observable trust-
related behavior. If Pred-RC determined that the probability of
reliance was higher with the cue than without and the probability of
machine success was high, the cue was shown to encourage reliance.
Pred-RC reduced the number of cues needed while avoiding
over/under-reliance on the machine.

Chen et al. (2018) learned a Partially Observable Markov
Decision Process (POMDP) model that used inferred trust levels to
determine what robot actions would maximize team performance.
In a table-clearing task, the robot learned to build human trust
by clearing low-risk objects (high-risk objects) when trust was low
(high). Further, Akash et al. (2020) developed a POMDP model of
the effects of automation reliability, transparency, scene complexity,
gaze behaviors, and reliance on human trust andworkload dynamics
in Level 2 driving scenarios.Themodel was leveraged to use current
human trust and workload levels to calculate the optimal level of
system transparency necessary to calibrate trust in real time.

We model our experiments after the study of Ingram et al.
(2021), which investigated compliance, transparency, and trust
calibration in an autonomous image classifier. In particular, they
tested whether showing the classifier’s confidence values would
increase trust in it.They found that trust was largely based on system
performance (accuracy) and did not increase as a result of presenting
system confidence information to the human. We hypothesize that
they did not see an overall increase in trust because they used the
predicted class probability as a proxy for system confidence, which
has shown to be a poormethod for self-assessment (Guo et al., 2017).
Accurate machine self-assessment is critical since cues intended for

trust calibration can worsen it if they are not reliable (Yeh and
Wickens, 2001).

Going beyond prior work, we developed a closed-loop trust
calibration system that adaptively asks for human assistance during
the image classification task based on not only self-assessedmachine
capability but also predicted human trust level. We placed special
emphasis on accurate machine self-assessment in encouraging
appropriate trust in and reliance on automation and showed in
experiments that improved self-assessment boosts overall trust
in the machine, reduces over- and under-reliance behaviors, and
increases team performance.

3 Closed-loop trust calibration system

In what follows, we describe the three major components
of our closed-loop trust calibration system that was developed
for human-machine teaming in the image classification domain.
The first component is a machine self-assessment module that
estimates the image classifier’s confidence in its label, independent
of class probabilities. The second is a real-time human trust
prediction model. The third is a dynamic reasoning component
that, given the classifier’s confidence and the human’s trust level,
determines whether or not to ask the human for assistance. These
components were trained and evaluated using data from two rounds
of experiments in which humans worked with semi-autonomous
image classifiers to classify 50 images and rated their trust after
assessingmachine performance for each image (details in Section 4).
We present component-specific results in the following sections and
team performance-related results later in the article.

3.1 Machine self-assessment

Neural networks trained as image classifiers typically have
a final layer of neurons, where each neuron corresponds to a
class in the dataset. The neuron with the highest probability
(after softmax operation) is chosen as the image label. A widely
used baseline for confidence in that label is its corresponding
probability. In practice, this probability is not constrained to
correlate with the accuracy of the predicted label, leading to
overconfident errors and underconfident predictions. Indeed,
softmax probabilities are known to be non-calibrated, sensitive to
adversarial attacks, and inadequate for detecting out-of-distribution
examples (Guo et al., 2017; Corbiere et al., 2019).

Corbiere et al. (2019) introduced a new confidence metric based
on the True Class Probability (TCP), which is the probability of
the correct class regardless of whether that class was chosen as the
predicted label by the classifier. As it is not known at test time,
they implemented a separate neural network (called ConfidNet)
that operates on high-level features extracted by the classifier
neural network and learns to estimate the TCP during training.
Webb et al. (2021) provided an alternate method to train the
confidence neural network to output “correctness” instead of TCP.
That is, the neural network is trained to output a value of one if the
label is correct and 0 otherwise. We follow this method for machine
self-assessment in our work. In Figure 1, we show a comparison
of learned self-assessment to the baseline use of probability on a

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2025.1557075
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Warmsley et al. 10.3389/frobt.2025.1557075

FIGURE 1
A neural network image classifier can use the probability that an image belongs to a label/class (top row) as a measure of confidence. We show the
distribution of these probabilities for correct (A) and incorrect (B) labels for a subset of the images in the STL-10 dataset. These distributions have
significant overlap, so probability is a poor indicator of correctness. In comparison, the self-assessment method for learning confidence scores that
correlate with accuracy produces distributions that are much more distinct, with values close to one for correct labels (C) and close to 0 for incorrect
labels (D).

subset of images from the STL-10 dataset (Coates et al., 2011). As
expected, it outputs predominantly low values for incorrect labels
and predominantly high values for correct labels. Moving forward,
we use the terms “Unaware Classifier” for the image classifier
that uses class probability as the confidence estimate and “Aware
Classifier” for the image classifier that uses learned self-assessment
(Webb et al., 2021) since the network trained on top of the image
classifier is aware of the latter’s capability to classify images. The
confidence metric itself is task-agnostic but requires a training
scheme that is adapted to the specifics of the learning task. For
instance, self-assessment for a reinforcement learning-based agent is
a dynamic confidence metric that predicts the probability of success
in a given episode over time steps (Valiente and Pilly, 2024).

