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Metric scale non-fixed obstacles
distance estimation using a 3D
map and a monocular camera

Daijiro Higashi, Naoki Fukuta* and Tsuyoshi Tasaki

Graduate School of Science and Technology, Meijo University, Nagoya, Japan

Obstacle avoidance is important for autonomous driving. Metric scale obstacle
detection using a monocular camera for obstacle avoidance has been studied.
In this study, metric scale obstacle detection means detecting obstacles
and measuring the distance to them with a metric scale. We have already
developed PMOD-Net, which realizes metric scale obstacle detection by using
a monocular camera and a 3D map for autonomous driving. However, PMOD-
Net’s distance error of non-fixed obstacles that do not exist on the 3D
map is large. Accordingly, this study deals with the problem of improving
distance estimation of non-fixed obstacles for obstacle avoidance. To solve the
problem, we focused on the fact that PMOD-Net simultaneously performed
object detection and distance estimation. We have developed a new loss
function called “DifSeg.” DifSeg is calculated from the distance estimation
results on the non-fixed obstacle region, which is defined based on the
object detection results. Therefore, DifSeg makes PMOD-Net focus on non-
fixed obstacles during training. We evaluated the effect of DifSeg by using
CARLA simulator, KITTI, and an original indoor dataset. The evaluation results
showed that the distance estimation accuracy was improved on all datasets.
Especially in the case of KITTI, the distance estimation error of our method
was 2.42 m, which was 2.14 m less than that of the latest monocular depth
estimation method.

KEYWORDS

obstacle detection, depth completion, monocular depth estimation, 3D map, semantic
segmentation, autonomous driving

1 Introduction

Accurate obstacle distance estimation is important for ensuring the safety of
autonomous driving cars and mobile robots. Light detection and ranging (LiDAR) has been
conventionally used for measuring distance with a metric scale, but LiDAR is expensive.
Hence, this study aims to achieve metric scale distance estimation using an inexpensive
monocular camera. The other comparison items are shown in Table 1. Here, we compare a
camera with a 360-degreemechanical 3D LiDAR that is used generally.Themerits of LiDAR
are the accuracy and 360-degree field of view. However, the durability is low because of its
mechanical rotation parts. The merits of a camera are the cost, resolution, frame rate, and
ability of getting color information.

Highly accurate depth estimation models using a monocular camera are
NDDepth (Shuwei et al., 2024) and IEBins (Shuwei et al., 2023). However, the
depth estimated by these methods has no scales in the place where they are not
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TABLE 1 Comparison between a LiDAR and a camera.

Properties LiDAR Camera

Accuracy High Normal

Cost Very expensive Inexpensive

Field of view 360 deg About 70 deg–150 deg

Resolution Low High

Durability Normal High

Frame rate Normal High

Other feature Get color information

FIGURE 1
Example of the 3D map used in PMOD-Net. In this study, a point-cloud-based 3D map is assumed.

trained. We have developed PMOD-Net (Shikishima et al., 2023),
which accurately estimates distance with a metric scale by using a
monocular camera and a 3D map, as shown in Figure 1. PMOD-
Net performs semantic segmentation and distance estimation
simultaneously from a depth image created by a 3D map and a
camera image. PMOD-Net’s semantic segmentation contributes to
the detection of non-fixed obstacles that do not exist on the 3D map.
In this study, non-fixed obstacles are defined as all obstacles that
do not exist on the map. Therefore, not only moving objects but
also static objects such as parked vehicles are included in the non-
fixed obstacles. However, the accuracy of distance estimation is still
low because the 3D map has no information of the distance to the
non-fixed obstacles. In this study, we address the novel challenge
of improving the accuracy of distance estimation for non-fixed
obstacles that do not exist on the 3D map.

To address this challenge, we focused on the semantic
segmentation results provided by PMOD-Net. We develop a

new loss function paying attention to the regions detected
as non-fixed obstacles by PMOD-Net. This approach is the
first attempt to specialize in training a neural network to
measure the distance to non-fixed obstacles that do not exist on
the 3D map.

