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Background and objective: Conventional osteotomy tools, including drills and
saws, have been associated with several limitations, such as restricted cutting
geometry and the risk of heat-induced necrosis, which affects bone healing.
Laser-based osteotomy systems have emerged as a promising solution for
these constraints. This study aims to evaluate the accuracy of robot-guided
laser osteotomy compared to conventional cutting-guided osteotomy based on
surface scanning.

Materials and methods: Ten 3D printed mandibular models were used
to perform segmentectomy. Five models were treated with conventional
osteotomies employing a cutting-guided saw technique, while the remaining
five were subjected to laser osteotomy. Initially conducted using root mean
square (RMS) values, the analysis has been expanded to reevaluate the angulation
and distance deviation outcomes.

Results: Precision analysis of the upper cutting plane revealed a statistically
significant difference in distance deviation between the laser osteotomy group
(0.48 mm) and the conventional osteotomy group (0.78 mm). In terms of
angulation deviation, the laser osteotomy group exhibited, both in the upper and
lower cutting planes, statistically significant results (2.19° and 2.86°) compared
to the osteotomy group (5.15° and 8.12°).

Conclusion: Based on the observed angulation and distance deviations,
it can be concluded that robot-guided laser systems achieve significantly
higher accuracy in osteotomies than conventional cutting-guided
systems currently available. Consistent with the findings of a prior
study, these results confirm that robot-guided laser osteotomy
provides substantial advantages, facilitating the seamless integration
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of precise virtual preoperative planning with exact execution in the human body.
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3D printing, dimensional measurement accuracy, laser ablation, mandibular osteotomy,
precision medicine, robotic surgical procedures

1 Introduction

Most osteotomies are traditionally performed using manually
operated instruments such as drills or saws. However, these tools
present several challenges, including mechanical and thermal
effects on bone structure, resulting in biological disadvantages
(Martins et al., 2011)– (Abu-Serriah et al., 2004). The bone
structure can be compromised, potentially leading to necrosis and
prolonged bone healing (Gabrić et al., 2016), (Panduric et al.,
2014), (Kanazirski et al., 2023). Clinical studies demonstrated
superior outcomes in terms of minimized facial edema, swelling
and pain in the early post-operative period (Blagova et al.,
2023), (Stübinger et al., 2009). Additionally, the range of
shapes that can be created using those instruments is limited
(Augello et al., 2017). Since their effectiveness depends greatly on the
surgeon’s skills in handling them, outcomes can vary significantly.
Individual cutting guides are frequently employed to enhance
precision and ensure adherence to pre-established cutting paths
(Zavattero et al., 2019)– (Bernstein et al., 2017).

Laser-based systems have gained attention as innovative
tools for bone-cutting techniques. Erbium-doped Yttrium
Aluminum Garnet (Er:YAG) lasers have demonstrated considerable
suitability for use in osteotomy procedures (Martins et al., 2011),
(De Mello et al., 2008)– (Stübinger, 2010). They operate below the
critical temperature for bone necrosis, using a water-absorbable
wavelength of 2,940 nm. This absorption causes micro-explosions
in water-containing areas of the bone, ultimately enabling precise
bone cutting (Panduric et al., 2014), (De Mello et al., 2008),
(Zeitouni et al., 2017), (Baek et al., 2015), (Baek et al., 2021).
Lasers have a narrower cutting width than other instruments, which
results in less bone material being lost as debris (Panduric et al.,
2014), (Stübinger et al., 2009), (Augello et al., 2017), (Stübinger,
2010), (Baek et al., 2021). Furthermore, these devices possess
the advantage of total freedom in geometry, with the capacity to
achieve a vast range of cutting shapes, including self-stabilizing
cuts (Holzinger et al., 2021; Bernstein et al., 2017; De Mello et al.,
2008). Laser-based systems present a non-contact, blood-, heat-
and vibration-reduced alternative to current osteotomy techniques
(Augello et al., 2017), (Augello et al., 2018), (Baek et al., 2015),
(Burgner et al., 2010). Multiple studies have been conducted on
bone healing after laser osteotomy, and results have shown that this
technique is safe, efficient, and less invasive (Martins et al., 2011),
(Stübinger et al., 2009), (Stübinger, 2010).