Note that ConfidNet is not the only method for achieving
accurate self-assessment. Other effective methods, such as Monte
Carlo dropout, ensemble modeling, and temperature scaling, can
be employed depending on the specific application. Temperature
scaling learns a global temperature parameter to adjust the predicted
probability distributions for overall more reliable confidence
scores (Pereyra, 2017); however, it is not designed to provide
input-specific confidence. Monte Carlo dropout (Gal, 2016)
and ensemble modeling (Lakshminarayanan, 2017) offer more
principled approaches to uncertainty estimation that can adapt
to different inputs, but they typically incur higher computational
costs. Monte Carlo dropout involves performing multiple stochastic
forward passes through the network, with dropout applied
independently in each pass, to produce a distribution over
predictions. Ensemble modeling, on the other hand, requires
training and running several independent models. Ultimately,

we selected ConfidNet for its low computational cost during
both training and inference, as well as its potential for robust
generalization to out-of-distribution data.

3.2 Trust prediction model

In real-world applications, humans will not regularly
provide feedback for the machine to assess the need for trust
calibration. Human trust must be predicted from potentially
sparse information. Earlier approaches utilized rule-based and
statistical models, while recent research has shifted towards Long
Short-Term Memory (LSTM) networks. These models are better
suited for capturing temporal dependencies, thereby improving
predictive accuracy (Olabiyi et al., 2017). Our system employed
an LSTM network and was trained using data collected from the
first round of experiments to predict human trust based on readily
available inputs—the ground truth accuracy of the image classifier
(since humans reviewed machine performance in each trial and
could intervene if needed), the classifier’s confidence in its label, and
the compliance of the participant (whether a participant chose to
assist (not assist) the classifier when assistance is (is not) requested).
The model was evaluated on a validation set, for which it obtained
an overall Mean Squared Error (MSE) of 1.67 on a 0–100 scale.

The model was then employed to predict human trust in the
second round of experiments, for which it obtained an MSE of
3.39 for predicting trust in the Unaware classifier and 3.21 for
predicting trust in the Aware classifier, resulting in an overall
MSE of 3.3. Figure 2 shows the prediction results for a single
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FIGURE 2
The LSTM Trust Prediction Model predicts human trust at each time step given information about the machine (accuracy, confidence) and human
behavior (reliance). We show illustrative results for a single participant from the second round of experiments. There are only 43 trials in the plots
because the model used a sliding window of seven time steps during training.

participant. Note that for our purposes, we primarily needed the
model to predict general trust trends, not precise trust levels.

3.3 Dynamic reasoning model

The Dynamic Reasoning Model determines when to ask for
assistance based onmachine confidence and predicted human trust.
In the first round of experiments, the model used a dynamic
threshold. Machine confidence values below the threshold resulted
in the machine asking for assistance. After initializing this threshold
at 50% for the first trial of the experiment, the thresholdwas adjusted
according to the compliance of human actions with the machine’s
request for assistance. If the machine asked for assistance but
assistance was not given, the threshold was decreased by five points,
thus triggering requests for assistance at relatively lower confidence
values in future trials. If the machine did not ask for help but its
human partner intervened anyway, the threshold was increased by
five points, resulting in requests for assistance at relatively higher
confidence values in future trials. By dynamically changing the
threshold for the machine to request assistance in this manner, we
calibrate human trust based on machine capability in real time.

In the second round of experiments, we replaced the threshold
rule with a model trained on data from the first round. We
hypothesized that a model with knowledge of trust levels, machine
confidences, and instances of human intervention would be able to
determine when assistance is both needed by the machine and is
likely to be given by its human partner. We trained a three-layer
feedforward neural network to predict whether a human would
assist the machine given the human’s predicted trust level from the
previous trial and the machine’s confidence in the current trial.
When tested on a held-out set of examples from the first round
of experiments, our model reached an accuracy of 83.94% for the
Aware classifier and 82.91% for the Unaware classifier.