To summarize, the contributions of this work are
listed as follows:

• A new loss function is developed to improve the accuracy of the
world’s first neural network for distance estimation using a 3D
map and a monocular camera.

• We achieve higher accuracy on the public dataset
KITTI-360 (Liao et al., 2022) compared to the
latest off-the-shelf monocular depth estimation
method.

• We verify that ourmethodworkswell on amobile robot that has
a camera.
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2 Related studies

2.1 Depth completion with a metric scale

There are many depth completion methods that utilize LiDAR
point cloud and a monocular camera image as input (Sindagi et al.,
2019; Wang et al., 2021; He et al., 2019; Hai et al., 2023; Guo et al.,
2022). These methods can complement the distance with a metric
scale because the distance is complemented by the 2D image and the
LiDARpoint cloud, which has ametric scale. In the case of regarding
a 3Dmap as a pseudo LiDARpoint cloud, it is possible to reconstruct
depth image from the 3D map and monocular camera image.
However, depth completion methods require the synchronization
of the LiDAR point cloud and 2D image. That is, all obstacles
that exist in an image must also be in the point cloud. Therefore,
even when 3D map is adapted to the depth completion methods,
they do not provide as accurate distance estimation as PMOD-
Net (Shikishima et al., 2023)

2.2 Monocular depth estimation

Monocular depth estimation is used in a lot of technical fields,
including robotics (Jia et al., 2023) and augmented reality (Lee et al.,
2011).MIMDepth (Xie et al., 2022), based onGLPDepth (Kim et al.,
2022), significantly contributes to monocular depth estimation
in the field of autonomous driving. NDDepth performs better
than the previous methods on the KITTI (Geiger et al., 2012)
and NYUDepth-v2 (Silberman and Derek Hoiem Pushmeet Kuhli,
2012) datasets. NDDepth realizes an accurate estimation by
introducing a normal-distance head in addition to planar
detection through Felzenszwalb segmentation (Felzenszwalb and
Huttenlocher, 2004).

Zero-shot estimation is a challenge in the field of monocular
depth estimation, which requires large amounts of training data.
Recent models such as Depth Anything (Yang et al., 2024) have
been developed to provide highly accurate estimation in a zero-
shot setting.

Manymonocular depth estimationmodels have been developed.
However, scale estimation is required when estimating in an
environment different from the one in which the model was trained.
As a result, the accuracy of scale estimation can significantly affect
the overall accuracy of the model. PMOD-Net (Shikishima et al.,
2023) has no problems of scale estimation because it uses a 3D map
as an input.

2.3 PMOD-Net

PMOD-Net (Shikishima et al., 2023) is the world’s first neural
network for metric scale obstacle detection using a 3D map and a
monocular camera. Figure 2 shows the architecture of PMOD-Net
within the black frame.The inputs are a sparse depth image projected
from a 3D map and a camera image from a monocular camera. A
sparse depth image is created by projecting a 3D map based on the
self-pose on a 3Dmap. PMOD-Net performs semantic segmentation
and distance estimation simultaneously.

PMOD-Net enables distance estimation with a metric scale for
non-fixed obstacles that do not exist on the 3D map, thanks to
a multitask learning. That is, semantic segmentation detects non-
fixed obstacles, which enhances distance estimation for non-fixed
obstacles. However, during training, only L1 norm loss £L1 is used
across the entire depth image between the estimated depth image
and ground truth (GT) depth image.Therefore, the distant non-fixed
obstacles are often not detected, which is a problem. In this paper, to
solve the problem, we have developed a new loss function.

3 Materials and methods

3.1 DifSeg loss

In order to improve the PMOD-Net distance estimation, we
propose an additional loss.This additional loss is calculated based on
the PMOD-Net estimated and GT segmentation image. We named
this additional loss DifSeg (difference of distance based on semantic
segmentation).