To further enhance the advantages of laser-based osteotomy,
its integration with a robot-guided system has been introduced.
Robot-supported systems are increasingly utilized in the medical
field, particularly in surgical procedures (Martins et al., 2011),
(Godzik et al., 2019), (Köhnke et al., 2024). These systems aim
to improve accuracy and eliminate human errors while increasing
efficiency (Baek et al., 2015), (Baek et al., 2021). These systems also
contribute to decreased intra-operative time and costs,making them

an attractive option in modern surgical practices (Godzik et al.,
2019). Moreover, the combination of laser-based osteotomy with
robot-guided systems enables the adoption of a fully digital
workflow.This approach allows for preoperative digital planning and
exact intraoperative execution. In addition to reducing operating
time, this also results in increased precision, eliminates the need for
cutting guides, and allows for ad hoc osteotomy adjustments to the
osteotomy procedure (Holzinger et al., 2021), (Ebeling et al., 2023),
(Ureel et al., 2021), (Köhnke et al., 2024), (Msallem et al., 2024a).

Although the advantages of laser osteotomes are well-
documented and their efficacy and feasibility extensively studied,
data on robot-assisted systems remains limited, particularly
regarding their accuracy. This study builds upon previous research
that employed descriptive data analysis to evaluate mean standard
deviation, median, minimum, and maximum of root mean square
(RMS) values for surface comparisons of reconstructed mandibular
models in relation to trueness and precision (Msallem et al., 2024a).
However, as the previous study did not yield statistically significant
results for RMS values, a new approach was adopted, focusing on
parameters of angulation and distance deviation.

The present study evaluates the accuracy of a robot-guided
laser osteotome compared to a conventional osteotomy technique
utilizing manually operated tools and supportive cutting guides.
Trueness and precision were assessed based on angulation and
distance deviation from the pre-planned osteotomy path. The
objective is to ascertain the most precise osteotomy technique for
surgical applications by re-evaluating the accuracymeasurements of
these technologies that were previously analyzed.

Furthermore, the study highlights the advantages of a fully
digital workflow encompassing pre-operative digital planning and
precise intraoperative execution.

2 Materials and methods

2.1 Study protocol

Thefollowing sections outline the study design for evaluating the
accuracy of robot-guided laser osteotomy compared to conventional
osteotomy using cutting guides. The flowchart visually represents
the study protocol, detailing the sequential phases (Figure 1). Ethical
approval was not required as this study does not involve animal or
human data or tissues.

2.2 Digitalization and planning before
osteotomy

Ten mandibular models (Models 1–10) were produced for this
study using selective laser sintering with an EOSINT P 385 3D
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FIGURE 1
Flowchart of the study protocol.

printer (EOS GmbH, Krailling, Germany) and white polyamide
12 PA 2200 powder (EOSGmbH, Krailling, Germany).Thismethod
was chosen based on its high precision, high accuracy, and the best
results in recent studies comparing different printing technologies
(Msallem et al., 2020;Msallem et al., 2024b).Themandibularmodels
(Models 1–10) were scanned using a white-light desktop optical
3D scanner (EinScan-SP, SHINING 3D Tech. Co., Ltd., Hangzhou,
China). The EinScan-S series software v. 2.7.0.6 was applied to
create ten Standard Tessellation Language (STL) files (STL-Planning
1–10). As the printed models were identical, the STL file of Model 1
(STL-Planning 1) was selected for osteotomy planning.

Segmentectomy is defined by two separate cuts on the right side
of the mandible: a lower cut is located in the right canine region,
while the upper cut is located on the right ascending mandibular
ramus, as depicted in Figure 2. Four screw holes accompanied each
segmentectomy cut. The planning was conducted in Geomagic
Freeform (3D Systems Inc., Rock Hill, SC, United States). Cutting
guides for the conventional osteotomy were designed based on
the predefined osteotomy lines on the virtual model. These guides
included guidance ducts for screw holes as well. An additional
positioning aid was incorporated into the incisura semilunaris
to facilitate alignment of the cutting line on the ascending
ramus. In contrast, the guide for the lower cutting line did not
require additional positioning aids, as the uneven contours of the
mandibular corpus naturally facilitated alignment.