4 Materials and methods

During experiments, human participants were asked to team
with an autonomous image classifier to complete an image
classification task to maximize team performance while minimizing
their effort under time constraints. Each participant engaged in two
sessions - one with the Unaware classifier (using softmax probability
for the predicted label) and the other with the Aware classifier
(using learned self-assessment). We hypothesized that improved
self-assessment capabilities would lead to improved overall trust
and team performance since humans are more likely to trust and
appropriately rely on a machine that knows when it can and cannot
complete a task. We offer the following hypotheses:

Hypothesis 1: We will observe increased overall trust in the
Aware classifier, despite equal machine performance (classification
accuracy).

Hypothesis 2: Teaming with the Aware classifier will result in a
larger reduction in human over- and under-reliance on the machine
since improved self-assessment means the machine is better able to
ask for assistance when needed.

Hypothesis 3: Teamingwith the Aware classifier will result in better
team performance (classification accuracy). Reduction in over- and
under-reliance behaviors reduces both machine and human error.

4.1 Experimental paradigm

Image Classification Task: During the image classification task,
a Graphical User Interface (GUI) built using the PsychoPy Python
library served as the point of interaction between the participants
and image classifiers. In a single session of the main task, the
participants were presented with 50 images consecutively. At the
start of each trial (Figure 3A), the participants were shown the
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FIGURE 3
The GUI at different points during an experimental trial: (A) shows the GUI at the beginning of the trial. The participant must use the information of (1)
the image and potential classes and (2) the machine’s request for assistance (or lack thereof) to first determine whether they will (3) assist the machine
or not within a time frame of 5 seconds (4). If they decide to assist the machine (B), they are first asked to enter a label and submit it (5). Note if the
human does not decide to assist, the GUI does not ask for the label. The machine’s label and confidence score then appear for the human’s review (6),
and the human must use this information to provide a score for their cumulative trust in the machine (7).

image, the name of the classifier (R2D2 orWall-E), the current team
performance score, the classifier’s request or refusal for assistance
(“I Need Assistance” or “I Do Not Need Assistance”), a countdown
clock for the time remaining to decide whether to assist, and “Assist”
and “Do Not Assist” buttons. They were given 5 seconds to decide
about assistance, after which the machine submitted its label as the
team label. If the participants chose to assist, they were prompted to
enter a label into a text box to stand as the team label. Participants
did not have to comply with machine requests for help and also had
the option to assist even when the machine did not ask for help.

After submitting the team label (Figure 3B), the GUI displayed
an updated team performance score, the classifier’s label for the
image, and the classifier’s confidence in that label (with the color of
the confidence estimate shown ranging from red to green on a 0–100
scale). The team performance score was a running average across
trials that started at 100 points at the beginning of the experiment
and was penalized in subsequent trials for over and under-reliance
behaviors. In each trial, the team would receive a score of 0 points if
either the human decided to take control from themachine and label
the image even though the machine would have labeled the image
correctly, or the human decided not to take over and allowed the
machine to submit an incorrect label. Otherwise, they received 100
points for the trial. Finally, having reviewed the classifier’s label and
confidence, the participants were asked to report their cumulative
trust in the classifier based on their overall experience with it since
the start of the session. Previous and average cumulative trust levels
were displayed to aid the participants in keeping track of their trust
development and to encourage them to view their current trust
rating as cumulative.

Procedure: Participants were recruited from HRL Laboratories
using flyers and received monetary compensation upon completion
of the study. All subjects provided signed informed consent to
participate in the study, which was reviewed and approved by the
Institutional Review Board of WCG Clinical Services. Participants
then completed an adaptation session, which involved filling out
a pre-experiment survey and reading through instructional slides
describing the task andGUI. Instructions informed participants that

they would team with a machine partner to classify images and that
the machine would ask for assistance when it thinks that its label
could be wrong. Participants were instructed to report overall trust
in the machine at the end of each trial, after viewing the machine’s
label and confidence estimate for that trial’s image. Participants
then completed a demo to ensure they understood the task and
how to interact with the GUI. They then performed the core image
classification task over two main sessions for the two classifiers,
with a post-experiment survey to assess their overall trust in the
respective classifier and gain insight into their impression of the
classifier’s performance.