Figure 3 shows the data to calculate DifSeg loss. Figures 3a, b
represent a depth image DP and a segmentation image estimated
by PMOD-Net during training, respectively. Figures 3c, d represent
the GT segmentation image and depth image DGT. The regions
identified as non-fixed obstacles in Figures 3b, c denote S(d)P and S(d)GT,
respectively.

TheDifSeg loss is calculated in the region S shown in Equation 1.

S = S(d)p ∪ S
(d)
GT. (1)

The DifSeg loss £DS is defined by Equation 2. Here, j denotes the
position of pixels in the region S, andN denotes the number of pixels
in the region S.

£DS =
1
N

N

∑
j=1
|Dp (j) −DGT (j) |. (2)

The pseudocode to calculate DifSeg is shown in Algorithm 1.

Require: S
(d)
p ,S
(d)
GT
: binary array

Require: Dp,DGT: float array

Ensure: £DS

  1:  S← S
(d)
p or S

(d)
GT

  2:  D
(d)
p ← Dp ×S

  3:  D
(d)
GT
← DGT ×S

  4:  N← 0

  5:  £DS← 0

  6: for j← 1,2,…, S.length do

  7:   if S[j] = 1 then

  8:    N← N+1

  9:    £DS← £DS + |D
(d)
p [j] −D

(d)
GT
[j]|

  10:   end if

  11:  end for

  12:  return £DS/N

Algorithm 1. Calculate DifSeg.
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FIGURE 2
Architecture of PMOD-Net with DifSeg loss. The black frame shows the architecture of the conventional PMOD-Net.

PMOD-Net can be trained to focus on non-fixed obstacles
by adopting DifSeg loss. Consequently, the accuracy of distance
estimation for non-fixed obstacles that do not exist on the 3D
map can be improved. Furthermore, by leveraging both GT and
estimated segmentation results, strong training of misdetection
regions associated with non-fixed obstacles is realized.

3.2 Implementation in PMOD-Net

Figure 2 shows the architecture of PMOD-Net with DifSeg loss.
As shown in Figure 2, conventional PMOD-Net uses the loss for
semantic segmentation (£CE, £AUX1, and £AUX2) and the loss £L1
for distance estimation. £AUX1 and £AUX2 and £CE are cross-entropy
losses for semantic segmentation. Sp denotes the final output from
the decoder. SAUX1 and SAUX2 are up-sampled outputs branched
just before the skip connection from the encoder. Sp, SAUX1, and
SAUX2 are used for calculating loss, as shown in Equations 3–5,
respectively. Here, n denotes the number of pixels of the output
segmentation image.

£CE = −
n

∑
i=1
(SGT (i) log(Sp (i))) . (3)

£AUX1 = −
n

∑
i=1
(SGT (i) log(SAUX1 (i))) . (4)

£AUX2 = −
n

∑
i=1
(SGT (i) log(SAUX2 (i))) . (5)

£L1 represents the L1 loss for distance estimation, comparing
the final output from the decoder with the GT depth image. £L1 is
defined by Equation 6.

£L1 =
1
n

n

∑
i=1
|Dp (i) −DGT (i)| . (6)

Our new PMOD-Net with DifSeg is trained by using loss £
defined by Equation 7. The λ1, λ2, λ3, λ4, and λ5 denote weight
parameters.

£ = λ1£L1 + λ2£CE + λ3£AUX1 + λ4£AUX2 + λ5£DS. (7)

4 Experiment

4.1 Experimental setup

To validate the effectiveness of DifSeg for distance estimation of
non-fixed obstacles, we evaluate PMOD-Net with DifSeg (PMOD-
Dif) by using the following three datasets:

• Simulation dataset (CARLA (Dosovitskiy et al., 2017) dataset).
• Public outdoor dataset (KITTI-360 (Liao et al., 2022) dataset).
• Original indoor dataset.