The cutting guides were 3D printed using dark gray polyamide
12 3D HR (HP Inc., Palo Alto, CA, United States) on a HP Jet
Fusion 3D 4200 3D printer (HP Inc., Palo Alto, CA, United States).
Following the printing process, the guides underwent sandblasting
as a post-processing procedure (DePuy Synthes, Johnson& Johnson,
West Chester, PA, United States).

2.3 Conventional osteotomy

Models one to five were cut using 3D printed cutting
guides, which were positioned on the mandible and fixed
with 2.0 mm diameter cortical screws (Medartis AG, Basel,
Switzerland), as illustrated in Figure 3. The osteotomy procedure
was performed using a Colibri II equipped with an oscillating saw

FIGURE 2
STL-Planning 1 file with the planned cutting planes.

attachment (DePuy Synthes, Johnson & Johnson, West Chester, PA,
United States).

2.4 Laser osteotomy

The robot-guided laser osteotomy was performed using
CARLO® (Cold Ablation Robot-guided Laser Osteotome),
an Er:YAG laser device designed for thermal ablation.
CARLO® features a scanning laser and an integrated camera for
auxiliary visualization (Figure 4). The device has a cutting width of
1.5 mm and a maximum cutting depth of 20 mm. The cutting area
is continuously cooled and rinsed with a water spray to maintain
precision and prevent thermal damage.

A CARLO® procedure pack (AOT AG, Basel, Switzerland)
is required for each surgical intervention, containing disposable
materials, such as water tubes for the cooling system. In this study,
the sameprocedure packwas used for all osteotomies.Theprocedure
was executed using the CARLO® primo+ software v.2.0.x (AOT
AG, Basel, Switzerland). Cutting can be planned using preoperative
data, such as a computed tomography (CT) scan or STL files; this
study utilized an STL file. Additionally, the system supports ad hoc

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2025.1559483
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Msallem et al. 10.3389/frobt.2025.1559483

FIGURE 3
3D printed cutting guides: (A) Front view of the lower cutting guide; (B) side view of the upper cutting guide.

FIGURE 4
Robot-guided laser osteotomy conducted by CARLO®: (A) laser osteotomy set-up (B–D) visualization of the cutting process (E–F) close-up views of
the laser cuts.
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FIGURE 5
Upper cutting plane with the corresponding screw holes and
reference points after laser osteotomy.

adjustments, allowing modifications to the cutting plan before and
during the procedure.

2.5 Digitalization after osteotomy

To ensure precise scanning of the mandibular models in
their entirety, both laser and conventional osteotomies were
intentionally designed to avoid cutting entirely through the models.
Instead, the incisions were only made through the outer layers
of the material, leaving a small core intact to preserve the
correct positioning and angulation of the cutting plane, thereby
maintaining the stability of the entire model (Figure 5). Following
this procedure, the models were rescanned using the previously
described digitization method, resulting in a new set of ten STL files
(STL-Cutting 1–10).

To evaluate the accuracy of the cuts performed with
conventional and laser osteotomies, the STL files were imported
into 3-matic medical v. 17.0 (Materialise, NV, Leuven, Belgium)
and superimposed onto the planning file. Reference points on the
right and left ascending ramus were used, as depicted in Figure 5.
Subsequently, a global optimization registration alignment was
performed.

For all scanned mandibular models and the planning file,
an osteotomy line was digitally inserted at both the lower and
upper cutting planes, and the intersection line with the planning
mandibular mesh was calculated. Two key assessments were
conducted: angulation deviation and distance deviation. Angulation
deviation wasmeasured by calculating the angle between the cutting
plane of the scanned mandible and that of the planning file for
each osteotomy cut. Distance deviation was assessed by calculating
the median distance between the scanned mandible’s intersection
curve and the planning file’s corresponding curve for each osteotomy
cut.