Pre- and Post-experiment Surveys: The pre-experiment
survey collected demographic information, including age, race,
gender, country of birth, education, and prior experience with
image classifiers and semi-autonomous systems. Participants also
completed the mini-IPIP scale to assess the Big Five personality
traits and a validated propensity-to-trust-automation survey
(Yang et al., 2023) before engaging with the image classifier. For
both, participants rated each statement in the survey on a five-
point Likert scale (strongly disagree to strongly agree). The post-
experiment survey (Figure 5) was presented to participants after
each of the Aware and Unaware sessions to gauge their overall
experience with each classifier. We used a validated trust-in-
automation survey (Yang et al., 2023), replacing the term “decision
aid” with “classifier” for specificity. Participants rated each entry on
a 1–10 scale.

Images:We used the STL-10 dataset, which consists of 10 classes
of objects (airplane, bird, car, cat, deer, dog, horse, monkey, ship,
truck). To create uniformity in our experiments, we created two
groups of 50 hand-picked images that were high contrast, had clear,
singular objects, and were not used to train the self-assessment
model.Wemade the selection such that the class distribution and the
accuracywithin each classwere preserved. For example, the classifier
we used in the experiments accurately classified airplanes only 50%
of the time, while it accurately classified ships 99% of the time. We
ensured this asymmetry was reflected in the image groups that the
participants viewed.
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FIGURE 4
In the first round of experiments, we showed that the closed-loop trust calibration system with improved self-assessment (the Aware classifier) resulted
in increases in human trust and team performance, and a decrease in over- and under-reliance. In particular, improved self-assessment led to
improved trust in the machine by about 34%.

Experimental Design:We performed two rounds of experiments
with eight participants each. In both rounds, we used a 2 × 2
× two counterbalanced within-subjects design where participants
were exposed to the Aware and Unaware classifiers (both with 80%
accuracy), the name of the classifier (Wall-E or R2D2), and the set
of 50 images (Group 1 or Group 2). The two rounds differed in
terms of the Dynamic Reasoning model deciding when to ask for
assistance (Section 3.3).

5 Results

5.1 Experiment results - first round

Paired t-tests were used to determine if there were significant
differences (p < 0.05) in reported trust, over- and under-reliance
on the machine, and team performance between the Aware and
Unaware classifiers.

Cumulative Trust: Participants reported about 34% higher trust
in the Aware classifier as compared to Unaware (Figure 4, left). This
result was statistically significant (p = 0.0002) with a large effect size
(Cohen’s d = 1.93) and supports H1 (Figure 4, right).

Over- and Under-reliance: Under-reliance occurs when the
participant assists the machine even though it is capable of correctly
labeling the image (proactive human takeover). Over-reliance
occurswhen the participant does not assist even though themachine
cannot correctly label the image. Sessions with the Aware classifier
resulted in fewer proactive takeovers (4.1 vs 9.37 takeovers) and
fewer instances of over-reliance (2.37 vs 4.75machine errors without
human assistance), on average, as compared to Unaware. These
results were statistically significant with a large effect size as well and
support H2 (Figure 4, right).

Team Performance: Team performance when participants
worked with the Aware classifier (95% classification accuracy)
surpassed that when working with the Unaware classifier (90%
classification accuracy). This result was statistically significant with
a large effect size as well and supports H3 (Figure 4, right).

Figure 5 shows the mean participant response to questions in
the post-experiment survey. The purpose of surveying participants

after each session was to (1) gauge their overall trust in the
machine once the task was completed, (2) validate the self-reported
trust values observed during the experiment, and (3) understand
how different aspects of the classifiers affected their trust. Overall,
participants perceived the Aware classifier as higher performing
than the Unaware classifier. Question 9, in particular, validates the
results in Figure 4, indicating that participants did indeed have
higher trust in the Aware classifier. Question eight supports our
hypothesis that the difference in self-assessment capabilities largely
drove this difference in perceived trust.

5.2 Experiment results - second round

The second round involved using real-time prediction of trust
instead of relying on compliance of human intervention and a
neural network to determine when to ask for assistance instead of a
threshold-based rule. Results of this round of experiments indicate
that the first round’s results hold even when the system does not
rely directly on reported trust in each trial (Figure 6). This suggests
that our system could apply to more realistic situations in which the
machine operates with sparse human feedback.