We compare PMOD-Dif with PMOD-Net and NDDepth
(Shuwei et al., 2024) on all datasets. On the KITTI-360 dataset,
we can use the official NDDepth model without estimating scale
because it is pre-trained by KITTI. On CARLA and original indoor
datasets, we compare the performance byfine-tuning the pre-trained
official NDDepth model on the datasets used for training PMOD-
Net and PMOD-Dif.

In this experiment, the parameters of PMOD-Net for
training are the same as in the original paper (Shikishima et al.,
2023). Similarly, the parameters of PMOD-Dif for training that
are used in Equation 7 are set as λ1 = 0.5, λ1 = 0.5, λ2 = 0.3,
λ3 = 0.25, and λ4 = 5.0, which are the same as those of PMOD-
Net training. The parameter λ5 is set as λ5 = 5.0 considering
λ4 because both λ5 and λ4 are parameters related to the
depth image.
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FIGURE 3
Overview of DifSeg loss. (a) Depth image estimated by PMOD-Net. (b) Segmentation image estimated by PMOD-Net. (c) Ground truth segmentation
image. (d) Ground truth depth image.

FIGURE 4
Mobile robot used for data collection of the original indoor dataset.

4.2 Dataset

The simulation dataset was created using the CARLA
(Dosovitskiy et al., 2017) autonomous driving simulator. In this
experiment, we utilized seven different maps provided by CARLA.
To ensure the diversity of training and test data, pedestrians

FIGURE 5
Route run by the mobile robot on the 3D map.

and vehicles were placed at random on each map as non-fixed
obstacles. We prepared 1,000 images for training from each map,
and all 7,000 images were used for training. For the test, we
prepared 500 images from each map along different routes from
the training data, and a total of 3,500 images were tested. That
is, PMOD-Net and PMOD-Dif were tested on an unknown map
that was not used in training. There is no self-localization error
when PMOD-Net and PMOD-Dif project the 3D map to input
depth images.
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FIGURE 6
Examples of images in the original indoor dataset. The white circles shown in each image denote people and other robots, which are defined as
non-fixed obstacles.

TABLE 2 MAE[m] and MAPE in CARLA.

Methods Vehicles Pedestrians Fixed obstacles

MAE MAPE MAE MAPE MAE MAPE

PMOD-Net 2.37 0.167 5.05 0.419 1.04 0.045

NDDepth 2.82 0.159 4.03 0.340 2.44 0.086

PMOD-Dif 1.84 0.129 3.57 0.319 1.04 0.046

TABLE 3 MAE[m] and MAPE in KITTI-360.

Methods Vehicles Pedestrians Fixed obstacles

MAE MAPE MAE MAPE MAE MAPE

PMOD-Net 2.49 0.236 4.55 0.429 1.05 0.087

NDDepth 4.56 0.346 5.27 0.370 3.50 0.305

PMOD-Dif 2.42 0.234 4.55 0.426 1.14 0.099

TABLE 4 MAE[m] and MAPE in the original indoor dataset.

Methods Other robots People Fixed obstacles

MAE MAPE MAE MAPE MAE MAPE

PMOD-Net 0.36 0.147 0.37 0.171 0.42 0.087

NDDepth 1.23 0.698 0.98 0.510 0.92 0.562

PMOD-Dif 0.33 0.109 0.27 0.133 0.41 0.069

We utilized the KITTI-360 dataset for the public outdoor
dataset, which is a large-scale in-vehicle sensor dataset collected
in the outskirts of Karlsruhe, Germany. In this experiment,
the input data consisted of left camera images and a 3D

map. We used 1,000 images from each of the nine sequences
provided by KITTI-360 for training. The test was conducted on
each sequence, utilizing all data from each sequence provided
by KITTI-360. In each test, PMOD-Net and PMOD-Dif were
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FIGURE 7
Estimation results in CARLA. From top to bottom: the camera image for input, the visualized segmentation images, and the bird’s eye view point clouds.
Each bird’s eye view point cloud is a point cloud backprojected from the depth image and captured from a bird’s eye perspective. For visualization, it is
colored using the ground truth segmentation image. The red point cloud represents a pedestrian.

trained using 8,000 images from sequences different from those
used in the test. That is, PMOD-Net and PMOD-Dif were
tested on an unknown sequence (map) that was not used
in training. The self-poses for projection utilize the IMU/GPS
localization system with a self-localization data provided by KITTI-
360 (Liao et al., 2022).