Accuracy in terms of trueness was evaluated by comparing
the ten cut mandibles to the planning file. Precision was assessed
by comparing the ten cut mandibles within their respective
groups: conventional osteotomy models were compared among
themselves, and laser osteotomymodels were compared within their
group.

2.6 Statistical analysis

Median values for angulation and distance deviation were
analyzed to evaluate the differences between fully robot-guided
laser osteotomy and conventional osteotomy. Both trueness and
precision were assessed based on deviations in the position of
the osteotomy cuts in millimeters and angulation in degrees.
All statistical analyses were conducted using the Wilcoxon
Rank Sum test, performed with R statistical software (Version
4.3.2, The R Foundation for Statistical Computing, Vienna,
Austria).

3 Results

3.1 Trueness analysis

Table 1 presents the trueness values of the lower and
upper cutting lines, separated by the distance and angulation
deviation analysis. The values are analyzed for both techniques,
focusing on deviations in distance (mm) and angulation (°).
Subsequent sections provide a comprehensive examination of these
comparisons.

3.1.1 Distance deviation trueness
Distance deviation was analyzed relative to the planning

file, and the median values were calculated for both osteotomy
techniques. While differences in median trueness values
were observed between the two techniques, no statistically
significant differences were identified in the distance deviation
for either the lower or upper cutting planes. Nevertheless,
laser osteotomy demonstrated superior performance in the
lower cutting plane, showing a median distance deviation
of 0.26 mm, compared to 1.09 mm for the conventional
osteotomy. Conversely, conventional osteotomy exhibited slightly
superior outcomes in the upper cutting plane, with a distance
deviation of 0.87 mm compared to 0.94 mm for laser osteotomy.
These findings are presented in Table 1 and illustrated in
Figures 6, 7.

3.1.2 Angulation deviation trueness
Angulation deviation was assessed relative to the

planning file. While differences in median trueness values
were observed between the two techniques, no statistically
significant differences were found in angulation deviation
for either the lower or upper cutting planes. However, the
laser osteotomy group exhibited superior performance in
the lower cutting plane, with an angulation deviation of
1.86°, compared to 2.42° for the conventional osteotomy
group. The laser osteotomy group demonstrated a deviation
of 2.19° for the upper cutting plane, compared to 2.44°.
These findings are presented in Table 1, highlighting that
the laser osteotomy generally exhibited better results,
particularly for the lower cutting plane, and are illustrated in
Figures 8, 9.
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TABLE 1 Trueness of distance (mm) and angulation (°) deviation by osteotomy technique.

Laser osteotomy Conventional
osteotomy

p-value

na Median (IQRb) na Median (IQRb)

Distance Deviation (mm) - Lower Cutting Planes 5 0.26 (0.22–0.90) 5 1.09 (0.81–1.14) 0.310

Distance Deviation (mm) - Upper Cutting Planes 5 0.94 (0.53–1.19) 5 0.87 (0.72–1.00) 0.841

Angulation Deviation (°) - Lower Cutting Planes 5 1.86 (1.44–1.91) 5 2.42 (1.97–4.23) 0.310

Angulation Deviation (°) - Upper Cutting Planes 5 2.19 (1.84–2.74) 5 2.44 (1.73–9.97) 0.690

anumber of comparisons.
binterquartile range.

FIGURE 6
Box plot of the median distance deviation trueness values of the lower
cutting plane by osteotomy technique.

3.2 Precision analysis

Table 2 presents the precision values of the lower and upper
cutting planes, separated by the analysis of distance (mm) and
angulation deviation (°).

3.2.1 Distance deviation precision
For the lower cutting plane, no statistically significant difference

was observed in the median precision values for distance deviation
between the laser osteotomy group of 0.66 mm and the conventional
osteotomy group of 0.48 mm. In contrast, a statistically significant
difference was identified for the upper cutting plane, with the laser
osteotomy group exhibiting amedian distance deviation of 0.48 mm
compared to 0.78 mm for the conventional osteotomy group. These
findings are presented in Table 2 and illustrated in Figures 10, 11.