6 Discussion

As previously mentioned, we most directly compare
our work to Ingram et al. (2021), which found that presenting
the probability of the assigned label as a confidence score did not
increase trust in the image classifier. In contrast, by employing
learned self-assessment confidence scores that better correlate
with machine accuracy, we observed an increase in overall trust
in the machine by about 34% and 52% by the end of the first and
second rounds, respectively. This highlights that confidence scores
and/or other competence metrics must be accurate to be effective
in fostering trust. It is important to distinguish machine self-
assessment from machine explainability and transparency, which
aim tomake themachine’s internal processesmore interpretable and
help humans understand the reasoning behind a decision regardless
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FIGURE 5
At the end of the first round of experiments, we gave a post-experiment survey to better understand participants’ experiences with and trust in the
image classifiers. The graph (left) shows the mean participant response to the nine post-experiment survey questions (right) for both the Aware and
Unaware classifiers. Results show that participants had an overall higher trust in and preference for the Aware classifier.

FIGURE 6
In the second round of experiments as well, we obtained statistically significant results of increased human trust (by about 52%), reduced over- and
under-reliance, and improved team performance.

of its correctness.While both concepts are valuable, we have focused
only on machine self-assessment in this study.

While we observe an increase in human trust in the machine,
our goal is not merely to inflate trust, as this could lead to over-
reliance of the human on the machine in future tasks. The observed
increase in overall trust is, in fact, a byproduct of the trust calibration
process. Our experiments demonstrate that adaptively providing
cues to humans for real-time trust calibration (through intervention
requests) is effective in fostering appropriate reliance during the task
while improving overall team performance and trust by the end
of the task. A machine capable of assessing and communicating
its ability in real time is more likely to be trusted and more
likely to be adopted for long-term use. Although our study is
consistent with prior research (Section 2), our main contribution
lies in the closed-loop trust calibration system that takes both self-
assessed machine capability and predicted human trust level into
account.

Our study has several limitations. Firstly, our results are based
on a relatively small sample of 16 engineers and scientists from
HRL Laboratories, all of whom had prior experience with artificial
intelligence (AI) and autonomous systems. Given that established

trust models highlight experience with automation as a significant
factor influencing trust (Mayer et al., 1995; Hoff and Bashir,
2013)), our results may not generalize to a population that is less
knowledgeable about or experienced with AI. Furthermore, these
models highlight other factors that influence trust, including human
factors (e.g., culture, personality, workload), machine factors (e.g.,
ability, benevolence, integrity), and situation-specific factors (e.g.,
task difficulty, risk). While we do not consider these factors in this
study, a compelling future experiment would investigate their role in
trust dynamics and their interaction with self-assessment methods
in human-machine teams.

Another limitation is that our experimental scenario was
relatively less complex compared to real-world applications that
would most benefit from autonomous systems, such as autonomous
vehicles and robots. In particular, the image classification task was
not dynamic, and both the human and machine were essentially
performing the same task. Typically, autonomous machines offer
the greatest advantage when they allow the human to multitask
and intervene only when necessary. Also, our experimental design
allowed for continuous human review of the machine’s capability,
which is often not feasible in dynamic, real-world settings. While

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2025.1557075
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Warmsley et al. 10.3389/frobt.2025.1557075

we hypothesize that our results would extend to more complex
collaborative tasks, future work is needed to confirm this.

Finally, we acknowledge that there are currently no known
methods that can provide guarantees for the accuracy of machine
self-assessment, especially for complex autonomous systems
encountering novel situations. We were also able to test only two
contrasting self-assessment methods, one learning-based and the
other not. This highlights the need for responsible human oversight
of AI for high-risk applications, albeit with potentially reduced
cognitive workload, as well as the importance of integrating self-
assessment with offline human-machine co-training (Miller et al.,
2023). The latter will facilitate the continuous calibration of human
expectations regarding the machine’s capability and self-assessment
abilities, both before and after each collaborative task. We reserve
the exploration of these aspects for future work.

7 Conclusion

In this work, we developed a closed-loop trust calibration
system for human-machine collaboration in the image classification
task that included a real-time human trust prediction model, a
machine self-assessment model, and a dynamic reasoning model
that determined when the machine should ask for human assistance
to calibrate trust. We performed human experiments to highlight
the importance of accurate self-assessment for trust calibration.
Specifically, we showed that improved self-assessment capabilities
result in increased overall trust in the autonomous image classifier,
reduced over- and under-reliance behaviors on the part of the
human, and improved overall team performance in the classification
task. In future work, we would like to extend our experiments such
that (1) we require multi-tasking on the part of the human, (2) we
usemore dynamic scenarioswhere the humanmay also be uncertain
about their ability to accomplish the task, and (3) we incorporate
pre-task training for the human to learn more about the machine
before engaging in the task.We expect these extensions will increase
the applicability of our trust calibration system to more complex,
real-world scenarios.
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