The original indoor dataset was collected by navigating in the
Meijo University building using our mobile robot, as shown in
Figure 4. A 3D map was created using point clouds obtained from
the LiDAR attached to the top of the robot. Its model number
is QT128. The test data were made from two round trips of our

robot along the route shown in Figure 5 in the 3D map. In the
training and test data, people and other robots crossed in front of
our robot, or it followed them. We made four route datasets called
“follow1,” “follow2,” “cross1,” and “cross2,” respectively. Figure 6
shows the appearance of people and other robots, used as non-
fixed obstacles for training and testing in the original indoor dataset,
which are indicated by white circles. The input camera images
were collected by the left camera of the stereo camera attached
to our robot. We fine-tuned the PMOD-Net and PMOD-Dif pre-
trained on KITTI-360 with the training data collected from our
robot. The number of images obtained for follow1, follow2, cross1,

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2025.1560342
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Higashi et al. 10.3389/frobt.2025.1560342

FIGURE 8
Estimation results in KITTI-360. From top to bottom: the camera image for input, the visualized segmentation images, and the bird’s eye view point
clouds. Each bird’s eye view point cloud is a point cloud backprojected from the depth image and captured from a bird’s eye perspective. For
visualization, it is colored using the ground truth segmentation image. The red point cloud represents a pedestrian.

and cross2 are 62, 73, 57, and 74 frames, respectively. We perform
4-fold cross-validation with follow1, follow2, cross1, and cross2.
GT segmentation images were made using LabelMe (Russell et al.,
2008). GT depth images were created using CREStereo (Li et al.,
2022) from stereo images collected from a stereo camera. The self-
localization method performed with NDT matching (Biber and
Straβer, 2003), which had a self-localization error of approximately
0.1 m. Note that even though our robot has a LiDAR and a
stereo camera, we use just the left camera image and 3D map
for the test. They are used to only get the data required by
this experiment.

4.3 Evaluation index

We conducted the evaluation on non-fixed obstacles and
fixed obstacles within the image. In the simulation and public
outdoor dataset, pedestrians and vehicles were defined as non-fixed
obstacles. In the original indoor dataset, people and other robots
were defined as non-fixed obstacles. We defined fixed obstacles as
those within the image that are not non-fixed obstacles. We utilized
mean absolute error (MAE) and mean absolute percentage error
(MAPE) for evaluation. These indicate the distance estimation error
of obstacles in the image. MAE and MAPE are calculated using
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FIGURE 9
Estimation results in our original indoor dataset. From top to bottom: the camera image for input, the visualized segmentation images, and the bird’s
eye view point clouds. Each bird’s eye view point cloud is a point cloud backprojected from the depth image and captured from a bird’s eye
perspective. For visualization, it is colored using the ground truth segmentation image. The blue point cloud represents other robot.

TABLE 5 False positive [%].

Methods CARLA KITTI-360 Original indoor

PMOD-Net 0.17 0.36 0.30

PMOD-Dif 0.17 0.38 0.21

Equations 8, 9, respectively.