FIGURE 7
Box plot of the median distance deviation trueness values of the upper
cutting plane by osteotomy technique.

3.2.2 Angulation deviation precision
The precision values for median angulation deviation of the

lower and upper cutting planes differed statistically between the
two techniques. For the lower cutting plane, the laser osteotomy
demonstrated a median angulation deviation of 2.19°, compared
to 5.15° for the conventional osteotomy. Similarly, the median
angulation deviation for the upper cutting plane was 2.86° for the
laser osteotomy and 8.12° for the conventional osteotomy. These
findings are presented in Table 2 and illustrated in Figures 12, 13.

4 Discussion

Surgical accuracy is essential, particularly in the anatomically
complex region of the facial skull, where it plays a critical role in both
functionality and aesthetics (Augello et al., 2018), (Msallem et al.,
2024a), (Heufelder et al., 2017), (Han et al., 2021). Robot-assisted
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FIGURE 8
Box plot of the median angulation deviation trueness values of the
lower cutting plane by osteotomy technique.

FIGURE 9
Box plot of the median angulation deviation trueness values of the
upper cutting plane by osteotomy technique.

systems are increasingly being adopted in medicine for their ability
to streamline and optimize surgical procedures. These systems
enhance precision and efficiency by incorporating preoperative
digital planning and intraoperative navigation. Although robotic
guidance has been introduced across various fields, many systems
lack full integration for both navigation and surgical execution. For
example, robot-assisted pedicle screw placement has demonstrated
improved accuracy compared to entirelymanualmethods.However,
while these systems utilize preoperative digital planning and

navigation, the surgeon still performs the actual screw drilling
(Godzik et al., 2019), (Matur et al., 2023), (MacLean et al., 2024).
Similarly, de Boutray et al. employed robot-guided cutting guides to
assist with fibular osteotomy, but the surgical procedure was carried
out manually (de Boutray et al., 2024). These examples highlight the
growing role of robots in medical specialties and underscore the
need for continued innovation. The complete integration of robotic
systems into surgical workflows is expanding, offering a promising
future for the development of fully digitalized and automated
surgical systems (Wojcik et al., 2023)– (van Riet et al., 2021).

This study evaluated the accuracy of robot-guided laser
osteotomy compared to the conventional cutting-guided saw
technique, with accuracy measured in terms of trueness and
precision. Distance deviation, defined as the variance between
the intended and actual cutting plane, was used to assess
positional accuracy, while angulation deviation, defined as the
angle between these cutting planes, measured orientation accuracy.
These parameters were selected to effectively visualize deviations
at different levels, as the precise positioning of cutting planes is
crucial for medical decision-making, such as determining the need
for subsequent resections.

The results demonstrated statistically significant differences in
the precision analysis for the values of the distance deviation for the
upper cutting plane and for angulation deviation across both cutting
planes in the laser osteotomy group.While no statistically significant
differences in trueness analysis were observed, thismay be attributed
to the smaller group sizes used for trueness (five comparisons per
group) compared to the precision analysis (ten comparisons per
group). Nevertheless, when absolute figures for angulation deviation
in precision and trueness were considered, the laser osteotomy
group consistently demonstrated superior performance. However,
this was not statistically significant for the trueness analysis. The
minor angulation discrepancies at shorter distances result in less
significant deviations than those observed at longer distances.
This is also reflected in the minimal discrepancy in distance
deviation between the two techniques, given that mandibular
osteotomies represent relatively short distances. Nevertheless, the
robot-guided laser osteotomy achieved superior results across
nearly all assessments. These findings underscore the greater
accuracy of the robot-guided laser osteotomy technique compared
to the current gold standard using prefabricated cutting guides.
Additionally, while both osteotomy techniques demonstrated high
accuracy, robot-guided osteotomy offers a key advantage: its
precise implementation minimizes human and technical errors by
eliminating variability in the surgeon’s execution and reducing
inaccuracies from interposed production steps. Beyond its superior
accuracy, this technique also provides significant biological benefits
through laser application and removes the need for cutting-
guide production, further enhancing the efficiency of the robot-
guided system.