MAE = 1
n

n

∑
i=1
|Dp (i) −DGT (i) |. (8) MAPE = 1

n

n

∑
i=1

|Dp (i) −DGT (i) |
DGT (i)

. (9)
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4.4 Experimental results and discussion

The results for each dataset are shown in Tables 2–4. Figures 7–9
show the PMOD-Net and PMOD-Dif (ours) estimation results and
the bird’s eye view point cloud created from the estimation results.
We performed t-test on the original indoor dataset because its size
is smaller than that of the CARLA and KITTI-360 datasets. The
results of t-test showed that the differences of MAE and MAPE
between PMOD-Dif and other methods were statistically significant
(p < 0.01).

From these results, the DifSeg loss improves the accuracy of
distance estimation for non-fixed obstacles. Especially, Figures 7, 8
show that distant pedestrians, who could not be detected by
conventional PMOD-Net, can be detected by PMOD-Dif.

Furthermore, as shown in Table 3, PMOD-Net provides higher
distance estimation accuracy than NDDepth which is currently a
highly accurate method on the KITTI benchmark. When restricted
to vehicle class MAE and compared to NDDepth, the conventional
PMOD-Net reduced the error by 2.07 m. Additionally, the adoption
of DifSeg reduced the error by 2.14 m. These results indicate that
the 3D map input is capable of estimating distance closer to the
metric scale.

Comparing Tables 2, 4 with Table 3, the accuracy improvement
rate on the KITTI-360 is low. We consider this is because there
are fewer non-fixed obstacle regions in KITTI-360 than in our
simulation and original indoor dataset. Therefore, we expect to
improve accuracy by dynamically adjusting theweights of theDifSeg
loss according to the size of non-fixed obstacle regions.

In this experiment, we found that PMOD-Net worked when the
self-localization error was less than approximately 0.1 m. However,
we do not obtain the self-pose on a 3D map by a camera in
this experiment. The self-pose error of CMRNet (Cattaneo et al.,
2016) that estimates self-pose on a 3D map by using monocular
camera is 0.27 m. Therefore, we want to integrate PMOD-Net with
a monocular camera self-localization method such as CMRNet in
order to verify its relevance to the self-localization error.

For autonomous driving application, the inference time is
important. Using the original indoor dataset, the mean inference
times of PMOD-Net,NDDepth, andPMOD-Dif are 124 ms, 545 ms,
and 113 ms, respectively. They are processed on our PC with a 12th
Core i9 and a Geforce RTX 3060. PMOD-Net and PMOD-Dif are
faster than NDDepth. However, for embedded systems, they are too
slow. In future work, we have to make it faster by utilizing a fast
neural network such as MobileNetV2 (Sandler et al., 2018).

For autonomous driving safety, the false detection of vehicles and
pedestrians on the road is one of the big problems. Therefore, we also
check the false positive F defined by Equation 10 on each dataset.

F = d
s
. (10)

d denotes the number of pixels where each method wrongly detects
vehicles (other robots) and pedestrians (people) on the road pixels.
s denotes a number of pixels that shows the road on the GT
segmentation images.

Table 5 shows false positive of each dataset. Table 5 shows that all
false positives are less than 1%, and the difference between PMOD-
Net and PMOD-Dif is small. We think that DifSeg does not affect
the false positive verymuch because it is based on the error of depth,
as shown in Equation 2.

5 Conclusion

This study addressed the challenge of improving the accuracy
of distance estimation for non-fixed obstacles that do not exist on
a 3D map. We focused on PMOD-Net that simultaneously output
semantic segmentation image and depth image by using 3D map.
During the training of PMOD-Net, we add a new loss “DifSeg”
that reduces the difference of distance on the non-fixed obstacle
region obtained from a segmentation image. DifSeg realizes training
focusing on the detected non-fixed obstacle region. The accuracy of
distance estimation was improved on the CARLA, KITTI-360, and
original indoor datasets. Specially, on the KITTI-360, the distance
estimation error of our method was 2.42 m, which was 2.14 m
less than that of the latest monocular depth estimation method.
Moreover, the capability of the 3D map was also clarified. Future
work will include dynamic changes of the weights of the DifSeg loss
depending on the size of the non-fixed obstacle region.
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