Not only was superior accuracy demonstrated, but biological
advantages were also observed–more precisely, the laser osteotome’s
ability to operate below critical temperatures. Multiple pre-clinical
studies explored the biological advantages of laser-based osteotomy
techniques (Panduric et al., 2014), (Kanazirski et al., 2023)– (Abu-
Serriah et al., 2004). Naturally, the material’s response to heat
differed from that of bone, as bone tends to char while polyamide
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TABLE 2 Precision of distance (mm) and angulation (°) deviation by osteotomy technique.

Laser osteotomy Conventional
osteotomy

p-value

na Median (IQRb) na Median (IQRb)

Distance Deviation (mm) - Lower Cutting Planes 10 0.66 (0.5–1.08) 10 0.48 (0.35–0.58) 0.143

Distance Deviation (mm) - Upper Cutting Planes 10 0.48 (0.28–0.71) 10 0.78 (0.54–1.58) 0.052

Angulation Deviation (°) - Lower Cutting Planes 10 2.19 (1.03–3.47) 10 5.15 (3.09–6.03) 0.009

Angulation Deviation (°) - Upper Cutting Planes 10 2.86 (1.75–4.39) 10 8.12 (4.66–11.52) 0.009

anumber of comparisons.
binterquartile range.

FIGURE 10
Box plot of the median distance deviation precision values of the
lower cutting plane by osteotomy technique.

begins to melt. However, no heat effects were observed with robot-
guided laser osteotomy due to its superior biological properties,
while conventional osteotomy clearly showed heat effects.While this
study focused on laser-based osteotomy compared to the standard
saw-based technique, evaluating other osteotomy methods would
also be valuable, as each may offer unique benefits when combined
with robot guidance.

In the introduction of the aforementioned comparative study,
the RMS values were used to assess surface accuracy, as the surface
of the entire model was measured to evaluate the accuracy of an
anatomical reconstruction, i.e., the clinical endpoint (Msallem et al.,
2024a). Consistent with the present findings, that study also
demonstrated superior results with higher accuracy in the robot-
guided laser osteotomy group. These studies confirm that laser
osteotomy offers enhanced cutting precision and improved accuracy
in achieving the desired clinical outcomes.

FIGURE 11
Box plot of the median distance deviation precision values of the
upper cutting plane by osteotomy technique.

The findings from the present and comparative study,
summarized in Tables 3, 4, highlight the advantages of robot-
guided laser osteotomy in achieving greater accuracy during cutting
and thus improved clinical outcomes. This evidence supports the
potential for laser osteotomy to outperform conventional techniques
in terms of surgical accuracy and clinical efficacy. Additionally,
our previous study on robot-guided laser osteotomy, focusing
on the accuracy of subsequent reconstruction after osteotomy,
showed no statistically significant differences, despite mainly
superior results for the laser osteotomy group. Nevertheless,
in both studies, not all cuts demonstrated superior accuracy
through robot guidance. However, no trials were excluded from
our analysis.

The main limitation of this study is the relatively small
sample size and, thus, the likely lack of sufficient statistical
power to detect minor differences. The sample size was primarily
determined based on economic considerations and feasibility.
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FIGURE 12
Box plot of the median angulation deviation precision values of the
lower cutting plane by osteotomy technique.

FIGURE 13
Box plot of the median angulation deviation precision values of the
upper cutting plane by osteotomy technique.

Larger studies with greater sample sizes remain scarce. A study
by Köhnke et al. demonstrated in a multi-center clinical study
feasibility, simplicity, safety, reliability and accuracy of robot-guided
laser osteotomies (Köhnke et al., 2024). Despite this, statistically
significant results were achieved in favor of the laser osteotomy
group in the precision analysis, which included ten comparisons. In
conventional osteotomies, the reliance on cutting guides andmanual
handling of instruments often results in considerable deviations.The
cutting guides’ planning and design are essential for optimal fit and

positioning. In this study, the cutting guide for the upper osteotomy
included an aiding arm for precise positioning, whereas the lower
cutting guide lacked such a feature. As a result, the osteotomy
procedure, including the positioning and angling of the saw and
the placement of the cutting guide itself, was dependent on the
operator. These factors likely contributed to deviations from the
planned osteotomy cuts.

Secondary inaccuracies can also arise during the manufacturing
process of the guides, such as errors during 3D printing. Fully digital
workflows enable the omission of cutting guides, which enhances
accuracy and reduces time and material usage (Suhaym et al., 2024).
Robotic-guided laser osteotomy minimizes these challenges but is
not without its limitations. Various studies have been conducted on
virtual surgical planning and navigated surgery (Bernstein et al.,
2017), (Han et al., 2021), (Roser et al., 2010)– (Stopp et al.,
2008). The cutting widths of both the saw and laser also impact
accuracy. Generally, the laser has a narrower cutting width.
However, in the accuracy analysis, the reference cutting line
was placed at the center of the cut to best represent the pre-
planned cutting path. Nonetheless, variations in material compared
to bone structure may affect the actual cutting width and the
accuracy analysis. In view of the small extent, however, this was
considered negligible.

While directly implementing a digitally planned osteotomy
in the operating room offers several advantages, challenges can
arise during the transfer of data between different software
and from the digital plan to the physical model. Minor errors
can accumulate during various process stages, including data
transfer between software systems and registration processes. In
the latter, inaccuracies may arise due to manually positioned
landmarks and pointers of different shapes (Augello et al., 2018),
(Ebeling et al., 2023), (Burgner et al., 2010). Additionally, the
registration process and robot installation are time-consuming,
leading to longer operation durations. However, studies have
shown that this setup only takes a few minutes, which can be
considered minimal given the possible increased efficiency of
osteotomy and subsequent reconstruction (Augello et al., 2018),
(Ureel et al., 2021), (Köhnke et al., 2024).

Several studies have been conducted on the feasibility of
the same robot-guided laser osteotome (Holzinger et al., 2021),
(Ebeling et al., 2023), (Ureel et al., 2021), (Köhnke et al., 2024). It is
evident that the implementation of this technology is still in its early
stages, requiring time and effort to become a standard procedure in
the operating room. Nevertheless, various studies demonstrate its
applicability and feasibility, with some hospitals already using it for
certain standard procedures. While further pre-clinical and clinical
studies are necessary to confirm the advantages, it is already feasible
to integrate this system into practice.

While the initially high costs may not justify using a robotic
system in many cases, including additional enhancements, such as
the induction of laser-induced bone healing or the intraoperative
three-dimensional repositioning of bone with a robotic system in
complex reconstructions, makes them a compelling option in some
instances.

Unlike previous studies that analyzed endpoints such as
reconstruction with patient-specific implants, this study focused
exclusively on the accuracy of the osteotomy. Only the accuracy
of the cutting planes is analyzed, which does not necessarily
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TABLE 3 Comparison of the trueness analysis by osteotomy techniques of the present and comparative study.

Laser osteotomy Conventional osteotomy p-value

na Median (IQRb) na Median (IQRb)

RMSc,∗ values 5 1.24 (1.16–2.61) 5 2.02 (0.98–2.02) 1

Distance Deviation (mm) - Lower Cutting Planes 5 0.26 (0.22–0.90) 5 1.09 (0.81–1.14) 0.310

Distance Deviation (mm) - Upper Cutting Planes 5 0.94 (0.53–1.19) 5 0.87 (0.72–1.00) 0.841

Angulation Deviation (°) - Lower Cutting Planes 5 1.86 (1.44–1.91) 5 2.42 (1.97–4.23) 0.310

Angulation Deviation (°) - Upper Cutting Planes 5 2.19 (1.84–2.74) 5 2.44 (1.73–9.97) 0.690

anumber of comparisons.
binterquartile range.
croot mean square, ∗comparative study (Msallem et al., 2024a).

TABLE 4 Comparison of the precision analysis by osteotomy techniques of the present and comparative study.

Laser osteotomy Conventional
osteotomy

p-value

na Median (IQRb) na Median (IQRb)

RMSc,∗ values 10 1.55 (1.06–1.85) 10 1.55 (1.19–1.81) 0.912

Distance Deviation (mm) - Lower Cutting Planes 10 0.66 (0.5–1.08) 10 0.48 (0.35–0.58) 0.143

Distance Deviation (mm) - Upper Cutting Planes 10 0.48 (0.28–0.71) 10 0.78 (0.54–1.58) 0.052

Angulation Deviation (°) - Lower Cutting Planes 10 2.19 (1.03–3.47) 10 5.15 (3.09–6.03) 0.009

Angulation Deviation (°) - Upper Cutting Planes 10 2.86 (1.75–4.39) 10 8.12 (4.66–11.52) 0.009

anumber of comparisons.
binterquartile range.
croot mean square, ∗comparative study (Msallem et al., 2024a).

guarantee an accurate reconstruction. This is because the placement
of the screw holes with screws is also crucial and can lead to
misalignment (Msallem et al., 2024a).

The laser osteotomy offers clear advantages in biological
and functional terms, and the incorporation of digitization and
robotics further improves accuracy and reliability, as supported by
existing literature (Augello et al., 2018), (Holzinger et al., 2021),
(Baek et al., 2021), (Godzik et al., 2019)– (Msallem et al., 2024a),
(de Boutray et al., 2024), (Wojcik et al., 2023). However, developing
standardized testing methods, particularly for surgical applications,
remains an ongoing objective. Advances in digital measurement
techniques will be essential for establishing these standards and
improving clinical outcomes in future surgical procedures. The
next step is to further underline the superiority of these systems
and demonstrate their advantages in both technical and functional
aspects, particularly for reconstructions and various osteotomy
indications in the cranio-maxillofacial area. But additionally,
expanding the applicability of these systems to other medical
fields, for example, trauma and orthopedics, is highly beneficial,
as many areas of medicine would greatly benefit from the precise
implementation of such osteotomies.

5 Conclusion

This study demonstrates that robot-guided laser osteotomy
provides superior accuracy compared to conventional cutting guides
currently available. The findings are supported by statistically
significant differences observed in the precision analyses. For
the upper cutting plane, the distance deviation precision analysis
revealed a statistically significant deviation of 0.48 mm in the laser
osteotomy group compared to 0.78 mm the conventional osteotomy
group. Similarly, the laser osteotomy group achieved statistically
significant results in the angulation deviation precision analysis.
For the lower cutting plane, the angulation deviation was 2.19° in
the laser osteotomy group compared to 5.15° in the conventional
osteotomy group. In contrast, for the upper cutting plane, the
laser osteotomy group demonstrated a deviation of 2.86° and 8.12°
for the conventional osteotomy group. These results highlight the
enhanced accuracy of the robot-guided laser osteotomy technique,
establishing it as a superior alternative to conventional techniques.

The previously conducted comparative study, which evaluated
the accuracy of the reconstruction after robot-guided laser
osteotomy, demonstrated that the RMS values of the two osteotomy
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groups exhibited comparable outcomes, rather than superiority,
concerning final reconstruction. This finding underscores that
current technologies have achieved clinically significant accuracy in
reconstruction, with minor discrepancies becoming less impactful
within the broader surgical workflow. It also suggests that different
techniques may have other applications and retain their justification
for specific use areas. Further studies are required to demonstrate
the applicability of this innovative system in oncologic and
reconstructive surgery. However, its potential to become a valuable
addition to surgical procedures is promising. Beyond its ability to cut
tissues with high accuracy, the system offers advanced capabilities
that could enhance surgical workflows. While the high acquisition
costs may limit its initial adoption, these additional functionalities
could justify its implementation in the future, particularly for
complex surgical applications with a high demand for accuracy.

Abbrevations

3D, Three-dimensional; CT, Computed tomography;
Er:YAG, Erbium-doped Yttrium Aluminium Garnet; IQR,
Interquartile range; RMS, Root mean square; STL, Standard
Tessellation Language.
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